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Abstract

Background: Homeostatic erythropoiesis leads to the formation of mature red blood cells under non-stress conditions, and
the production of new erythrocytes occurs as the need arises. In response to environmental stimuli, such as bone marrow
transplantation, myelosuppression, or anemia, erythroid progenitors proliferate rapidly in a process referred to as stress
erythropoiesis. We have previously demonstrated that heme oxygenase-1 (HO-1) deficiency leads to disrupted stress
hematopoiesis. Here, we describe the specific effects of HO-1 deficiency on stress erythropoiesis.

Methodology/Principal Findings: We used a transplant model to induce stress conditions. In irradiated recipients that
received hmox+/2 or hmox+/+ bone marrow cells, we evaluated (i) the erythrocyte parameters in the peripheral blood; (ii) the
staining intensity of CD71-, Ter119-, and CD49d-specific surface markers during erythroblast differentiation; (iii) the patterns
of histological iron staining; and (iv) the number of Mac-1+-cells expressing TNF-a. In the spleens of mice that received
hmox+/2 cells, we show (i) decreases in the proerythroblast, basophilic, and polychromatophilic erythroblast populations; (ii)
increases in the insoluble iron levels and decreases in the soluble iron levels; (iii) increased numbers of Mac-1+-cells
expressing TNF-a; and (iv) decreased levels of CD49d expression in the basophilic and polychromatophilic erythroblast
populations.

Conclusions/Significance: As reflected by effects on secreted and cell surface proteins, HO-1 deletion likely affects stress
erythropoiesis through the retention of erythroblasts in the erythroblastic islands of the spleen. Thus, HO-1 may serve as a
therapeutic target for controlling erythropoiesis, and the dysregulation of HO-1 may be a predisposing condition for
hematologic diseases.
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Introduction

Erythropoiesis, the development of mature red blood cells

(RBCs), originates from pluripotent hematopoietic stem cells

(HSCs) and progresses through erythroblasts to the formation of

RBCs. Just prior to maturation, erythroblasts extrude their nucleus

and mature into reticulocytes. As reticulocytes, they exit the bone

marrow and enter blood capillaries to participate in oxygen

transport. Homeostatic erythropoiesis maintains normal hemato-

crit levels and occurs as needed to replace old and damaged

erythrocytes. In response to special needs, such as after bone

marrow (BM) transplantation, myelosuppression, or anemia, stress

erythropoiesis occurs as the body attempts to increase the

production of erythrocytes. This process occurs in part within

the spleen [1] and is regulated by several factors that are shared

with homeostatic erythropoiesis. These include erythropoietin,

iron, cytokines, cellular regulators, and adhesion molecules.

Factors that distinguish homeostatic and stress hematopoiesis are

less well described.

The heme oxygenase-1 enzyme (HO-1) is encoded by the hmox-1

gene and is an inducible stress enzyme that catalyzes heme

oxidation into carbon monoxide (CO), free ferrous iron, and

biliverdin. The free iron from this reaction is sequestered by ferritin,

and the biliverdin is rapidly converted into bilirubin by biliverdin

reductase [2]. CO is a diffusible regulator that has been linked to the

regulation of numerous cellular and tissue functions [3,4]. HO-1

facilitates iron reutilization in mammals [5] and modulates the

expression of cytokines [6] and adhesion molecules [7,8]. HO

activity has been implicated in the control of inflammation, immune

regulation and organ transplantation [9,10,11]. Genetic knockout

(KO) of HO-1 results in partial embryonic lethality and leads to a

number of hematological disorders in surviving mice, including

anemia, hypoferremia and tissue accumulation of iron [5,10]. In a

rare human case, HO-1 deficiency was associated with thrombo-

cytosis, coagulation abnormalities, persistent hemolytic anemia,

iron deposition in tissues, and premature death [12,13].

We previously reported that HO-1 deficiency leads to disrupted

stress hematopoiesis of stem cells and progenitors [14]. Mice lacking
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one allele of HO-1 (hmox+/2) showed accelerated hematopoietic

recovery from myelotoxic injury. However, hmox+/2 HSCs were

ineffective in the radioprotection and serial repopulation of

myeloablated recipients. In this study we observed a threshold for

effective transplantation of HO-1 knockout bone marrow; too few

cells led to hematopoietic failure due to stem cell depletion,

transplantation using cell numbers above this threshold were

successful, but serial transplants from these recipient animals also

resulted in hematopoietic failure.

