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Abstract

The adult mammalian central nervous system has a limited ability to establish new connections and to recover from
traumatic or degenerative events. The olivo-cerebellar network represents an excellent model to investigate
neuroprotection and repair in the brain during adulthood, due to its high plasticity and ordered synaptic organization.
To shed light on the molecular mechanisms involved in these events, we focused on the growth-associated protein GAP-43
(also known as B-50 or neuromodulin). During development, this protein plays a crucial role in growth and in branch
formation of neurites, while in the adult it is only expressed in a few brain regions, including the inferior olive (IO) where
climbing fibres (CFs) originate. Following axotomy GAP-43 is usually up-regulated in association with regeneration. Here we
describe an in vivo lentiviral-mediated gene silencing approach, used for the first time in the olivo-cerebellar system, to
efficiently and specifically downregulate GAP-43 in rodents CFs. We show that lack of GAP-43 causes an atrophy of the CF in
non-traumatic conditions, consisting in a decrease of its length, branching and number of synaptic boutons. We also
investigated CF regenerative ability by inducing a subtotal lesion of the IO. Noteworthy, surviving CFs lacking GAP-43 were
largely unable to sprout on surrounding Purkinje cells. Collectively, our results demonstrate that GAP-43 is essential both to
maintain CFs structure in non-traumatic condition and to promote sprouting after partial lesion of the IO.
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Introduction

Reorganization of terminal arbors and synaptic remodelling,

thought to underlie some aspects of learning and memory, occurs

throughout life in the intact brain [1,2] and plays a crucial role in

recovery after brain injury [3]. An important mediator of

structural plasticity of axonal fibres is the growth-associated

protein GAP-43 [4–6]. The expression of GAP-43 is high in the

brain during development and it declines in most neurons when

mature synapses are formed. However in some brain regions a

high expression of GAP-43 is maintained throughout life [7,8] and

it is suggested to play an important role in synaptic plasticity and

synaptic vesicle release during adulthood [4–6,9]. This is

confirmed by studies performed on mice lacking one or both

copies of Gap-43 gene or expressing a point-mutated form,

revealing alterations in well established learning and memory

paradigms [10–14].

Previously it has also been shown that GAP-43 plays a major

role in axonal sprouting. For instance, transgenic mice overex-

pressing GAP-43 in motoneurons exhibit both a spontaneous

sprouting and an increased sprouting following block of neuro-

muscular transmission by botulinum toxin [15]. On the other

hand, Purkinje cells (PCs) never express GAP-43 and show no

sprouting after axotomy. However, in transgenic mice expressing

GAP-43 selectively in PCs, sprouting appears both at the lesion

site and along the intact axon surface, showing that the over-

expression of GAP-43 is sufficient to induce sprouting [16–18]. We

further investigated this point by assessing whether axonal

sprouting is prevented by down-regulation of GAP-43 in neurons

which constitutively express it and which are able to sprout.

Another aspect still poorly understood is whether GAP-43 plays

any function in the structure of neurons of the adult brain under

non-traumatic conditions, as observed during development.

Homozygotic knockout mice lacking Gap-43 gene die early in

the postnatal period [19], while brain development in heterozy-

gotic knockout mice is profoundly affected, showing severe

impairments of axonal pathfinding and in the formation of

telencephalic commissures [11,15,19–21]. Hence, the possibilities

for these transgenic animals to represent a proper model for

studying GAP-43 during adulthood are very limited.

Here we describe the use of an in vivo gene silencing approach

based on the injection of lentiviral particles encoding both a green

fluorescent protein (GFP) and a specific short-hairpin RNA

(shRNA) targeting Gap-43 mRNA sequence. Using this technique

we have investigated the structural role played by GAP-43 in

axonal fibres of the adult brain under physiological conditions and

its requirement in axonal sprouting. To this aim the cerebellar

cortex provides an excellent model due to its high degree of
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structural plasticity [22–30]. The IO is among the regions

retaining a high expression of GAP-43 throughout life [7,8,31].

Additionally, CFs, which are the terminal arbors of the axon of

olivary neurons, innervate the dendrites of the PCs in a one-to-one

relationship, displaying a well characterised three-dimensional

organization [32,33]. Previous studies investigating regeneration in

the central nervous system have also shown that, following a

subtotal lesion of the IO, the surviving CFs display a remarkable

collateral sprouting, leading to reinnervation of the nearby located

CF-deprived PCs [28,34].

Here we show that specific silencing of GAP-43 in the IO of

adult rodents leads to an atrophy of CF arborisation, to

modifications of its synaptic varicosities and to a dramatic

reduction of collateral sprouting after IO injury. In conclusion,

these data demonstrate that in the cerebellum GAP-43 plays an

important role in maintaining the complex structure of the CFs

under physiological conditions. In addition, by showing in vivo that

it is required for CF sprouting, they give a significant contribution

to consolidate the idea that GAP-43 is an important target for

promoting regeneration of the nervous system following injury.

