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Abstract

Two of the major limitations to effective management of coral reef ecosystems are a lack of information on the spatial
distribution of marine species and a paucity of data on the interacting environmental variables that drive distributional
patterns. Advances in marine remote sensing, together with the novel integration of landscape ecology and advanced niche
modelling techniques provide an unprecedented opportunity to reliably model and map marine species distributions across
many kilometres of coral reef ecosystems. We developed a multi-scale approach using three-dimensional seafloor
morphology and across-shelf location to predict spatial distributions for five common Caribbean fish species. Seascape
topography was quantified from high resolution bathymetry at five spatial scales (5–300 m radii) surrounding fish survey
sites. Model performance and map accuracy was assessed for two high performing machine-learning algorithms: Boosted
Regression Trees (BRT) and Maximum Entropy Species Distribution Modelling (MaxEnt). The three most important predictors
were geographical location across the shelf, followed by a measure of topographic complexity. Predictor contribution
differed among species, yet rarely changed across spatial scales. BRT provided ‘outstanding’ model predictions (AUC = .0.9)
for three of five fish species. MaxEnt provided ‘outstanding’ model predictions for two of five species, with the remaining
three models considered ‘excellent’ (AUC = 0.8–0.9). In contrast, MaxEnt spatial predictions were markedly more accurate
(92% map accuracy) than BRT (68% map accuracy). We demonstrate that reliable spatial predictions for a range of key fish
species can be achieved by modelling the interaction between the geographical location across the shelf and the
topographic heterogeneity of seafloor structure. This multi-scale, analytic approach is an important new cost-effective tool
to accurately delineate essential fish habitat and support conservation prioritization in marine protected area design, zoning
in marine spatial planning, and ecosystem-based fisheries management.

Citation: Pittman SJ, Brown KA (2011) Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes. PLoS ONE 6(5): e20583.
doi:10.1371/journal.pone.0020583

Editor: Brian Gratwicke, Smithsonian’s National Zoological Park, United States of America

Received September 11, 2010; Accepted May 6, 2011; Published May 26, 2011

Copyright: � 2011 Pittman, Brown. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The field monitoring program was funded by National Oceanic and Atmospheric Administration Coral Reef Conservation Program (http://coralreef.
noaa.gov/). The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: simon.pittman@noaa.gov

Introduction

Rapid progress is being made in the development and im-

plementation of marine management strategies, including marine

spatial planning, to balance multiple conservation and resource

use objectives [1,2,3]. Although a shift towards managing eco-

system patterns and processes is occurring, for example in

ecosystem-based management, most strategies still have a focal

species component, with directives to manage and monitor specific

endangered, threatened, invasive, economically valuable, rare,

keystone or indicator species [4,5,6]. To be effective, these strat-

egies require spatially accurate ecological information on the

geographical distribution of species, as well as an understanding of

the key environmental drivers that determine species distributions.

Ecologically meaningful decision-making also requires a better

understanding of the statistical interactions between environmental

drivers and the presence of threshold effects which are rarely

modelled explicitly in marine ecology. An ecological threshold is

the point at which there is an abrupt change in an ecosystem

quality, property or phenomenon, or where small changes in an

environmental driver produce large responses [7].

Tropical coral reef ecosystems typically exist as spatial mosaics

of interconnected patches of coral reefs, seagrasses, unvegetated

sand and mangroves and represent one of the most biologically

diverse ecosystems on earth, but are also one of the most vul-

nerable to environmental change [8]. The highly heterogeneous

spatial patterning of patch types, each of which exhibit different

structural attributes, result in seascapes with complex seafloor

topography at a range of spatial scales. Fish species distributions

and diversity patterns are closely associated with structural

characteristics, particularly topographic complexity both within a

patch type [9] and across the seascape [10,11]. However, human

activity in the coastal zone combined with hurricanes, disease and

thermal stress have resulted in broad-scale loss and degradation of

biogenic structure created by reef forming scleractinian corals,

seagrasses and mangroves [12,13,14].

Over the past 20 years, coral reefs of the Caribbean region have

experienced a significant decline in coral cover [13] resulting in a

‘flattening’ of the topographic complexity [15]. A concurrent

decline in the abundance of a wide range of fish species has also

occurred, with greatest declines recorded for herbivorous, inver-

tivorous and carnivorous fish [16]. The decline is likely to have
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triggered cascading impacts throughout the ecosystem [17],

adding fresh impetus to the urgent need to understand broad-

scale environmental correlates, such as topographic complexity

that influence species distributions across tropical seascapes [17].

Recent research has demonstrated that individual fish species

distributions and fish diversity across coral reef ecosystems can be

reliably predicted using maps of seafloor structure or bathymetry

[18]. It is likely, however, that over broad spatial scales the rela-

tionship is more complex with other variables interacting with

bathymetry to influence the suitability of habitat for an organism.

Few studies examining habitat suitability, however, have consid-

ered the potential statistical interaction between physical structure

and the relative geographical location across broad spatial scales.

A greater understanding of the spatial patterning of species across

coral reef ecosystems will provide information on species-envi-

ronment relationships and spatial proxies for key ecological

processes, such as relative grazing or predation intensity or inter-

specific competition that can be inferred from maps of fish

distributions.