Here we describe the effects of HO-1 deficiency specifically on

stress erythropoiesis using cell numbers above the previously

described threshold. We used a transplant model to induce stress

conditions and demonstrated that HO-1 deletion affects stress

erythropoiesis. In the spleen, HO-1 participates in proper

erythroblast differentiation and optimal iron reutilization. Its

deficiency increases the number of TNF-a-expressing cells and

leads to a decrease of the CD49d levels in proerythroblasts. These

findings suggest that HO-1 deficiency might cause a premature

release of erythroblasts into the circulation.

Results

1- HO-1 haploinsufficiency disrupts erythrocyte
parameters in the peripheral blood

HO-1-deficient mice show a high level of embryonic lethality

[5], and therefore the effects of HO-1 haploinsufficiency were

studied as a means of assessing the intrinsic contribution of HO-1

in stress erythropoiesis following transplantation. Whole BM from

either hmox+/+ or hmox+/2 mice was transplanted into lethally

irradiated recipient mice.

Eight days after engraftment, the reticulocyte counts increased

rapidly in recipients of hmox+/2 BM cells, reaching a level of

,250% of those in the recipients of hmox+/+ BM cells

(1.2260.486105 per uL versus 0.4760.146105 per uL; n = 5,

*P = 0.031) (Figure 1A). In contrast, 15 days after engraftment, the

reticulocyte counts in recipients of hmox+/2 BM cells were only

27% of those observed in the mice that received hmox+/+ BM cells

(4.2261.356105 per uL versus 15.3863.756105 per uL; n = 5,

**P = 0.007) (Figure 1A). This is consistent with our previous

report in which we demonstrate accelerated hematopoiesis that

was not sustainable after transplant [14].

We also observed elevated hematocrits in mice that received

hmox+/2 BM cells relative to those that received hmox+/+ BM cells.

At day 7, mice that received hmox+/2 BM cells had statistically

greater hematocrit levels than recipients of wild-type cells

(33.062.2% versus 29.660.5%; *P = 0.047) (Figure 1B). However,

at day 15, the hematocrits from recipients of either hmox+/2 or

hmox+/+ BM cells (36.462.1% versus 38.261.2%) (Figure 1B) were

lower than those in the non-transplanted mice (39.0% versus

47.0%, data not shown).

These data suggest that there was early-accelerated erythropoiesis

in the recipients of hmox+/2 BM cells. However, this level of

erythropoiesis could not be sustained, and the number of immature

erythrocytes declined prior to a full recovery from the blood loss.

Mice that received hmox+/2 BM cells had statistically more

RBCs (7.160.56106 per uL versus 6.260.16106 per uL; n = 5,

*P = 0.041) at day 7 (Figure 1C), whereas their hemoglobin levels

were slightly, but not statistically significantly, higher (10.260.6 g/

dL versus 9.360.2 g/dL; n = 5, P = 0.055) compared to those of

mice that received hmox+/+ BM cells (Figure 1D).

The ratios of the RBC count, hematocrit, and hemoglobin levels

between the mice that received hmox+/2 and hmox+/+ BM cells

decreased gradually over time from 1.13–1.15 (at day 4) to

0.92 - 0.95 (at day 15) (Figure 1E). These data show that there are

more hmox+/2 BM cell-derived erythrocytes in the peripheral

blood than hmox+/+ BM cells from day 4 to 10, and the opposite

from day 10 to 21. This suggests that hmox+/2 BM cell-derived

erythrocytes might appear earlier in the peripheral blood than

those from hmox+/+ BM cells.

2- HO-1 participates in proper erythroblast differentiation
The spleen and BM serve as reserves for accelerated hematopoi-

esis under conditions of hematopoietic stress. Loss of HO-1 did not

change the total spleen and BM cellularities (data not shown). To

further investigate whether HO-1 deficiency specifically affects

stress erythropoiesis, we adopted a flow cytometric assay and

analyzed cells from the BM and spleen of transplanted mice. Four

classes of erythroid precursors can be identified by the staining

intensities (low, medium (med), or high) of specific surface markers

upon maturation, as shown in Figure 2 and as previously described

[15]. Listed in order of the earliest to the most mature, these precur-

sors are the early proerythroblast (Ter119medCD71high) identified in

region a, the basophilic erythroblast (Ter119highCD71high) in

region b, the late basophilic and polychromatophilic erythroblast

(Ter119highCD71med) in region c, and the orthochromatophilic

erythroblast (Ter119highCD71low) in region d.