Results

1. In-vivo silencing of GAP-43 by lentiviral delivery of
shRNA

In order to downregulate GAP-43 protein expression in olivary

neurons we designed five candidate shRNA sequences (shRNA1-5)

and cloned them into a GFP-encoding lentiviral vector. Silencing

efficacy was evaluated by western-blot in rat pheochromocytoma

PC12 cell line [35,36] (Fig. 1A). These cells were chosen as they

express high levels of GAP-43 following differentiation in

dopaminergic neuron-like cells by NGF treatment [4].

High expression of shRNA, as achieved by the use of lentiviral

vectors, can induce off-target effects leading to structural and

functional modifications [37]. This is possibly due to the activation

of an interferon response [38]. Therefore, in a series of control

experiments, we included a scrambled sequence designed by

randomizing the selected shRNA sequence in order to avoid any

possible RNA target.

As shown in Fig. 1A, in cells treated with shRNA1, 3, 4 and 5,

GAP-43 protein expression was significantly reduced, if compared

to non-treated cells and control conditions. In particular, in cells

treated with shRNA4, very low levels of expression were observed.

These data were further confirmed at mRNA level by real-time

PCR. Here a scrambled sequence (SCR) was tested against

shRNA4 showing the specificity of the silencing effect (Fig. 1B).

Increasing the titre of the viral stock, as obtained by a double-

centrifugation protocol, allowed in vitro silencing of GAP-43 down

to the detection limit when compared to non-treated cells or to

cells treated with control or scrambled sequences (Fig. 1C). On the

basis of these results all following experiments were performed

using shRNA4 (renamed siGAP).

Viral preparations (siGAP, SCR and control) were stereotaxi-

cally injected into the IO of rats at post-natal day 19–22

(Supplementary Fig. S1), when cerebellar cortex has completed

its development [39]. Rats were chosen for the possibility to induce

a subtotal lesion of the IO by intraperitoneal injection of 3-

acetylpyridine (3-AP), as this treatment was shown to elicit plastic

changes in surviving CFs [28,34].

The efficacy of GAP-43 silencing in olivary neurons was then

verified in vivo by immunofluorescence on fixed cerebellar slices 3

weeks after the injection. GFP-expression in CFs was used as an

unequivocal marker of transduction with the lentiviral vector.

Laser scanning confocal microscopy was used to measure GAP-43

protein expression in CFs by specific colocalization with GFP

fluorescence. Injection of siGAP lentiviral particles, compared to

control, induced a dramatic reduction of GAP-43 expression,

confirming effective in vivo silencing (8-bit brightness intensity

arbitrary units: control = 41.064.1, siGAP = 14.562.0; p,0.001,

N = 11 and 9 fibres respectively; Fig. 2).

2. Atrophy of climbing fibres
The CF is composed by a thick axonal stalk from which many

thin collaterals originate (namely tendrils; Fig. 3A, D, G). Some of

these collaterals run parallel to the stalk on the PC dendrite while

shorter ones form a net-like structure around the dendrite that

appears particularly complex on the thickest and most proximal

portion of the dendrite. In its most distal portions the CF is

composed by fewer tendrils and the stalk decreases in diameter

(Fig. 3A, D). These morphological features, clearly recognizable

due to expression of GFP, are retained by CFs expressing SCR

sequence, while fibres expressing siGAP sequence exhibit a

characteristically different structure with fewer tendrils along their

proximal and distal portions (Fig. 3A–F). A similar pattern can be

observed on coronal sections (Fig. 3G–I) where a reduction of

density of varicosities is particularly evident.

In order to quantify the changes of the CF arbor following

GAP-43 down-regulation we first measured its total length. In

Figure 1. Silencing of GAP-43 in PC12 cells. (A) Western blot of GAP-43 (upper line) in NGF-differentiated PC12 cells not transduced (N.T.),
transduced with GFP-only (control) or with one of the five silencing constructs (shRNA1-5). Vinculin is used as a loading control (lower line). (B) Real-
time PCR showing Gap-43 mRNA levels in PC12 cells not transduced (N.T.) or transduced with a highly concentrated (by double centrifugation)
lentiviral preparation expressing GFP only (Control), shRNA4 (siGAP) or a scramble sequence (SCR). Two independent cultures per case; reference
gene: ATP5B. (C) Western blot of GAP-43 in NGF-differentiated PC12 cells transduced with highly concentrated lentivirus. b-actin is used as a loading
control (lower line).
doi:10.1371/journal.pone.0020791.g001

GAP-43 Dependent Plasticity in Climbing Fibres
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control conditions the mean value was 1024656 mm. Following

transduction with SCR sequence we obtained a mean value of

911643 mm, which was not statistically different from control.