Predicting species distributions in the marine environment is

problematic due to limited availability of biological survey data,

yet large amounts of marine data are available as species occur-

rence or presence only data. Presence-only modelling of species

distributions is extensively used for terrestrial species and is in-

creasingly being used for global modelling of fish, seabirds and

marine mammals [19]. In addition, comparative studies using

multiple algorithms have demonstrated that the choice of algo-

rithm can influence both the predictive accuracy and the relative

importance of individual predictor variables [20,21]. Elith et al.

[22] compared 16 predictive modelling techniques, including both

conventional and machine-learning algorithms using presence-

only data for 226 species from six regions. The authors showed

that two state-of-the-art machine-learning algorithms, Boosted

Regression Trees (BRT), also referred to as Stochastic Gradient

Boosted Regression Trees [23,24], and MaxEnt [25] consistently

outperformed other algorithms. Although machine-learning algo-

rithms are becoming more widely applied in terrestrial ecology,

few marine applications exist [21,26,27]. For marine fish, Knudby

et al. [21] showed that machine learning algorithms, particularly

tree-based ensembles provided significant increases in perfor-

mance over more conventional modelling techniques, such as

generalised additive models and linear regression.

Both BRT and MaxEnt algorithms have the ability to fit com-

plex functions including interactions between predictor variables

and employ strong regularisation techniques, including cross-

validation to avoid overfitting. These algorithms have character-

istics that make them appropriate to model complex fish-seascape

relationships, but have never before been comparatively evaluated

for marine species and environments.

We compared and evaluated the performance of two machine-

learning algorithms, boosted regression trees (BRT) and maximum

entropy modelling (MaxEnt), to model non-linear species-envi-

ronment relationships for five common fish species associated with

topographically complex Caribbean coral reef ecosystems. Envi-

ronmental data on seafloor structure was acquired from a single

remote sensing device, airborne laser altimetry (Light Detection &

Ranging or LiDAR), from which derivative spatial predictors were

generated to quantify seafloor geomorphology and across-shelf

location. Since little was known about the movement patterns

of fish species, a single appropriate spatial scale for measuring

functionally meaningful seafloor heterogeneity could not be select-

ed a priori, instead we used a multi-scale exploratory approach to

quantify seascape structure at five spatial scales (5, 25, 50, 100, &

300 metre radii). Although scale-dependency is well demonstrated

in marine ecosystems, few species distribution models have

incorporated quantitative data on seascape structure across a

range of spatial scales. The primary objectives of this study were

to: (1) Determine whether the influence of environmental pre-

dictors on species’ distribution was scale-dependent; (2) evaluate

the utility of environmental data from a single remote sensing

device combined with metrics for surface morphology to predict

and map fish species distributions across a complex coral reef

ecosystem; (3) determine which components of remotely sensed

seafloor structure contribute most to the species distribution

models; (4) identify threshold effects where changes in environ-

mental variables abruptly influence species occurrence; and (5)

evaluate the performance of two different machine-learning model-

ling algorithms for spatial predictions of marine fish distributions.

Materials and Methods

Study Area
The coral reef ecosystems of the insular shelf of southwestern

Puerto Rico (Fig. 1) exist as a spatial mosaic of habitat types

dominated by coral reefs, seagrasses, mangroves and patches of

sand. The seafloor is highly heterogeneous in assemblage com-

position and topographic structure resulting in a diverse and

productive fish community, with important ecological, economic

and cultural value. In 1979, the La Parguera region (327 km2) was

designated as a Natural Reserve (NR), Reserva Natural La

Parguera, becoming the second marine protected area in Puerto

Rico. The La Parguera NR is managed by the Puerto Rican

Department of Natural and Environmental Resources (DNER)

Bureau of Coastal, Reserves and Refuges (BCRR) as a multiple

use zone. Fishing is allowed throughout the Reserve. Like many

Caribbean coral reef ecosystems the study area has experienced

environmental changes on land and sea that have resulted in loss

of structural and functional integrity.

Fish surveys
Underwater visual surveys of fish and benthic habitat were

conducted semi-annually (Jan/Feb and Sept/Oct) across the

insular shelf at La Parguera (322 km2) between 2001 and 2008.

Survey sites (n = 1,018) were selected using a stratified-random

sampling design whereby sites were randomly located within two

mapped strata (i.e., hardbottom and softbottom) derived from

National Oceanic and Atmospheric Administration’s nearshore

benthic habitat map [28]. The sampling strategy provides a

spatially comprehensive and unbiased set of presence records

across a wide range of habitat types. Fish surveys were conducted

within a 25 m long and 4 m wide (100 m2) belt transect deployed

along a randomly selected bearing (0–360u). Constant swimming

speed was maintained for a fixed duration of fifteen minutes to

standardise the search time. All individuals were identified to

species level where possible and body lengths (fork length) were

visually estimated. To evaluate presence-only modelling algo-

rithms, abundance data for five common species were converted to

presence-only data, including (1) coney (Cephalopholis fulva) and (2)

red hind (Epinephelus guttatus) both piscivorous groupers; (3) Princess

parrotfish (Scarus taeniopterus), an abundant herbivore; (4) Queen

triggerfish (Balistes vetula), an invertebrate feeder and (5) threespot

damselfish (Stegastes planifrons), a specialist damselfish, which is

known to exhibit a strong positive relationship with several coral

species and a preference for topographically complex substrata

[29,30]. The fish species selected for this study minimized the

potentially confounding effect of spatial segregation of life stages.