At day 15 post-transplantation, the BM of mice engrafted with

hmox+/2 cells presented decreased numbers of polychromatophilic

(regions c, ,1.5-fold) and orthochromatophilic (region d, ,1.9-fold)

populations compared with control mice engrafted with hmox+/+

cells (Figure 2A, left panels). Interestingly, the spleens of mice

engrafted with hmox+/2 cells presented decreased numbers of

proerythroblast (region a, ,3.5-fold), basophilic (region b, ,2-fold)

and polychromatophilic (region c, ,2.7-fold) populations compared

with the control animals (Figure 2A, right panel). Thus, the

proportions of total erythroid precursors analyzed in the BM of

hmox+/+ and hmox+/2 recipients were 27.4610.6% and 23.865.6%,

respectively (n = 6, P = 0.07) (Figure 2B). The proportions of total

erythroid precursors analyzed in the spleens of hmox+/+ and hmox+/2

recipients were 74.068.1% and 35.065.9%, respectively (n = 6,

*P = 0.002) (Figure 2B). Similar results were obtained at eight days

post-transplantation (data not shown).

These data indicated that HO-1 deletion resulted in deficient

erythroblast differentiation following transplantation of hmox+/2

BM cells, both in the spleen and to a lesser extent in the BM. Given

these data, we focused on the spleen as a site of stress erythropoiesis.

3- HO-1 participates in optimal iron re-utilization
Iron is an essential component of heme synthesis and

hemoglobin formation. The majority of iron in erythropoiesis is

reutilized in the breakdown of heme from senescent erythrocytes.

Because HO-1 has an important iron-recycling role [5], we

investigated whether iron reutilization is optimal in the spleen after

the engraftment of HO-1-deficient BM cells.

To test this possibility, histological analysis of the spleen was

performed 14 days post-transplantation. Hemosiderin-laden mac-

rophages, accounted for approximately 2% of the total red pulp

nucleated cell population in the spleens of mice that received

hmox+/2 BM cells, compared to ,1% in mice that received hmox+/+

BM cells (Figure 3A, upper levels; see Methods for quantification).

Prussian blue staining showed an average of 2.6% of the splenic

cross-sectional area to be positive for iron in the recipients of

hmox+/2 BM cells, compared to 0.9% in the recipients of hmox+/+

BM cells (Figure 3B, lower levels).

The analysis of soluble iron in spleen homogenates showed the

total and free iron levels of mice that received hmox+/2 BM cells to

be 323621 and 144618 ng/dL, respectively. This is 20% less

compared to the 399632 and 183612 ng/g observed in the

HO-1 in Stress Erythropoiesis
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recipients of hmox+/+ BM cells (n = 6, *P = 0.025 and *P = 0.021,

respectively) (Figure 3C). No significant differences were observed

in the plasma (data not shown).

Here, both the increase of the insoluble iron level (Figures 3A

and 3B) and the decrease of the soluble iron level (Figure 3C) in

the spleens of mice following HO-1+/2 BM cell transplantation

suggest that HO-1 participates in optimal iron reutilization in

spleens after transplantation.

4- HO-1 deficiency increases the number of
TNF-a-expressing cells in the spleen

The proliferation and differentiation of erythroblasts occur in

specialized niches known as erythroblastic islands, which are

composed of central macrophages and erythroblasts at all stages of

differentiation [16]. Central macrophages secrete cytokines such as

TNF-a, which exerts an inhibitory effect on erythropoiesis

[17,18,19], and HO-1 has been shown to suppress the effects of

TNF-a [20,21].