Conversely, a significant decrease was found in the length of GAP-

43 deprived arbors, which had a mean value of 683633 mm

(p,0.001; post-hoc comparisons: siGAP vs. control, p,0.001;

siGAP vs. SCR, p,0.01; N = 14, 14 and 13 CFs respectively

control, SCR and siGAP CFs; Fig. 4A).

To obtain a bi-dimensional index of the structural complexity

of the CFs in different conditions we measured branching fibres

by Sholl’s analysis (Fig. 4B) [40,41]. A statistically significant

decrease in the median number of intersections between 36 and

114 mm from the centre was present in the GAP-43 deprived

CFs, relative to control and SCR conditions (control: 6.560.4;

SCR = 7.260.5; siGAP = 4.660.2; p,0.001; post-hoc compari-

sons: siGAP vs. control p,0.01, siGAP vs. SCR, p,0.001;

N = 14, 14 and 13 CFs respectively control, SCR and siGAP CFs;

see Fig. 4C–D).

A further analysis was aimed at determining the number of

varicosities in each CF arbor, identified either by their morphology

or by VGLUT2 immunostaining [42]. As shown in Fig. 4E, their

total number decreased significantly from a mean value of 544623

in control fibres and 501623 in SCR fibres to a value of 304620

in siGAP fibres (p,0.001; post-hoc comparisons: siGAP vs.

control and siGAP vs. SCR, p,0.001; N = 14, 14 and 13 CFs

respectively control, SCR and siGAP CFs; Fig. 4E).

Figure 2. Silencing of GAP-43 in climbing fibres. (A–F) Projection of a series of optical sections from rats transduced with control (A–C) or siGAP
viral particles (D–F). Images were obtained by confocal microscopy on cerebellar slices immunostained with anti-GAP-43 antibody (red). Only
transduced CFs are labelled by GFP expression (green). (C, F) GAP-43 signal co-localizing with GFP has been isolated for each optical section and z-
projected. High expression of GAP-43 is identified in control CFs (A–C, arrows), but not in siGAP CFs (D–F), demonstrating efficient in vivo silencing by
siGAP sequence. (G) Quantification of GAP-43 immunofluorescence intensity in specifically identified CFs (N = 11 and 9; 3 animals per group; mean 6
SEM; *** p,0.001).
doi:10.1371/journal.pone.0020791.g002
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To assess whether the decrease in the number of varicosities was

only due to the observed reduction of CF length or not, we

measured the density of varicosities per mm of fibre length. As

shown in Fig. 4F, while the density mean value was not statistically

different between control and SCR, in GAP-43 deprived fibres

a significant decrease was measured compared to both control

and SCR conditions (control: 0.5360.03; SCR = 0.5560.02;

siGAP = 0.4460.02; p,0.01; post-hoc comparisons: siGAP vs.

control p,0.05, siGAP vs. SCR, p,0.01; N = 14, 14 and 13 CFs

respectively control, SCR and siGAP CFs; Fig. 4E).

Varicosities are essential components of axons, as they contain

most of the cytosolic and membrane-bound proteins involved in

synaptic transmission. We observed that, following silencing of

GAP-43, atrophic CFs have fewer small varicosities, while the

remaining are larger and more regularly-shaped (Fig. 5).

During the period of GAP-43 silencing (between the third and

sixth week of postnatal life) rat body growths, suggesting that

depletion of GAP-43 may affect axonal growth during this time

window. In order to investigate if the atrophic modification

observed in CF was at least partially independent of axonal growth

and age-related body growth we replicated the key experiments in

older animals. For the different proportions of head bones in older

rats, a proper exposure of the dorsal side of brain stem was

technically not possible in a normal stereotaxical apparatus in

these animals. However, this method of injection was easily

adapted to adult mice (2–3 months old FVB mice) as it had the

Figure 3. Morphology of rat CFs after silencing of GAP-43. Representative confocal images of rat parasagittal (A–F) and coronal (G–I)
cerebellar sections, immunolabelled for VGLUT2 (in red). CFs were transduced with control (A, G), SCR (B, H) and siGAP sequences (C–I). (D–F) Details
of the terminal and proximal tracts of CFs shown in A–C. The thick axonal stalk is pointed by arrows in D and G. Some of the numerous thin collaterals
called tendrils are pointed by arrowheads in D–I. siGAP CFs are less branched in comparison to control and SCR CFs (A–C). At high magnification both
on parasagittal and coronal view a reduction in the number of tendrils is evident in siGAP fibres (D–I), especially in terminal tracts (D–F). As a
consequence, VGLUT2-positive varicosities appear reduced along the whole fibre (D–I).
doi:10.1371/journal.pone.0020791.g003
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added bonus of opening up the possibility to extend our findings

on the role played by GAP-43 in maintaining CF structure to

other in vivo studies (such as in combination with genetically

modified mouse models or with time-lapse imaging by multi-

photon microscopy).