For example, juvenile and adult S. planifrons and S. taeniopterus co-

occurred across the study area and C. fulva, E. guttatus and B. vetula

Predicting Fish Distributions across Seascapes
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were only represented by co-occurring sub-adults and adults. This

narrowed the potential niche width and facilitated identification

of meaningful environmental predictors. The occurrence varied

between species as follows: C. fulva (3% of samples); E. guttatus (4%),

S. taeniopterus (23%); B. vetula (5%) and S. planifrons (6%). Fish data

are available online at http://www8.nos.noaa.gov/biogeo_public/

query_main.aspx.

Spatial predictors
Technological advances in sea- air- and space-borne remote

sensing devices now provide an unprecedented ability to map the

seafloor as a continuously varying three-dimensional surface or

bathymetry [31]. New techniques, such as airborne hydrographic

LiDAR [32] fire rapid pulses of laser light from an aircraft to the

seafloor and sea surface and then measure the difference in the

time of reflectance to estimate water depth and hence the vertical

height of the seafloor. This technique maps broad areas of shallow

water seascapes (,1 m to approx. 50 m) at high spatial resolution

(1–16 m2).

Bathymetry data were collected for southwestern Puerto Rico

between 7th and 15th May 2006 using a LADS (Laser Airborne

Depth Sounder) Mk II Airborne System operated by Tenix LADS

Incorporated. The laser system was mounted on a DeHavilland

Dash 8–200 aircraft flying at survey speeds of 72–90 metres per

Figure 1. Study area map showing underwater fish survey locations across the La Parguera region of SW Puerto Rico. The underlying
data shows the 4 m resolution LiDAR derived bathymetry depicting variability in water depth across the coral reef ecosystems from land to the
insular shelf edge in the south.
doi:10.1371/journal.pone.0020583.g001
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second and at an altitude of 366–671 metres above the sea surface.

A 900 Hertz (1064 nm) Nd:Yaglaser acquired spot data at a rate of

900 pulses per second, with swath widths of 192 metres. This

provided post-processing spot data with 464 m spacing from

,1 m depth to approximately 50 m depth. Erroneous outlying

LiDAR returns were removed along with negative values (i.e.,

land) and mangroves and a seamless bathymetric surface was

exported as a GeoTIFF in ArcGIS 9.2 (Environmental Systems

Research Institute, Inc.). LiDAR data are available online

at http://ccma.nos.noaa.gov/products/biogeography/lidar_pr/

welcome.html.

Quantifying surface morphology
Following Pittman et al. [26], six morphometrics were calcu-

lated from the bathymetric surface (mean water depth, aspect,

rugosity, slope, slope of the slope and planar curvature i.e.

convexities and concavities of the surface) in order to quantify a

range of structural attributes from the benthic terrain of south-

western Puerto Rico. To explore the influence of spatial scale on

predictive performance, the mean morphometric value of the

surrounding seascape was calculated at five spatial scales (5 m,

25 m, 50 m, 100 m and 300 m radius) using a circular moving

window within the focal statistics geoprocessing function of

ArcGIS’s Spatial Analyst (Environmental Systems Research

Institute, Inc.). In addition, spatial predictors representing the

relative geographical location across the shelf were quantified

using a distance to shoreline surface and a distance to shelf edge

surface based on Euclidean ‘straight line’ distance. The environ-

mental predictors encompass a comprehensive environmental

range from shallow nearshore (,1 m depth) to deeper (max 49 m)

shelf edge habitat and from very low relief sandy areas to high

relief coral reefs.

Modelling algorithms
Determination of variable importance and development of

predictive models was carried out using Stochastic Gradient

Boosting with the Boosted Regression Tree (BRT) code in R

software gbm package [33]. BRT is a machine learning algorithm

that uses many simple decision trees or ‘ensembles’ to iteratively

boost the predictive performance of the final model [24]. Each

subsequent regression tree predicts the residuals of the previous

thereby learning from the errors or ‘‘unsolved cases’’ of its

predecessors. The BRT models were fitted using presence-absence

data from 1018 surveyed sites and 11 environmental predictor

variables. The model was developed and evaluated using ten-fold

cross-validation (CV) to determine the optimal combinations of

the learning rate (lr) and tree complexity (tc), which provided the

optimal numbers of trees (nt) by minimizing a loss function (i.e.,

deviance reduction) [34]. lr controlled the contribution of each tree

to the model using a slow learning rate for all species (0.0001–

0.001); while tc determined the extent to which statistical

interactions were fitted; for instance, a tc of two fits a model with

two-way interaction. To control for overfitting, BRT uses a regula-

rization process that shrinks individual regression trees, while

providing sufficient flexibility to fit complex non-linear relation-

ships. Interaction strength was estimated using the techniques of

Elith et al. [30]. The relative contribution of the predictor

variables to the final models was determined using the variable

importance score based on the improvements of all splits

associated with a given variable across all trees in the model, then

rescaled so that the most important variable received a score of

100. Other variables received scores that were relative to their

contribution to the model’s predictive power [34].