To test whether HO-1 deficiency alters the expression of

TNF-a in stress erythropoiesis, we assessed the number of

Mac-1+-cells expressing TNF-a in the spleens of recipients

following hmox+/2 and hmox+/+ BM cells transplantation

(Figure 4A). At day 15 post-engraftment, 16.062.9% of Mac-

1+ TNF-a+ cells were analyzed in the spleens of hmox+/+ BM

cells-recipients, compared to 22.763.6% in those of hmox+/2

BM cells-recipients (n = 6; *P = 0.016) (Figure 4B). This 40%

increase due to HO-1 deficiency suggests that TNF-a

Figure 1. HO-1 haploinsufficiency disrupts erythrocyte parameters in the peripheral blood. Lethally irradiated mice were transplanted
with 26107 hmox+/+ or hmox+/2 BM cells. Peripheral blood was drawn at each given time-point post-engraftment and was analyzed for the
reticulocyte count (A), hematocrit percentage (B), RBC count (C), and hemoglobin level (D). The ratios of the RBC counts, hematocrit percentages, and
hemoglobin levels of the hmox+/2 to hmox+/+ genotypes are plotted in (E) using the same data shown in (B-D). The mean 6 SEM is shown for five
mice per genotype; *P#0.05, **P#0.01.
doi:10.1371/journal.pone.0020634.g001
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expression might be involved in the disrupted stress erythro-

poiesis in HO-1 deficiency.

5- HO-1 deficiency leads to a decrease of the CD49d level
in splenic proerythroblasts

The adherence of erythroblasts to central macrophages within

erythroblastic islands enables proper erythroblastic differentiation

[22]. This cell-to-cell interaction is mediated by a4b1 integrin and

its a-subunit CD49d in erythroblasts and vascular adhesion

molecule-1 (VCAM-1) in macrophages [23].

Using a flow cytometric assay, we confirmed that CD49d

expression decreased in a pattern following erythroblast matura-

tion, from the highest expression in immature (Ter119low

CD71high) cells to the lowest in the most differentiated erythro-

blasts (Ter119highCD71low) (Figure S1), consistent with previously

reports [24].

We then investigated the effect of HO-1 deficiency on the

CD49d expression in splenic erythroblasts following BM trans-

plantation. At day 15 post-transplantation, only 72% of hmox+/2

Ter119high CD71high cells were CD49d+, compared to 92% of

hmox+/+ cells (n = 6, *P = 0.04) (Figure 5, upper panel). A more

drastic deviation was shown in the Ter119high CD71med

population, in which only 31% of hmox+/2 cells were CD49d+

compared to 59% of hmox+/+ cells (n = 6, **P = 0.008) (Figure 5,

middle panel). All the cells were CD49d negative in the splenic

Ter119highCD71low populations (Figure 5, lower panel).

These results show that in this transplant model, HO-1

deficiency affects CD49d expression during splenic erythroblast

maturation.

Discussion

We have previously demonstrated that HO-1-deficient BM cells

provide inadequate radioprotection of lethally irradiated mice

[14], and we have suggested that the loss of one allele of HO-1

may be sufficient to maintain the steady-state metabolism of heme

but insufficient under conditions of stress [14].

In this study, we documented for the first time the importance of

HO-1 in stress erythropoiesis and address the mechanism of

hematopoietic failure. Using a transplant model to induce stress

conditions, we showed that HO-1 haploinsufficiency led to

disrupted erythroblast differentiation. This resulted in the

reduction, or loss, of immature red blood cells during differenti-

ation from proerythroblasts to the orthochromatophilic erythro-

blast stage. Stress erythropoiesis is usually characterized by an

Figure 2. HO-1 participates in proper erythroblast differentiation. (A) Representative FACS profiles of freshly isolated BM cells (left panels)
and splenic cells (right panels) from hmox+/+ or hmox+/2 BM cell recipients at day 15 post-transplantation are shown. Cells were labeled with
PE-conjugated anti-CD71 and PE-Cy7-conjugated anti-Ter119. Dead cells (stained positive with propidium iodide) and enucleated erythrocytes (with
low forward scatter) were excluded from the analysis. The regions (from left to right and then from top to bottom) distinctly differentiate four classes
of erythroid precursors (from the earlier to the most mature): proerythroblasts (Ter119medCD71high) in region a, basophilic erythroblasts
(Ter119highCD71high) in region b, late basophilic and polychromatophilic erythroblasts (Ter119highCD71med) in region c, and orthochromatophilic
erythroblasts (Ter119highCD71low) in region d. The engraftment of HO-1-deficient BM cells modifies the FACS profile of the erythroblastic BM and
splenic cells. (B) The frequencies of total erythroid precursors found in regions a, b, c and d in the BM and the spleens of hmox+/+ or hmox+/2 BM cell
recipients are shown. The transplantation of HO-1-deficient BM cells leads to a decrease in the erythroid precursor population. The mean 6 SEM is
shown for six mice per genotype; *P#0.05.
doi:10.1371/journal.pone.0020634.g002
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increase in the absolute number of total Ter119+ erythroblasts [1].