Using the same methodological approach used in rats, we

observed also in mice a significant reduction in the length of CFs

and the density of varicosities (length: control = 691632 mm,

siGAP = 598627 mm, p,0.05; varicosities/mm: control = 0.416

0.04; siGAP = 0.3260.01, p,0.05; N = 19 and 15; Fig. 6). This

Figure 4. Morphometric analysis in juvenile rats reveals CF atrophy after GAP-43 silencing. (A) A significant reduction of CFs length is
observed in siGAP compared to control and SCR conditions. (B) Schematic representation of Sholl’s analysis for CF branches traced in Fig. 3A:
complexity of branching was quantified as the number of intersections between the CF and a series of concentric circle. (C) Sholl’s analysis shows the
number of CF branches as a function of the distance from the main branching point in control, SCR and siGAP fibres (values every 6 mm are shown).
(D) Number of branches as assessed by Sholl’s analysis. For each fibre median value is obtained in the range from 36 to 114 mm, where its maximum
is observed. (E) Number of varicosities and (F) density of varicosities per length unit (N = 14, 14 and 13; 3 animals per group; mean 6 SEM; Tukey’s
post-hoc test: *p,0.05; ** p,0.01; *** p,0.001).
doi:10.1371/journal.pone.0020791.g004

GAP-43 Dependent Plasticity in Climbing Fibres

PLoS ONE | www.plosone.org 5 June 2011 | Volume 6 | Issue 6 | e20791



shows that GAP-43-dependent maintenance of CF structure is, at

least partially, independent of age, suggesting that silencing of

GAP-43 is able to induce a regressive modification of CF inde-

pendent of axonal growth.

3. GAP-43 is crucial for CF sprouting induced by a
subtotal lesion of the inferior olive

Collateral sprouting of CFs can be obtained in the rat following a

subtotal lesion of the IO by means of an intraperitoneal injection of

3-AP. Surviving IO neurons exhibit collateral sprouting of the CF

arbor in the molecular layer, where they can innervate one or more

of the nearby located PCs deprived of their original CF afferent

[28,34]. In order to assess the in vivo requirement of GAP-43 in this

process, we performed a subtotal lesion of the IO three weeks after

injecting lentiviral particles encoding GFP (control) or both GFP

and siGAP sequences. Following an additional 3 weeks, we

confirmed neurotoxic effects of 3-AP on IO neurons by observing

the presence of large areas, in the molecular layer, that were totally

or sub-totally deprived of CF varicosities (identified by VGLUT2

staining; Fig. 7C–F). In contrast, animals that were not treated by 3-

AP (Fig. 3) are characterized by an evenly dense distribution of

VGLUT2-labelled varicosities throughout the whole molecular

layer. Morphological analysis of the surviving CFs, both on sagittal

and coronal planes revealed a picture that is consistent with previous

reports [28]. Here, sprouting could be observed in one or more

points in control CFs, both in sagittal and coronal sections

(Supplementary Fig. S2). These points were identified as those

where the CF was moving away from the dendrite of its own PC to

contact the dendrite of a PC located either within the same sagittal

plane or in an adjacent one (Supplementary Fig. S2A–B, inserts).

A difference in sprouting between control and GAP-43 silenced

rats was then observed (Fig. 7). The total number of CFs showing

collateral sprouting, as assessed on coronal sections, was significantly

reduced in siGAP samples to a mere 16% of control (from 4.861

CFs per section in control animals to 0.860.6 in siGAP animals;

p,0.05, N = 5 and 3 animals; the number of slices analyzed per

animal was respectively 6, 6, 12, 6, 8 and 10, 17, 27), demonstrating

in vivo, for the first time to our knowledge, that GAP-43 plays a

crucial role in axonal sprouting in the cerebellum (Fig. 7A).

An additional issue was to quantify and compare the area

occupied by those CFs undergoing sprouting in control rats and

after GAP-43 silencing. The surface was measured on coronal

sections based on GFP signal, and a significant reduction was

observed in rats treated with siGAP viral particles compared to

control (from 15306137 mm2 to 11526116 mm2, p,0.05, N = 19

and 17 CFs, from 5 control and 3 siGAP animals; Fig. 7B–F). This

confirms that, at least in the cerebellum, GAP-43 plays an

important role in establishing both the regenerative potential and

the extension of axonal sprouting.