Maximum entropy species distribution models were developed

with MaxEnt software (MaxEnt v3.3 beta) [25]. MaxEnt relies on

presence-only occurrence records to estimate the probability of

occurrence for a species, which can then be used to discriminate

suitable versus unsuitable areas. MaxEnt finds the probability

distribution of maximum entropy (i.e., that is most spread out, or

closest to uniform) and then constrains the distribution using a set

of environmental variables with a range of values defined by the

environment at locations where the species is known to occur [25].

MaxEnt is based on the premise that the unknown probability

distribution should have maximum entropy, but is constrained by

the environmental characteristics of the niche. MaxEnt controls

overfitting and variable selection using a regularisation that

smoothes the modelled distribution, with a penalised maximum

likelihood model that balances model fit with model complexity

[35,36]. The regularization used by MaxEnt allows it to manage

correlated variables [35], which is not the same for the BRT

models. However, neither modelling algorithm explicitly treats

spatial autocorrelation [37,38]. Ten-fold cross-validation was used

to assess model performance and jackknife resampling to measure

the importance of each predictor.

Receiver-operating characteristic curves (ROC) were construct-

ed and the area under the curve (AUC) was used to compare

prediction performance [39]. The AUC is a test statistic that uses

presence and absence records to assess model predictive

performance across a range of thresholds. MaxEnt is a presence-

only algorithm; therefore we used the Phillips et al. [25] approach

that applied randomly selected pseudo-absences instead of

observed absences to ROC AUC. We adopted the interpretation

offered by Hosmer and Lemeshow [40] whereby an AUC value of

0.7–0.8 is considered an acceptable prediction; 0.8–0.9 is

‘excellent’ and .0.9 is ‘outstanding’. A value of 0.5 is defined as

the predictive ability that could be achieved by chance alone.

Map accuracy was calculated using an independent set of

underwater survey data (n = 360) collected using an identical

technique to the original survey data used to build the models.

Predicted probability of presence sometimes referred to as habitat

suitability values were mapped to the 464 m cells of the pre-

dictors, with values scaled between 0 (absence) and 100 (highest

probability of presence). Mapped predictions were converted to

binary values (.10% probability = suitable habitat; ,10% =

unsuitable) and quantitatively assessed. Map accuracy was

calculated as the percentage of actual species sightings predicted

correctly by the predictive map.

We used generalized linear mixed models (GLMM) to analyse

variation in AUC, since the grouping structure for the data

consisted of modelling technique (i.e., BRT and MaxEnt), which

varied between five species at five different spatial scales. AUC was

included as the response variable (with Poisson error distribution)

and modelling technique was fitted as a fixed effect. Spatial scale

and species were fitted as random factors and an interaction

between species and scale was fitted as random factor. Models

were evaluated by model selection and likelihood ratio test (LRT).

The GLMM was developed using the glmer function of the lme4

library in the statistical software package R ver. 2.8.1 [41].

Additionally, simple linear regression was used to examine

relationships between fish body length and the spatial scale of

seascape structure that contributed most to models.

Results

Comparison of BRT and MaxEnt models
BRT provided ‘outstanding’ model predictions (AUC = .0.9)

for three of five species and the remaining two considered
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‘excellent’ and ‘acceptable’. MaxEnt provided ‘outstanding’ model

predictions for two out of five species with the remaining three

models considered ‘excellent’ (AUC = 0.8–0.9) according to the

criteria of Hosmer and Lemeshow [40] (Table 1). At the species

level, BRT and MaxEnt models for C. fulva performed best (BRT

AUC = 0.97; MaxEnt AUC = 0.94) followed by BRT models for S.

taeniopterus and S. planifrons (AUC = 0.93 and 0.92 respectively). The

lowest performing was a BRT model for E. guttatus (AUC = 0.74)

and MaxEnt models for S. taeniopterus (mean AUC = 0.84).

The GLMM analysis showed that there was no significant effect

of AUC on modelling technique (x2 = 0.001; p.0.05; LRT); there

was also no effect of scale (x2 = 0.002; P.0.05; LRT), species

(x2 = 0.116; p.0.05; LRT), nor interaction between scale and

species (x2 = 0.118; p.0.05; LRT) on model performance.

Additionally, model performance was not significantly (p =

.0.05) correlated with species prevalence for BRT or MaxEnt

models (r2 = 0.07 and 0.24 respectively). For ease of presentation,

the following results focus on the best BRT models (Table 2).

Variable contributions and threshold effects
Our findings revealed that the single most influential predictor

was geographical location across the shelf, represented by distance

to the shelf edge and distance to the shoreline (Fig. 2). Distance to

shelf was the primary predictor for the two grouper species and

distance to shore for the Princess parrotfish and Queen triggerfish.

