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Abstract

For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is
needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not
all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence
alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g.
BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic
phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification
algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX
identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking
regions are used to score variable regions in the query sequence without the production of a global multiple–sequence
alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from
shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications
to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods
when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length
barcode database). BRONX consistently produced better identifications at the genus–level for all query types.
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Introduction

The goal of DNA barcoding is to identify biological specimens

using a short (ca. 650 bp) standardized region of DNA in a

manner analogous to the use of Universal Product Codes to

identify consumer goods [1–5]. Without an accurate and

expeditious query sequence identification method, barcoding is

restricted to the gathering of reference sequences. Building such a

database is laudable, but of limited practical application if query

sequences cannot be accurately identified.

Consumers of DNA barcodes are interested in placing their

query sequences within the taxonomic hierarchy (i.e. classifying a

specimen). Conventional Sequence IDentification Engines (SIDEs)

such as FASTA [6] or BLAST [7] can be used for DNA barcode

identification, but implementations of sequence similarity methods

are often ‘corrected’ to overcome biological (e.g. mutation) or

sampling bias. These ‘corrections’ may unintentionally obscure the

minuscule sequence variation among closely related species.

In addition, conventional SIDEs assume that the reference

sequence(s) that is (are) most similar to the query sequence is (are)

the best estimate of query identification. Although this may be true

from the standpoint of overall sequence similarity, classifications

are most efficient when they use character–based special similarity

(i.e. shared similarity due to common ancestry) rather than overall

similarity [8,9]. Character–based special similarity can either be

used directly–in the form of phylogenetic trees–or implicitly–in the

form of hierarchic taxonomic descriptors. To date, SIDEs that use

evolutionary information are primarily adaptations of more

conventional character–based phylogenetic methods [10–13].

SIDEs based upon phylogenetic methods face two major

obstacles: First, tree–search is an NP–hard problem–with the

number of possible solutions becoming impossibly large with even

a small number of terminals [14]. Although a variety of efficient

search heuristics are available [15–19], it is not computationally

practical to analyze more than a few thousand terminals with

current hardware. For DNA barcoding, various shortcuts have

been proposed to either limit the size of the reference database

and/or limit the tree–search [11,20,21]. Second, character–based

phylogenetic methods require a multiple–sequence alignment. The

contradictory requirements for a barcoding marker to be

hypervariable–in order to distinguish among closely related

species–yet simultaneously be highly conserved–to allow for

‘universal’ PCR primers–results in the selection of markers fraught

with alignment difficulties. The impact of alignment on phyloge-

netic accuracy and in turn sequence identification is great

[11,22,23]. An algorithm designed to overcome alignment

ambiguity while simultaneously using phylogenetic information

has been proposed, but ATIM [11] is so time inefficient that it is

not useful in practice.

In addition to finding the best matching reference sequence,

DNA barcoding SIDEs must confront within taxon variability

[11,21,24]. Although it is not possible to unambiguously classify a
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specimen using a single barcode marker in the presence of

variation shared among taxa (due to either ancestral polymor-

phism and/or introgression), conventional SIDEs may output an

unambiguous identification simply as a result of artificial variation

in sequence length.

The BRONX algorithm
BRONX (Barcode Recognition Obtained with Nucleotide

eXposés) is a novel SIDE designed to use an uncorrected

character–based measure of similarity, work with difficult to align

markers, capitalize upon knowledge of hierarchic evolutionary

relationships, indicate ambiguous classification assignments, and

account for within taxon variation.

BRONX reduces reference sequences to a series of characters

defined by flanking context (‘pretext’ and ‘postext’; Fig. 1) thereby

avoiding alignment difficulties. Named terminals, be they species,

higher–level taxa, or unnatural terminals of interest (e.g.

pathogens) are reduced to exhaustive composite exposés. For each

terminal, the exposé consists of a list of all observed sequence

fragments (text) and their flanking context. This minimizes

misidentifications arising from shared alleles/haplotypes and

allows for the placement of undescribed (or unsampled) species

within higher–level terminals. BRONX identifies queries as

named terminals by first matching the context of the query

sequence to the context of the reference exposés. Where there is

matching context, the similarity between the query and the

reference can be calculated (see Methods for additional details).