Discussion

Several studies have shown, using transgenic mice, that

overexpression of GAP-43 induces axonal sprouting [4,43],

suggesting that it represents an appealing target to promote

central nervous system repair following brain injuries [3].

However, the role played by GAP-43 in adult uninjured brain

still remains largely speculative. Furthermore, clarifying its role in

injury-induced plasticity in the adult is of primary importance for

regenerative studies. We showed here that silencing GAP-43 in the

IO profoundly affects the morphology of CFs in adult rodents,

leading to an atrophy of their tendrils, a retraction of the fibre and

a decreased density of varicosities. GAP-43 is associated with the

activation of specific cell adhesion pathways, as in the case of

neuronal L1/NCAM, which are proteins involved in axonal

outgrowth and synaptic plasticity [18,44–48] and are highly

expressed in the IO [49,50]. GAP-43 also interacts with

cytoskeletal and presynaptic scaffold proteins. It interacts, among

others, with actin to regulate its polymerization, with the

microtubule associated protein MAP-2 and with brain spectrin

[51,52]. Spectrin forms a filamentous network with actin under the

plasma membrane, providing support for cell morphology [53].

This is confirmed in the neuromuscular junction of Drosophila

larva, where spectrin is required in the presynaptic compartment

for maintaining synapse stability [54,55]. It is also interesting to

note that a disruption of the normal distribution of the membrane

proteins PlexinB1 and Nogo receptors has been recently reported

in PCs following axotomy and overexpression of GAP-43 [56].

Figure 5. Morphology of varicosities in control and siGAP CFs in rats. Representative images of control and siGAP CFs acquired by confocal
microscopy at high magnification (objective 636, zoom 36), showing larger VGLUT2-positive varicosities in siGAP fibres (arrows) compared to
control. Small varicosities (arrowheads) are less frequent in siGAP fibres than in control. A reduction in the number of varicosities and tendrils is also
detectable.
doi:10.1371/journal.pone.0020791.g005
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Therefore, the atrophy induced by silencing GAP-43 suggests that

GAP-43 may cooperate with cytoskeletal proteins at the

membrane in maintaining axonal and pre-synaptic structures by

linking them to neuronal adhesion molecules.

Several lines of evidence show that ectopic overexpression of

GAP-43 induces axonal sprouting. It was shown that cerebellar

PCs, which constitutively lack this protein, gain the ability to

sprout in transgenic mice specifically overexpressing GAP-43 in

PCs [16,18]. Likewise, adult motoneurons exhibit a spontaneous

axonal sprouting and an enhanced sprouting following axotomy

when GAP-43 overexpression is induced in transgenic mice [15].

In the present study we have shown in vivo that downregulation of

GAP-43 expression is sufficient to largely prevent CF collateral

sprouting induced by subtotal lesion of the IO. This demonstrates

that, in this model of injury-associated axonal growth, a single

molecule can affect the regenerative programme in the adult

brain. However, we have also observed a few CFs in which the

regenerative potential was preserved, although the overall

extension of sprouting was significantly reduced. This raises the

possibility that in these fibres a residual expression of GAP-43 may

be sufficient to support sprouting. Alternatively, other pathways

may be active in these neurons and compensate GAP-43 loss [6]

such as the GAP-43 related protein MARCKS (Myristoylated

Alanine-Rich C-Kinase Substrate), expressed at high levels in IO

and similarly involved in promoting axonal growth [8]. A further

possible interpretation relies on the heterogeneity of olivary

neurons in overexpressing plasticity-related proteins in reaction

to axotomy [57], raising the possibility that GAP-43 may not be

necessary for sprouting in all neurons of the IO.

The experiments presented here demonstrate that in the adult

brain GAP-43 plays a role in the maintenance of CF axonal

structure under physiological conditions. We also induced partial

degeneration of the IO by 3-AP injection, an approach used for

studying structural plasticity in the cerebellum. It is remarkable to

observe that specific downregulation of GAP-43 almost completely

abolished collateral sprouting of the CF. This provides new data

about the role played by GAP-43 in regeneration of the nervous

system following injury. Axonal degeneration and synaptic loss

also have a relevant role in several neurodegenerative diseases,

including amyotrophic lateral sclerosis, spinal muscular atrophy,

glaucoma, Alzheimer’s disease, Parkinson’s disease and multiple

sclerosis [58–60]. Finding effective pharmacological treatments for

modulating the expression or the activity of GAP-43 may

contribute to sustain axonal structures, preventing axonal dying

back in neurodegenerative diseases.