B. vetula, C. fulva and E. guttatus exhibited similar predictor

relationships: whereby species occurrence was predicted to be

higher in seascapes that were farthest offshore (Fig. 3). For C. fulva, a

threshold effect was evident at approximately 2000 metres from the

shelf edge, where species occurrence abruptly increased (Fig. 3). C.

fulva and B. vetula responded positively to areas with greater depths

(20–25 m). S. taeniopterus also showed a preference for offshore

habitat, but with a more gradual pattern of increasing occurrence

predicted across the shelf beyond 2000 meters from shore (Fig. 3).

Of the morphometrics, topographic complexity (i.e., slope of

slope) was most influential in determining occurrence of S.

Table 1. Cross-validation AUC values from BRT and MaxEnt
with best performing models for each algorithm highlighted
in bold.

Species Scale (m) BRT AUC MaxEnt AUC

B. vetula 5 0.846 0.861

B. vetula 25 0.831 0.855

B. vetula 50 0.838 0.854

B. vetula 100 0.852 0.858

B. vetula 300 0.867 0.862

Mean SE 0.847 (0.02) 0.858 (0.002)

C. fulva 5 0.952 0.833

C. fulva 25 0.972 0.936

C. fulva 50 0.970 0.940

C. fulva 100 0.973 0.937

C. fulva 300 0.962 0.939

Mean SE 0.966 (0.01) 0.917 (0.02)

E. guttatus 5 0.771 0.862

E. guttatus 25 0.774 0.848

E. guttatus 50 0.749 0.854

E. guttatus 100 0.759 0.848

E. guttatus 300 0.77 0.847

Mean SE 0.765 (0.02) 0.851 (0.003)

S. planifrons 5 0.916 0.886

S. planifrons 25 0.925 0.892

S. planifrons 50 0.920 0.900

S. planifrons 100 0.908 0.901

S. planifrons 300 0.894 0.891

Mean SE 0.913 (0.01) 0.894 (0.003)

S. taeniopterus 5 0.911 0.819

S. taeniopterus 25 0.928 0.834

S. taeniopterus 50 0.932 0.848

S. taeniopterus 100 0.931 0.848

S. taeniopterus 300 0.928 0.851

Mean SE 0.926 (0.009) 0.840 (0.006)

Total Model Mean 0.883 0.872

The models are for Balistes vetula (Queen triggerfish), Cephalopholis fulva
(coney), Epinephelus guttatus (red hind), Stegastes planifrons (threespot
damselfish) and Scarus taeniopterus (Princess parrotfish). The highest AUC for
each modelling technique is shown in bold.
doi:10.1371/journal.pone.0020583.t001

Table 2. Optimal settings and predictive performance for
Boosted Regression Tree models.

Species
Scale
(m)

No.
trees

Learn
rate tc

CV
Deviance SE

B. vetula 5 4150 0.0005 5 0.33 0.014

B. vetula 25 2250 0.0009 5 0.326 0.015

B. vetula 50 2800 0.0008 5 0.326 0.015

B. vetula 100 3700 0.0008 4 0.321 0.020

B. vetula 300 6250 0.0004 5 0.308 0.017

C. fulva 5 3000 0.001 3 0.162 0.021

C. fulva 25 3700 0.0009 5 0.163 0.016

C. fulva 50 6900 0.0004 5 0.164 0.013

C. fulva 100 5500 0.0006 5 0.158 0.017

C. fulva 300 4700 0.0006 5 0.158 0.015

E. guttatus 5 3500 0.0003 4 0.297 0.008

E. guttatus 25 3400 0.0003 5 0.296 0.007

E. guttatus 50 4450 0.0002 5 0.301 0.008

E. guttatus 100 8350 0.0001 5 0.297 0.005

E. guttatus 300 9050 0.0001 5 0.293 0.008

S. planifrons 5 8050 0.0009 4 0.502 0.029

S. planifrons 25 8950 0.0007 5 0.461 0.015

S. planifrons 50 7450 0.0007 5 0.478 0.039

S. planifrons 100 6350 0.0007 4 0.509 0.040

S. planifrons 300 7700 0.0006 5 0.548 0.028

S. taeniopterus 5 4800 0.0009 5 0.592 0.026

S. taeniopterus 25 4750 0.0009 4 0.567 0.038

S. taeniopterus 50 6050 0.0008 4 0.549 0.021

S. taeniopterus 100 5650 0.0008 4 0.555 0.028

S. taeniopterus 300 6200 0.0008 4 0.552 0.029

The models are for Balistes vetula (Queen triggerfish), Cephalopholis fulva
(coney), Epinephelus guttatus (red hind), Stegastes planifrons (threespot
damselfish) and Scarus taeniopterus (Princess parrotfish). The bag fraction is 0.50
for all models unless indicated differently.
doi:10.1371/journal.pone.0020583.t002
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planifrons, S. taeniopterus and E. guttatus. Slope of slope was the

primary predictor for S. planifrons with a strong interaction with

distance to the shelf edge. More specifically, S. planifrons

occurrence was predicted to be highest in high complexity areas

between 4,000 m and 7,500 m from the shelf edge and in depths

shallower than 15 m. The spatial prediction of probability of

presence or habitat suitability revealed a high density of highly

suitability habitat for S. planifrons over shallow water aggregated

patch reefs with high topographic complexity and along the

landward slopes of shallow linear reefs fringing offshore cays and

emergent reefs (Fig. 4). The two relationships that contributed

most to regulating the distribution of S. taeniopterus were proximity

to shore (negative relationship) and slope of slope (positive

relationship), suggesting that both geographic and topographic

variables are also important for this species.