BRONX in effect mimics the procedures used in traditional

morphological systematics–each composite exposé is equivalent to

a taxonomic morphological description where some characteristics

provide context for others (e.g. hair on the midvein of leaves).

This paper aims to test the accuracy of BRONX sequence

identification against leading published SIDEs. Publicly available

data for the core plant barcode markers (matK and rbcL; [25]) was

used in preference to animal barcode data (CO1; [5]) because the

plant two marker system represents a more rigorous challenge to

SIDE performance–one that has largely been ignored by the

designers of SIDEs up until this point.

Methods

Barcode data
A dataset of plant core barcode markers–matK and rbcL–was

extracted from publicly available sources. Sequences were

included only if both markers were obtained from the same

individual. Sampling was limited to digitized literature available to

the author in which the relationship between sequence accessions

and vouchers was explicit. The taxonomy of the original

publication was used for all analyses. The resulting dataset

included portions of complete plastid genomes and sequences

generated for phylogenetic, biogeographic, and barcoding studies

[26–84]. For each marker, a global multiple–sequence alignment

was calculated and refined with MUSCLE 3.7 [85]. Sequences

were trimmed, using the multiple–sequence alignment, to include

only sequence that would be amplified if primers matK 3F (59-

CGT-ACA-GTA-CTT-TTG-TGT-TTA-CG-AG-39) and 1R (59-

ACC-CAG-TCC-ATC-TGG-AAA-TCT-TGG-TTC; Ki–Joong

Kim, Korea University, pers. comm) or rbcL aF (59-ATG-TCA-

CCA-CAA-ACA-GAG-ACT-AAA-GC-39 [49]) and aR (59-GAA-

ACG-GTC-TCT-CCA-ACG-CAT-39 [34]) had been used. Lead-

ing and trailing ‘N’ codes were deleted. The final dataset had 2083

sequences of each marker representing 990 genera and 1745

species (Dataset S1).

Severity of identification tests
For a SIDE to succeed at the species– or genus–level, all

sequences for a given species had to be correctly identified to the

exclusion of sequences from other species or genera, respectively

(i.e. ambiguous identifications were considered incorrect). The

percentage of queries resulting in correct identifications is

equivalent to sensitivity [i.e. true positives/(true positives+false

negatives)]. Tests of species–level identification were classified

either as ‘weak’ tests–those for which no congener is represented in

the dataset (n = 784)–or as ‘strong’ tests–those for which congeners

are included (n = 961). Reference datasets included 1745 sequences

for each marker (one per species). If a species was represented by

more than one individual in the full dataset, the individual with the

highest matK ‘length/completeness score’ [11] was retained in the

restricted dataset (ties were arbitrarily resolved). All 2083

sequences were used for queries.

Mini–barcodes
To test SIDE performance using mini–barcode [86] data, each

of the 2083 query sequences was reduced to a single short

segment–the size (100–200 bases) and the position of the segment

was randomly chosen within each query sequence. The mini–

barcode was queried against a full–length reference database as

described above. The original mini–barcode proposal [86] called

for the use a single highly–informative segment, but such a

segment has not yet been identified in plants. Currently,

researchers try many combinations of primers on poor quality

DNA extracts and eventually sequence a small, arbitrary

positioned, fragment that varies from species to species. The

location of such fragments are not random per se, but simulating

the interaction between taxon specific sequence variation, the

degradation of DNA, the PCR skills of a hypothetical researcher,

and the available primer complement in such a researcher’s

laboratory is beyond the scope of this paper. Therefore a random

approach was used to mimic the current patchy recovery of

sequence data from specimens with poorly preserved DNA.

Interpretation
For each SIDE and class of identification test, the binomial

distribution was used to compute confidence intervals around the

observed success rate [87–89]. Each reference species was

considered an independent test.

Tukey–type multiple comparisons tests were conducted on each

class of test by summing performance across markers and tests.

Full–length and mini–barcode queries were considered separately

and combined. Data were arcsin transformed following [90] eq.

13.8. Tests used a = 0.05 and followed the procedure of [90]

section 24.14.

Figure 1. An example of context (pretext/postext) and text
extraction. The size of the pretext/postext used, and the range of text
sizes stored, may vary by implementation.
doi:10.1371/journal.pone.0020552.g001
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Similarity among SIDEs was quantified using Fleiss’ [91–93]

index of interrater agreement (k). Each dataset and query type was

analyzed separately.