Here, we showed that HO-1 deficiency led to a ,50% decrease in

the Ter119high erythroblastic population. It is interesting to note

that the disrupted erythroblast differentiation following the

transplantation of hmox+/2 BM cells was more dramatic in the

spleen than in the BM. This spleen-selective change is consistent

with the convention that stress erythropoiesis relies on a

specialized population of stress erythroid progenitors that

primarily reside in the spleen [25,26,27,28,29].

We also demonstrated a 20% decrease of the free iron levels and

a 40% increase of the TNF-a+ cell count in the spleens of mice

that received hmox+/2 BM cells compared to those that received

hmox+/+ BM cells. These changes were not observed in the BM

(Cao, unpublished data). It is still unclear whether the increased

TNF-a expression is a feature of decreased stress erythropoiesis or

if it is associated with increased numbers of macrophages due to

decreased iron utilization. It has been recently shown that only a

subset of macrophages express HO-1 [30]. The activation of

macrophages by exposure to lipopolysaccaride (LPS) and either

GM-CSF or M-CSF leads to the generation of TNF-a and

IL-12p40-producing pro-inflammatory macrophages [M1 (GM-

CSF)] or IL-10-producing anti-inflammatory macrophages [M2

(M-CSF)], respectively. A different iron metabolism gene signature

is detected in the two macrophage types, with HO-1 being

preferentially expressed by M2 (M-CSF) macrophages [30]. Thus,

in our study, it appears that only a subset of macrophages might

have been affected by the HO-1 haploinsufficiency.

We demonstrated that HO-1 deficiency leads to a decrease of

the CD49d level in proerythroblasts. This finding suggests that

HO-1 deficiency might cause a premature release of erythroblasts

into the blood circulation. We speculate that the decreased levels

of CD49d effect immature erythroblasts to result in disrupted

erythroblast differentiation and an early release of these cells from

erythroblastic islands, subsequently leading to inadequate stress

erythropoiesis. Erythroblasts are known to express adhesion

molecules that undergo dynamic variation during differentiation.

These proteins mediate both erythroblast-to-erythroblast and

erythroblast-to-macrophage interactions, as well as attachments

to the extracellular matrix components. Two major receptors/

counter-receptors identified as mediating the cell-to-cell interac-

tions within erythroid islands are a4b1 integrin (VLA-4) in

erythroblasts and VCAM-1 in central macrophages [23]. The

a4b1 integrin has a critical role in erythropoiesis by holding

maturing precursors in close association with the marrow stroma

[31,32,33,34,35]. The a4 integrin sub-unit (CD49d) is essential to

maintaining normal hematopoiesis in the spleen and BM

microenvironments [36] and mediates the association between

primitive erythroblasts and fetal liver-derived macrophages [37].

HO-1 has already been shown to modulate the expression of

adhesion molecules [7,8], and it is interesting to note that patients

with sickle cell anemia have an increased level of CD49d

expression [38], suggesting that a reduction in the adhesive

properties may contribute to the premature release of erythrocytes

into the peripheral blood.

We suggest here that decreased CD49d expression affects

splenic HO-1-deficient erythroblasts to lead to their premature

release into the circulation. Thus, the disrupted stress erythropoi-

esis described here might explain the ineffectiveness of hmox+/2

Figure 3. HO-1 participates in optimal iron re-utilization. (A) H&E staining of the spleen sections from hmox+/+ or hmox+/2 cell recipients at
day 14 post-transplantation is shown. The arrows indicate hemosiderin-laden macrophages. The transplantation of HO-1-deficient BM cells leads to
an increase of hemosiderin. The magnification is 4006. The photograph shown is a representative of three experiments. (B) Prussian blue iron
staining of the spleen sections from hmox+/+ or hmox+/2 cell recipients at day 14 post-transplantation is shown. The transplantation of HO-1-deficient
BM cells leads to an increase of Prussian blue-positive cells. The magnification is 1006. The photograph shown is a representative experiment out of
the three that were performed. (C) The total and free iron levels in the splenic homogenates from hmox+/+ or hmox+/2 cell recipients at day 14 post-
transplantation are shown. The transplantation of HO-1-deficient BM cells leads to a decrease of soluble iron. The mean 6 SEM is shown for six mice
per genotype; *P#0.05.
doi:10.1371/journal.pone.0020634.g003
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BM cells in protecting lethally irradiated mice [14]. We propose