The strength of the response curve and the location of the point

at which increasing topographic complexity no longer led to

increasing occurrence differed between species. For S. taeniopterus, a

gradual increase in occurrence with increasing slope of slope was

predicted with even very small increases in complexity greater

than zero (flat bottom) resulting in occurrence. Complexity

increased habitat suitability until slope of slope values reached

approximately 20, beyond which habitat suitability levelled off. A

steeper response curve was evident for S. planifrons, with occurrence

increasing with complexity up to a slope of slope value of 45

(Fig. 3). E. guttatus increased gradually with slope of slope until a

value of approximately 35, where a plateau in the response

occurred. These findings highlight the existence of species-specific

responses to topographic complexity, as well as some generality in

the importance of the interaction between geographical location

across the shelf and topographic complexity of the seascape for

predicting fish distributions across coral reef ecosystems.

Variable interactions
Although variable importance did not fluctuate across spatial

scales for the fish species investigated, the interactions between

topographic and geographic predictors led to a more ecologically

meaningful understanding of how multiple predictors interact to

determine habitat suitability. This was particularly true for B. vetula,

E. guttatus, S. planifrons and S. taeniopterus. For instance, the most

important interactions for S. planifrons were consistently between the

slope of slope and distance to shore (Fig. 5). A similar result was

exhibited for E. guttatus, S. planifrons and S. taeniopterus. Aside from the

expected interaction between the inversely related distance to shore

and distance to shelf edge, interaction strength was highest for: i.) B.

vetula – distance to shore and curvature and rugosity; ii.) C. fulva -

distance to shore and water depth; iii.) E. guttatus - distance to shore

and slope; iv.) S. taeniopterus - distance to shore and slope of slope;

and v.) S. planifrons - distance to shelf edge and slope of slope. The

model for C. fulva involved the strongest interactions among

predictors. In contrast, E. guttatus exhibited relatively weak

interactions. Moreover, the most important interactions for B. vetula

and E. guttatus tended to vary across spatial scales, suggesting that the

synergistic effects of different predictors are important for regulating

species’ distribution across scales in Caribbean coral reef seascapes.

Influential spatial scales
The best BRT models for B. vetula and S. taeniopterus were

developed using environmental predictors at the 300 m scale.

The best model for C. fulva was at the 100 m scale; S. planifrons

Figure 2. Boxplots of percentage contribution of each environmental predictor across all models and spatial scales for five fish
species. Horizontal lines in boxes show medians and boxes show upper and lower quartiles, with vertical lines showing minimum and maximum
values. Distance is abbreviated ‘‘Dist’’.
doi:10.1371/journal.pone.0020583.g002
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Figure 3. Partial dependence plots for Boosted Regression Tree (BRT) analyses relating species occurrence to the top 4 most
influential geographical and morphological predictors. (A) Balistes vetula (Queen triggerfish); (B) Cephalopholis fulva (coney), (C) Epinephelus
guttatus (red hind); (D) Scarus taeniopterus (Princess parrotfish); and (E) Stegastes planifrons (threespot damselfish). The graphs show the effect of a
particular variable on the response: positive fitted function values suggest that species respond favorably and low values suggest the opposite. The
relative importance of each variable is shown in parentheses on the x-axis. Increasing negative values for planar curvature represent increasing
amount of convexity in the surface; positive values are concavity.
doi:10.1371/journal.pone.0020583.g003

Predicting Fish Distributions across Seascapes

PLoS ONE | www.plosone.org 7 May 2011 | Volume 6 | Issue 5 | e20583



at the 25 m scale; and E. guttatus at the 5 m scale (data not shown).

Although the strength of the response varied across spatial scales,

rarely did the relative importance of different environmental

variables change across spatial scales for any species’ models since

the primary and secondary predictors (i.e., the Euclidean distance

from shelf edge and shore) were scale-independent metrics.

Map accuracy of predicted species distributions
Independent map accuracy assessment demonstrated that

MaxEnt models produced more reliable spatial predictions of

species occurrence than did BRT models (Table 3). Map accuracy

for MaxEnt models was consistently high across all five species,

with highest accuracy calculated for S. taeniopterus (97% correct)

Figure 4. Predicted habitat suitability for Stegastes planifrons for the study area of SW Puerto Rico. (A) MaxEnt model of habitat suitability
for S. planifrons overlain on 4 m resolution LiDAR bathymetry; (B) Subset of the habitat suitability map for S. planifrons showing a high density of
highly suitable habitat (red) around the El Palo reef area within the La Parguera Natural Reserve; and (C) Subset of the habitat suitability map showing
highly suitable habitat (red) predicted along the shallow landward reef slopes near Corral and Romero cays. Sites of confirmed presence and absence
of S. planifrons are represented by white and black dots respectively.
doi:10.1371/journal.pone.0020583.g004
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and C. fulva (95.8% correct). Predictive maps projected from BRT

models were less reliable for all species than MaxEnt and more

variable, ranging from 48% accuracy for B. vetula to 96.6% for S.

taeniopterus (Table 3).