Materials and Methods

4. Design and cloning of shRNA
Five candidate shRNAs were designed to specifically silence rat

Gap-43 gene (NM_017195.1), according to the rationale estab-

lished by Reynolds and colleagues [61]. Each sequence was

Figure 6. Morphometric analysis in adult mice confirms CF atrophy after GAP-43 silencing. Representative confocal images of mouse
parasagittal cerebellar sections, immunolabelled for VGLUT2 (in red; A–B). CFs were transduced with control (A) and siGAP sequences (B). (C) Total
length and (D) density of varicosities per length unit are reduced in siGAP CFs compared to control (N = 19 and 15, from 3 animals per group, mean 6
SEM).
doi:10.1371/journal.pone.0020791.g006
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formed by a 19 nt sense core and its antisense, separated by a loop

sequence (TTCAAGAGA) and followed by a stop sequence

(TTTTTGGAA) [62,63,64]. The following sequences were so

designed: 1) GACAGAAAGTGCTGCTAAA, 2) AGCTCAAA-

GACGAGAAGAA, 3) GAAAGAAGCTGTAGATGAA, 4) GA-

ACATGCCTGAACTTTAA, 5) GTCCAACAGTGTGGCT-

TAA.

Forward and reverse oligonucleotides were annealed and cloned

into pLVTHM (kindly provided by D. Trono, Lausanne,

Switzerland) downstream to the RNApolIII promoter H1. All

five sequences were tested and shRNA4, targeting both rat and

mouse Gap-43, was chosen as it showed the highest efficiency. This

was then sub-cloned in p207.pRRLsinPPTs.hCMV.GFP.WPRE

(p207 for short, kindly provided by L. Naldini, Milan, Italy). In

order to make it suitable for shRNA expression, p207 was

modified (p207-SH) with the insertion of a divergent H1 promoter

upstream to the CMV promoter.

As a control for short-hairpin non-specific effects, shRNA4

sequence was randomized and the absence of any possible target

was checked by bioinformatics. The following SCR 19 nt

sequence was obtained and cloned in the p207 transfer vector as

described above: GACGAACGTATCCATATAT.

Figure 7. Collateral sprouting induced by sub-total lesion of the IO is inhibited by GAP-43 silencing. (A) Sprouting in GFP-positive CFs,
induced by the sub-total lesion of the IO, is significantly reduced in rats treated with siGAP viral particles compared to controls (N = 3 and 5,
respectively; number of slice analyzed per animal was 10, 17, 27 and 6, 6, 12, 6, 8; *p,0.05; mean 6 SEM). (B) The total extension of those CFs still able
to grow sprouts following GAP-43 silencing was also reduced as assessed by GFP labelling on coronal sections (N = 19 and 17 CFs, respectively, from 5
control and 3 siGAP animals; mean 6 SEM; *p,0.05). (C, E) Sample images of sprouting CFs on sagittal and (E–F) coronal planes from control and
siGAP rats 3 weeks after lesion of the IO (GFP, green; VGLUT2, red; Calbindin, blue). The almost complete lack of VGLUT2 labelled varicosities in
molecular layer shows the degeneration of CFs due to 3-AP treatment. Asterisks and dotted lines indicate cell bodies of innervated PCs. Arrowheads
indicate sprouting points for reinnervation of a nearby dendritic arbor. The absence of VGLUT2 labelling in the molecular layer indicates the
degeneration of CFs originally surrounding the surviving CFs.
doi:10.1371/journal.pone.0020791.g007
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5. Lentiviral particles production
Lentiviral particles were produced according to previously

described methods [65]. Briefly, the VSV-G-pseudotyped lentiviral

particles were generated by calcium phosphate transfection of

HEK293T cells with a mixture of helper and transfer plasmids

[65,66]. Following 14–16 hrs of incubation with the transfection

mix, cells were washed with Dulbecco phosphate buffered solution

(DPBS), and then they were grown in complete DMEM supple-

mented with pyruvate. Surnatant containing viral particles was

harvested 40–42 hrs after transfection, filtered through a 0.45 mm

Durapore Stericup unit, and concentrated by 2 ultracentrifugation

steps (or only 1 for the first selection experiments). Finally, the viral

pellet was suspended in DPBS with 1% bovine serum albumin

(BSA) in a final volume equivalent to 1:2,000–5,000 of the initial

(1:400 for the first selection experiments). Viral transduction

efficiency was estimated on HEK239T cells measuring the rate of

transduced cells by cytofluorimetry, obtaining a viral titre of 0.8–

0.9*109 units/ml. Viral particles were stored at 280uC in single use

2 ml aliquots.

6. Protein extraction and Western-blot
Rat pheochromocytoma PC12 cells (generously provided by

M.E. Schwab, Zurich, Switzerland) [35,36] were plated on 35 mm

dishes coated with poly-lysine at a density of 300,000/dish.