that the HO-1 deficiency upset the self-renewal/differentiation

balance toward improper differentiation, prematurely depleting

the HSC reserve and releasing immature erythroblasts.

These results have implications in human hematological

diseases and their treatment. The promoter of the human hmox

gene is characterized by (GT)n repeats, with commonly occurring

length polymorphisms affecting the gene expression that have been

associated with a wide variety of diseases [39]. For example,

shorter repeats are associated with increased susceptibility to some

cancers and cerebral malaria, but these also have better liver and

kidney transplant survival, whereas long GT repeat polymor-

phisms cause a lower expression of HO-1 but are associated with

emphysema, miscarriages, and stroke [39]. It has been document-

ed that patients with myelodysplastic syndrome (MDS) present

macrophages with increased levels of TNF-a [40] and hemato-

poietic progenitors with reduced expression levels of CD49d [41].

It is intriguing that HO-1 deficiency shares some of the features of

MDS, and it will be important to investigate whether the

polymorphisms of HO-1 affect physiologic and pathologic human

erythropoiesis in similar manners as in MDS patients. We

anticipate that this research will not only lead to a better

understanding of the role of HO-1 in stress hematopoiesis but will

also suggest the clinical relevance of HO-1 as a target of novel

therapies for the treatment of human hematological pathologies.

Materials and Methods

1- Mice
FVB/NJ recipient mice were obtained from Charles River

Laboratories (Wilmington, MA, USA). hmox2/2 and hmox+/+ mice

were previously described [10]. All the experiments were set up

when the animals were 10 weeks old. Comparisons of hmox+/2 and

hmox+/+ mice were always conducted using littermates. The mice

were housed in the Research Animal Facility at Stanford University,

and all experiments were conducted under strict adherence to

institutional guidelines, as approved by the Animal Care and Use

Committee at Stanford University (APLAC #12323).

2- Purification of hematopoietic cells
Whole blood (200 mL) was drawn from the retro-orbital sinus

into EDTA-coated microhematocrit tubes (Sarstedt, Numbrecht,

Figure 4. HO-1 deficiency increases the number of TNF-a-expressing cells. (A) Representative FACS profiles of freshly isolated splenic cells
from hmox+/+ or hmox+/2 BM cell recipients at day 15 post-transplantation are shown. Cells were labeled with and PE-conjugated anti-TNF-a and
PE-Cy7-conjugated anti-Mac-1. Dead cells (stained positive with propidium iodide) were excluded from the analysis. The engraftment of HO-1-
deficient BM cells modifies the FACS profile of Mac-1 TNF-a-stained splenic cells. (B) The frequencies of Mac-1+ TNF-a+ splenic cells from hmox+/+ and
hmox+/2 BM cell recipients are shown. The transplantation of HO-1-deficient BM cells leads to an increase of the Mac-1+ TNF-a+ splenic population.
The mean 6 SEM is shown for six mice per genotype; *P#0.05.
doi:10.1371/journal.pone.0020634.g004

HO-1 in Stress Erythropoiesis
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Germany) and was sent to the diagnostic laboratory in the

Department of Comparative Medicine at Stanford University

for measurements of erythrocyte parameters. Blood counts and

erythrocyte indices were determined using an automated

hematology analyzer (Abbott Cell Dyne 3500, Abbott Park, IL,

USA). To obtain splenic cells, the spleen was dissected, and a

single cell suspension was generated by gently squishing the spleen

in a small volume of phosphate buffered saline (PBS). To recover

cells from the mouse BM, the marrow was flushed out of the tibia,

femur, and humerus using a syringe with PBS, filtered through a

70-mm mesh filter (BD Biosciences, San Jose, CA, USA) to remove

debris and pelleted by centrifugation. RBC contamination was

removed using an RBC-lysis buffer containing ammonium

chloride in 0.01 M Tris.