Discussion

The spatial modelling approach developed here integrates data

and novel tools and techniques from geographical information

science together with landscape ecology concepts and advanced

machine-learning algorithms to model complex non-linear species-

environment relationships. We have demonstrated that morpho-

logical characteristics of the seafloor and geographical predictors

interact to function as effective predictors of fish species dis-

tribution across topographically complex coral reef ecosystems.

Our results demonstrated that coral reef ecosystems exhibit high

spatial variability in habitat suitability at a range of scales for five

common fish species. We demonstrate that the location of coral

reefs across the insular shelf does matter to fish; and that coral

reefs of equally high topographic complexity will not necessarily

offer identical habitat suitability for fish.

Although species showed individualistic responses to predictors,

non-linear statistical interactions between the geographical

location across the shelf and the structural heterogeneity of the

seafloor produced reliable models of species distributions. Geo-

graphical threshold effects were evident in ecological responses for

Figure 5. Schematic models of predictor interactions from BRT models. (A) Balistes vetula (Queen triggerfish); (B) Cephalopholis fulva
(coney); (C) Epinephelus guttatus (red hind); (D) Scarus taeniopterus (Princess parrotfish); (E) Stegastes planifrons (threespot damselfish). Line thickness
is proportional to interaction strength with thicker lines indicating stronger interactions.
doi:10.1371/journal.pone.0020583.g005
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several species indicative of distinct zonation in the spatial pattern

of habitat suitability. The ability to map the spatial patterns in

habitat quality for species and groups of species is valuable for

mapping essential fish habitat and conservation planning.

Most importantly, we highlight the importance of using

independent validation data to evaluate model predictions and

demonstrate that model performance may not necessary translate

to map accuracy when the predictions of habitat suitability are

projected across seascapes. Higher map accuracy from MaxEnt

model predictions may reflect the difference between an entropic

distribution with environmental constraints capable of modelling

very complex spatial distributions, versus a recursive partitioning

approach with splitting across variable values. Splitting may

perform better for species with more distinct zonation patterns of

distribution. More multi-species studies are required to examine

the distributional characteristics that specific algorithms are best

suited to predict. Moreover, rather than relying solely on AUC,

alternative metrics should be used to evaluate model performance,

particularly for MaxEnt which relies on pseudo-absences. Using

pseudo-absences may lead to biased AUC values, because this

index gives equal weights to omission and commission errors and

pseudo-absences tend to inflate the number of false absences [42].

However, for our data, using independent validation data to assess

model predictions favoured MaxEnt.

Variable contribution and interactions
Topographic complexity is widely recognised as an important

predictor of fish species distributions, with more complex patches

and seascapes supporting higher fish abundance and species

richness than less complex patches [10,11,21,43]. Although our

results support this hypothesis, with slope of the slope and surface

rugosity (measures of topographic complexity) identified as im-

portant predictors in distribution models of three of the five fish

species, we also show that not all coral reefs offer equal habitat

suitability, even if they do exhibit equal levels of topographic

complexity. At broad spatial scales, the suitability of coral reefs for

fish species in the study area was mediated by the interaction

between topographic complexity and geographical location across

the insular shelf. In fact, cross-shelf location measured by Euclid-

ean distance from both the shelf edge and shoreline explained

more of the variability in fish species occurrence than any other

individual predictor.

Several studies have highlighted the importance of cross-shelf

location for fish distributions [44,45,46], yet relative position

across the shelf is rarely directly quantified as a potential spatial

proxy in ecological studies of marine species distributions. Both

distance to coastline and distance to barrier reef emerged as the

most important predictors for a wide range of fish species on the

Great Barrier Reef, Queensland Australia [47,48]. A disadvantage

associated with use of a geographical predictor is that the exact

causal patterns and processes relevant to cross-shelf location are

ambiguous. An advantage, however, is that geographical predic-

tors provide a relatively static, easy to quantify proxy that may

indirectly represent changes across a wide range of dynamic

gradients in environmental conditions (e.g., depth, temperature,

salinity, turbidity, connectivity) including those that are problem-

atic to quantify accurately at appropriate spatial and temporal

scales.

Compared with geographical predictors and topographic

complexity, other predictors such as curvature, aspect and slope

each contributed less than 12% (mean variable contribution)

across all species. These variables have been found to be important

predictors of vegetation distribution in terrestrial landscapes, yet

very little is known about their importance as drivers of ecological

patterns across the seascape. Slope and aspect could influence

hydrodynamics and the amount of light irradiance received by

photosynthetic organisms (e.g., algae and scleractinian corals),

with implications for fish distributions; but these characteristics of

the terrain morphology have yet to be explored relative to

biological function in coral reef ecosystems.