Starting from the following day they were differentiated by nerve

growth factor (NGF, 100 ng/ml) for 3 days in serum free medium

with 1% BSA. Every 2–3 days half of the medium was replaced

with fresh medium containing NGF. Virus was added together

with NGF, at a 1:2000 dilution. Protein extracts were obtained by

incubating detached cells on melting ice for 25 min in standard

lysis buffer (10 mM Tris pH 7.5, 150 mM NaCl, 1% Triton-X,

10 mM NaF, 1 mM Na3VO4) added with 1% protease inhibitors

cocktail (Sigma). Crude lysate was centrifuged at 15,0006 g for

5 min at 4uC and supernatant was collected.

Cell extracts (20 mg) were denaturated at 96uC for 5 min and

loaded on SDS-polyacrylamide gel (12%). Gels were blotted on

PVDF membranes. Immunodetection was performed by rabbit

polyclonal anti-GAP-43 1:1000 (NB300-143, Novus Biological,

USA), mouse monoclonal anti-vinculin 1:1000 (Sigma) or mouse

monoclonal anti-actin 1:5000 (Sigma) as loading control and

horseradish peroxidise conjugated secondary antibodies (Chemi-

con) and ECL-Plus (Amersham).

7. RNA extraction and real-time PCR
PC12 cells were plated at a density of 60,000/dish and treated

with NGF and virus as described above. RNA extraction and two-

step retro-transcription were performed by FastLane Cell cDNA

kit (Qiagen) according to manufacturer instructions. An equivalent

of 10 ng RNA was used for retrotranscription reaction. As a

reference gene we chose the nuclear encoded mitochondrial ATP

synthase beta polypeptide (ATP5b; NM_134364.1). Gap-43

mRNA relative expression was measured by real-time PCR

(Applied Biosystem 7900HT) using Fast-start Universal Master

mix (Roche) and Universal Probe Library (Roche). Reaction was

run in four replicates. Primers were designed by a dedicated online

software (Roche) and checked for their amplification efficiency.

Their sequences and associated fluorescent probes were the

following (59-39): Gap-43 Fw ACGGAGACTGCAGAAAGCA,

Rev CGGGCACTTTCCTTAGGTTT, probe #63; ATP5b Fw

CATGGGTACAATGCAGGAAA, Rev GGTCATCAGCTGG-

CACATAG, probe #77. Quantification was made by the DDCt

method [67,68] on raw data exported on Excel (Microsoft).

8. Stereotaxic injections and partial lesion of the inferior
olivary nucleus

Animals were housed according to the European Community

Council Directive (86/609/CEE). The experimental protocols

were designed in accordance with Italian law D.L. 116/92 and

approved by the Italian Minister of Health. All efforts were made

to minimize animal suffering and to reduce the number of animals

used.

The method used to inject the virus into the IO was modified

from Nishiyama and Linden [26]. Briefly, juvenile P19-P22 45-

55g wild-type Wistar rats (Harlan) were deeply anaesthetized by

an intraperitoneal injection of ketamine/xylazine and placed in a

stereotaxic device. The dorsal neck muscles were retracted to

expose the dura over the foramen magnum, and an opening was

made to expose the brainstem. A borosilicate capillary (Sutter

Instruments) was connected to a picospritzer (Parker Inst, USA)

and front filled with 1.5 ml of lentiviral suspension. Injections were

made unilaterally starting from the midline, at a depth of 2.2–

2.3 mm. The capillary was set at an angle of 46u from vertical on

the sagittal plane and 5u from the midline on the horizontal plane.

A volume of viral suspension of ,0.5 ml was delivered over a 6–

12 min period, while the capillary was left in place for another

15 min before it was withdrawn.

For the different proportions of the head bones in older rats,

exposure of the dorsal side of brain stem was technically not

possible in a normal stereotaxical apparatus in these animals.

However, this method of injection was easily adapted to adult mice

(FVB, nine-twelve weeks old, Harlan) with few minor adjustments

(coordinates for the injections: 55u from vertical, 7u from the

midline, 1.6 mm depth; injected volume: ,0.3 ml).

To induce a subtotal lesion of the IO rats were treated with an

intraperitoneal injection of 3-AP (65–75 mg/kg) followed 3 hrs

later by 15 mg/kg harmaline and 300 mg/kg nicotinamide

1.5 hrs later [69].

9. Immunohistochemistry
Immunohistochemistry was performed as previously described

[70]. Briefly, three weeks after viral injection or after 3-AP

administration rats were deeply anaesthetized and intracardiacally

perfused with ice-cold 4% paraformaldehyde. Brains were post-

fixed for at least 4 hrs at 4uC and equilibrated with 30% sucrose

overnight for cryoprotection. Thirty micrometer-thick sagittal or

50 micrometer-thick coronal sections were cut using a freezing

microtome, then permeabilized in PBS with 1% Triton-X.