Simple pairwise matching
Calculations of ‘barcode gap’ magnitude (the difference between

intra– and inter–specific distances) are highly sample dependent

[94]. Therefore the algorithm used here only depended upon the

presence or absence of a barcode gap (i.e. interspecific distance

greater than zero)–a calculation that is not nearly as sample

dependent. A more conservative approach, such as requiring that

the minimum inter–specific distance be larger than the maximum

intra–specific distance [25], was not feasible given the poor intra–

specific sampling in the datasets.

Global alignment (Analysis 1). The pairwise matching

algorithm used here follows that of [25]: (1) All possible global

(Needleman–Wunsch; [95]) pairwise alignments were calculated

with MUSCLE 3.7 [85]. (2) For each pair, uncorrected p-distance

was calculated using unambiguous sequence differences only.

Postulated insertion/deletion (indel) events were treated as missing

data. (3) As appropriate, markers were combined by summing the

components of the distance measure. (4) A species was considered

distinct if all inter–specific p-distances were greater than zero

(contra [25]). For the mini–barcode analysis, each truncated query

was aligned to all full–length reference sequences and analyzed as

described above.

Local alignment (Analysis 2). Steps 1–4 of Analysis 1 were

followed except water 6.1.0-5 [96] was used to calculate all

possible local (Smith–Waterman; [97]) pairwise alignments. The

analysis was not conducted using combined queries for the mini–

barcode dataset.

Tree–based identification
De novo parsimony tree search (Analysis 3). (1) For each

marker, a global multiple–sequence alignment was calculated and

refined with MUSCLE (Datastes S2 and S3). (2) Sequences for

each query species were aligned to one another. They were then

aligned to the reference alignment using the ‘-profile’ option of

MUSCLE. (3) Postulated indels were treated as missing data, but

included in the analysis using ‘simple indel coding’ [98]. (4) As

appropriate, markers were combined by concatenation. (5) A fast

tree search was conducted with TNT 1.1 [99] using one random

addition sequence (system time was used for a random seed) and

SPR branch swapping holding a single tree (‘rs0; col3;

mu = rep1ho1spr;’). Ambiguously supported nodes were

collapsed. Physcomitrella patens (Hedw.) Bruch & Schimp. was used

to root all searches. (6) The least inclusive clade containing all of

the query sequences was taken as the identification [11].

Forced parsimony tree search (Analysis 4). Forced

(constrained) parsimony tree search using a reference multiple–

sequence alignment from Analysis 3 and a reference tree: (1)

Reference most parsimonious trees were obtained via at least 300

ratchet tree–searches in TNT. The system time was used as the

random seed and ambiguously supported branches were collapsed.

For each ratchet, a single random addition sequence was

swapped–exhaustively first with SPR then TBR holding up to

two trees. Each of the 200 ratchet iterations was randomly re–

weighted for either 8% or 10% of the informative characters and

TBR swapped holding up to two trees (‘rs0; col3; ho201;

rat:iter200up4do4; mu = rep100ho2rat;’). (2–5) The same as

steps 1–4 of Analysis 3. (6) The tree search in step 5 Analysis 3

was used except the strict consensus of the most parsimonious trees

was used as a positive constraint. (7) The resulting tree was

evaluated as step 6 Analysis 3.

CAOS (Analysis 5). The Characteristic Attributes

Organization System (CAOS) algorithm [21,100,101] was

compared to de novo and forced parsimony tree searches. (1) The

reference consensus used in Analysis 4 was used to construct the

CAOS rule set. Indel characters were removed from the matrix

prior to rule extraction. (2) As appropriate, markers were

combined by concatenation. (3) CAOS used NCBI-BLAST

2.2.13 [102] for query sequence alignment. (CAOS was not used

for the mini–barcode analysis.).

SAP NJ (Analysis 6). The ConstrainedNJ algorithm from the

Statistical Assignment Package (SAP; [13,20]) was used to identify

query sequences. (1) A local BLAST database was searched with

‘blastall’ 2.2.17 [102]. Taxonomic annotation consisted only of

genus and species names. (2) ClustalW2 (2.0.12; [103]) was used to

align up to 50 sequences returned by the BLAST search (SAP was

requested to return sequences from at least three genera). (3) As

appropriate, markers were combined by concatenation. (4) Genus–

and species–level assignments used a minimum posterior probability

of 95%. Query sequences for which BLAST was unable to find any

significant matches at 1.00e{01 (the SAP default) were excluded

from the success/failure counts. SAP could not be used for the

combined marker mini–barcode analysis because BLAST could not

effectively search the concatenated reference database with

concatenate non–adjacent mini–barcode sequences.