Threshold effects
This study identified several thresholds in predictor responses to

geographical location, which defined discrete constraints on

habitat suitability across the shelf. This pattern is indicative of

the existence of ecologically meaningful zonation across the shelf

likely mediated by local coastal geomorphology. The existence of

geographical threshold effects may be related to life-history

strategies and tactics, such as whether a species is a habitat

specialist with a critical dependence on a single habitat type or

seascape generalist capable of using multiple habitat types and

geomorphological zones. Evidence from terrestrial species [49]

and a few marine examples [26,50] indicate that threshold effects

are species specific, a result that was supported by our findings.

Past studies have focused on changes or spatial differences in the

abundance of patch types represented as two dimensional flat

surfaces, rather than spatial gradients of three dimensional surfaces

as was accomplished with these analyses. Our study suggests that

understanding the three dimensional structural conditions under

which thresholds are likely to be exceeded and the mechanisms

underlying the threshold response is critical to predicting change

and for examining the options for management intervention and

setting targets for structural restoration.

Table 3. Comparison of map accuracy for predicted fish species distributions using BRT and MaxEnt algorithms.

Species Presence sites BRT MaxEnt

% Correct % Misclassified % Correct % Misclassified

B. vetula 44 48 52 90 10

C. fulva 24 54.2 45.8 95.8 4.2

E. guttatus 10 70 30 90 10

S. planifrons 30 73.3 26.7 90 10

S. taeniopterus 87 96.6 3.4 97 3

Mean 68.4 31.6 92.6 7.4

Prediction probability threshold of .10% used for mapping suitable habitat. Mean values are bold.
doi:10.1371/journal.pone.0020583.t003
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Spatial scale
Our multiscale approach, adapted from landscape ecology,

allowed us to examine scale-dependent effects in species response

to environmental heterogeneity. A range of spatial scales emerged

for identifying the characteristic scale of response for the five fish

species. The scale of response was species specific with no positive

allometric scaling relationship evident between fish body size and

size of seascapes. For instance, one of the grouper species (E.

guttatus) was best predicted using spatial complexity quantified at

the 5 m radial extent, while the smallest bodied fish species (S.

planifrons) was best predicted at the 25 m radial extent. This may,

however, reflect a site specific preference for highly complex

structure in close proximity for E. guttatus. Limited information is

available on the scale of movements for most tropical species,

therefore limiting any meaningful scale selection in ecology studies.

Where data are available, behavioural studies have shown that S.

planifrons is a highly territorial site-attached fish with a home range

of several metres and no evidence for nocturnal migrations [51]. In

contrast, behavioural observations of S. taeniopterus in Barbados

found that fish moved (20 to 375 m migrations) to structurally

complex and deeper reef slopes or nearby areas with high coral

colony density to find night resting areas [52]. It is likely that

suitable habitat includes close proximity between day and night

use areas that together offer sufficient structural complexity to

provide abundant food and refuge from predators. The proximity

of suitable habitats determines both the spatial scales of the daily

home range and therefore the spatial scales at which individuals

respond to the environment. For species such as S. taeniopterus, an

exploratory, multi-scale approach that is inclusive of surrounding

structural heterogeneity at a range of scales is more likely to in-

clude the structurally complex night resting areas that exist within

a few hundred metres of the locations of daytime occurrence.

Management implications and future challenges
A systematic assessment of marine species’ distributions and

their responses to specific environmental variables at multiple

spatial scales provides valuable information for conservation

planning and fisheries management. The quantitative and spatially

explicit techniques demonstrated offer a cost-effective and reliable

tool for refining the spatial delineation of essential fish habitat

within a region and for identifying the suite of site characteristics

that are important for priority species [53]. Furthermore, a multi-

scale approach obviates some of the minor geopositional

inaccuracies that may occur in field surveys when linking response

variables to environmental structure. A multi-scale approach is

ecologically appropriate when insufficient information on actual

movements and habitat use patterns are available, and when it is

likely that species respond hierarchically to spatial structure and

respond at different scales to different components of structure

[50,54].

Future studies are now underway that examine the potential

applications of our modelling approach for forecasting the influ-

ence of differing levels of ‘topographic flattening’ on habitat

suitability and the associated contractions and expansions in fish

species distribution. Species distributions can also be used as

spatial proxies for key ecological processes such as herbivory.

Mapped distributions for multiple herbivorous species can be

spatially combined to map cumulative patterns of grazing inten-

sity, a key process controlling the dynamics and resilience of coral

reef ecosystems [55].

Additional future work is required to determine the portability

and generality of the models through application to geographically

different regions and to assess performance for a wider range of

species in both fished and unfished areas [56]. Spatial modelling

techniques can offer a cost-effective analytical solution to both

filling the spatial information gap and increasing our understand-

ing of macro-ecological relationships, even in relatively data poor

regions of the world. The results emphasise the importance of

understanding the architectural complexity of coral reefs,

particularly in the Caribbean and other sensitive seascapes that

have shown declines in coral cover and a ‘flattening’ of coral

topography as a result of catastrophic and sub-catastrophic events

including disease, hurricanes and bleaching.
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