Sections were pre-absorbed with 10% normal donkey serum

solution for 1 hr at room temperature and incubated overnight at

+4uC with the following primary antibodies: mouse monoclonal

anti-calbindin D28K 1:2000 (Swant, Switzerland), rabbit poly-

clonal anti-GAP-43 1:1000 (Novus Biological, USA) and rabbit

polyclonal anti-VGLUT2 1:500 (Synaptic Systems GmbH,

Germany). After washing, sections were incubated 2 hrs at RT

with 1:200 Cy-3-conjugated donkey anti-rabbit (Jackson Immu-

noResearch, USA) and Alexa647-conjugated donkey anti-rabbit

(Invitrogen).

10. Confocal microscopy and image analysis
Images from immunolabelled samples were acquired with a

636oil immersion objective and a Leica confocal imaging system

(Leica TCR SP5) and processed using NIH ImageJ software [71].

GAP-43 ex-vivo expression was analysed on brain slice images

acquired with a reduced pinhole (0.75 PAU) and using the same

settings, including laser power, photomultiplier gain and offset (z-

step: 0.5 mm). GAP-43-specific signal in transduced CFs was
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isolated and identified within each optical section for its

colocalization with GFP. It was then projected on the z-axis and

quantified.

The morphology of isolated GFP-labelled CFs was analyzed on

images acquired from at least 3 animals per group, using always

the same settings with only minor adjustments of laser power and

photomultiplier gain, depending on fluorescence levels (z-step:

0.75 mm). Series of optical sections were then z-projected and

analysed by ImageJ. The total length of CF was measured by

NeuronJ plugin on GFP channel [72]. These tracings were

analysed by Sholl’s method, positioning the first main CF

branching point in the centre (radius step: 2 mm; radius span:

1 mm) [40,41]. The median number of intersections was calculated

for each CF in the interval of interest, corresponding to the

distance at which the maximum number of branches was present.

The number of varicosities, identified either morphologically or by

VGLUT2 staining, was manually counted using ImageJ.

Following 3-AP experiments, the number of GFP-positive CFs

with clear signs of sprouting was counted on a epifluorescence

microscope (206 objective) on 50 mm thick cerebellar coronal

sections (at least 6 per animal). The isolated GFP-positive

sprouting area of each CF was acquired from coronal sections as

described and measured.

Data were imported in Excel (Microsoft). Mean and standard

error was calculated for all parameters of each experimental

group. Differences among three groups were evaluated by

ANOVA and post-hoc Tukey’s HSD test. Comparisons in two-

groups experiments were evaluated by Student’s t-test.

Supporting Information

Figure S1 Injection of viral particles, transduction and
CF labelling. (A) An example of brainstem of a rat injected with

control (GFP-only) viral suspension, as observed by combined DIC

and fluorescent microscopy for GFP signal (coronal section). The

injection successfully reached the IO in the brain stem and

induced the expression of GFP in part of the IO (Py: pyramidal

tract). (B) Representative field in the cerebellar cortex of the same

animal with a GFP-labelled CF with their typical arborization

(ML: molecular layer; PC: Purkinje cell layer; parasagittal section).

(TIF)

Figure S2 Sprouting of CFs transduced with lentiviral
vectors following subtotal lesion of the IO. Projections of

series of optical sections obtained by confocal microscopy from

sagittal (A–B) and coronal sections (C–E) of animals injected with

control viral particles (expressing only GFP) and treated with 3-AP

to induce the death of most neurons in the IO (VGLUT2, red;

calbindin, blue). (A–B) Two examples of isolated GFP-expressing

CFs (green) that survived to a subtotal lesion of the IO and

developed new branches innervating the surrounding PCs,

completely devoid of their original CF innervation (visible by the

lack of VGLUT2-positive varicosities around the GFP-positive

CF). Arrowheads indicate points of sprouting, where the CF grows

on the dendritic branch of an adjacent PC in both directions,

towards the distal portions as well as towards the soma. A

remarkable change is evident in CF organization, consisting in

thinner stalks and fewer tendrils compared to CFs in normal

conditions (A, insert). In some cases some reinnervating portions of

CFs profusely branch forming a rich tendril net on the newly

innervated dendritic branch (B, insert). (C–E) Three examples

observed on coronal sections, showing the high variability of the

extension of the reinnervation. A high number of short transverse

branches are present in C and D (arrows in the inserts). In some

cases a longer branch innervated a dendritic arbor far from the

original one (E).

(TIF)
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