3- Bone marrow transplantation
In preparation for transplant, recipient mice (FVB/NJ) at two

months of age were lethally irradiated (one single dose of

11 Gy). The following day, isolated BM cells (26107) from

hmox+/2 or hmox+/+ mice were intravenously injected into the

tail veins of recipient animals under methoxyflurane anesthesia.

Under these conditions, over 98% of the cells in the BM and

spleens of recipients are donor-derived at day 6 or later after

transfer [14]. Thus, flow cytometric assays were performed with

minimal interference from residual host cells, resolving the

distinct stages of erythroid differentiation as previously de-

scribed [15].

4- Phenotyping and flow cytometry
For erythroid cell subset analyses, splenic and BM cells were

stained with PE-conjugated anti-CD71 (BD Biosciences), PE-Cy7-

conjugated anti-Ter119 (eBioscience, San Diego, CA, USA), and

FITC-conjugated anti-CD49d (Affinity BioReagents, Rockford,

IL, USA). For TNF-a detection, splenic cells were first stained with

PE-Cy7-conjugated anti-Mac-1 (BD Biosciences). After fixation

and permeabilization, splenic cells were stained with PE-

conjugated anti-TNF-a (CALTAG Laboratories, Burlingame,

CA, USA). All stained cells were analyzed using the LSR

instrument (BD Biosciences) and FlowJo software (Tree Star

Inc., Ashland, OR, USA).

5- Histological staining for iron
Spleens were fixed in 4% paraformaldehyde, dehydrated in

ethanol, embedded in paraffin, sectioned and mounted onto glass

slides. Sections were stained either by hematoxylin and eosin

(H&E) or Prussian blue according to standard protocols. High-

resolution photomicrographs of six non-overlapping areas were

taken at 2006 magnification (2,59061,920 pixels representing

0.37508 mm2) with a digital microscope camera system (Power-

shot G9, Canon, Lake Success, NY, USA; AxioVision 4.7.0.0,

München, Germany). Each photomicrograph was imported into

and processed by digital imaging software (UTHSCSA ImageTool

for Windows 3.00, San Antonio, TX, USA). The total area of iron

staining divided by the total area of the photomicrograph field

(expressed as a percentage per 2006 photomicrograph field) was

determined for each of the six photomicrographs. The mean

percentage of iron staining was determined by averaging the

results from the six photomicrographs.

6- Iron level measurements
Spleens, which primarily contains erythroid cells, were homog-

enized in 19 volumes of PBS. Homogenates were centrifuged at

16,1006g for 2 min to remove cellular debris (including insoluble

hemosiderin iron), and supernatants were collected to measure

total and free iron. Iron measurements were performed and

analyzed at Analytics Inc. (Gaithersburg, MD, USA).

Figure 5. HO-1 deficiency leads to a decrease of the CD49d
level in splenic proerythroblasts. Representative FACS histograms
of basophilic (Ter119highCD71high), polychromatophilic (Ter119high

CD71med), and orthochromatophilic (Ter119highCD71low) splenic eryth-
roblasts from hmox+/+ or hmox+/2 BM cell recipients labeled with a FITC-
conjugated anti-CD49d are shown at day 15 post-transplantation. The
average frequencies of CD49d-positive cells in the different fractions of
splenocytes are indicated for both HO-1 genotypes. The mean 6 SEM is
shown for six mice per genotype; *P#0.05, **P#0.01.
doi:10.1371/journal.pone.0020634.g005
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7- Statistical analyses
Quantitative data are expressed as the mean 6 SEM. All

statistical analyses were performed on raw data for each group by

one-way analysis of variance followed by a Student’s t test.

Differences among groups were considered to be significant if the

probability of error was less than 0.05. The numbers of animals

used for each analysis are mentioned in the figure legends, in

addition to the effective P-values.

Supporting Information

Figure S1 Representative FACS histogram of CD49d staining in

splenic proerythroblasts (Ter119medCD71high), basophilic erythro-

blasts (Ter119highCD71high), polychromatophilic erythroblasts

(Ter119highCD71med) and orthochromatophilic erythroblasts

(Ter119highCD71low). The frequency of CD49d-positive cells

decreases with erythroblast maturation.

(TIF)
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