SAP BA (Analysis 7). The Barcoder algorithm (‘a Bayesian

approach very much like MrBayes’) from the SAP [13] was used

for query assignment following the steps 1–4 of Analysis 6. As

described above, SAP could not be used for the combined marker

mini–barcode analysis.

DNA–BAR/degenbar (Analysis 8)
(1) Up to ten redundant distinguishing oligo nucleotide (length

10–25) sequences were located in reference sequences and their

reverse complements (separated by 25 ‘N’ codes). DEGENBAR

[104,105] was given the following parameters to pick oligos: GC

content 0–100%, annealing temperature 0–1000C, salt concen-

tration 50 nM, DNA concentration 50 nM, and a maximum

common substring weight of 50. For mini–barcode analysis,

output from two DEGENBAR runs were used: one returned up to

10 redundant distinguishing oligos while the other returned up to

30. (2) As appropriate, markers were combined by concatenation

with 25 ‘N’ codes between each marker. (3) A PERL script (http://

www.nybg.org/files/scientists/degenbar.html) was used to identify

query sequences using the DEGENBAR output [11].

BLAST
WU-BLAST (Analysis 9). The BLAST algorithm [7,106] as

implemented in WU-BLAST 2.0MP (2006 May 4) [107] was used

to identify sequences: (1) A unified database was constructed from

matK and rbcL sequences. (2) For each species, sequences were

queried against the database with nucleotide–to–nucleotide

comparisons using the default settings (‘blastn’). Up to 200 of the

best hits were returned per query sequence (‘-B 200’). (3) As

appropriate, sequences of either or both markers were used for

queries. (4) The mean raw alignment score was calculated for each

species using the values returned for all queries. The highest mean

raw alignment score was taken to be the identification.

NCBI-BLAST (Analysis 10). The NCBI implementation of

the BLAST algorithm was also used (the ‘blastn’ program of

blastall 2.2.17 [102]) following steps 1–4 of Analysis 9.

BRONX (Analysis 11)
The BRONX algorithm was implemented in two PERL scripts

released under GNU GPL version 2 (http://www.nybg.org/files/

DNA Barcode Sequence Identification
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scientists/dlittle/BRONX.html). MySQL 5.0.67 [108] was used as

a back–end database. (1) A unified database was constructed from

matK and rbcL sequences using ‘BRONXpopulate.pl’. No context

combinations that included IUPAC ambiguity codes were stored.

(2) As appropriate, markers were combined by concatenation with

15 ‘N’ codes between each marker. (3) Query sequences were

identified using ‘BRONXid.pl’.

The reference database was constructed using the following

algorithm:

1. For each possible position (p) in a given reference sequence

extract:

(a) n contiguous pretext nucleotides [p, p+n] (in this implemen-

tation n = 6)

(b) followed by x contiguous text nucleotides with x incremented

from 1 to y [p+n+1], [p+n+1, p+n+2], … , [p+n+1, p+n+y] (in

this implementation y = 8)

(c) immediately followed by n contiguous postext nucleotides

[p+n+x+1, p+n+x+1+n].

2. For each reference sequence, store all pretext/text/postext

combinations.

3. For each terminal, create a composite exposé of all pretext/

text/postext combinations known for the terminal.

The reference database was queried using the following

algorithm:

1. For each possible position in the query sequence and its reverse

complement, extract context and text as described above, but

with x fixed rather than incremented (in this implementation

x = 3).

2. If the pretext/postext combination is found among the

reference exposés, score each reference terminal for the

combination that is shared with the query sequence (see below).

3. If the pretext/postext combination does not match a

combination in the reference exposés:

(a) extract all postext combinations from the reference exposé

that follow the current pretext

(b) determine which of the known postext sequences is

physically nearest to the current pretext

(c) score each terminal in the reference exposé using the nearest

pretext/postext combination (see below)

4. The reference terminal(s) with the highest final score is(are)

considered the identification.

A variety of scoring functions are possible. The simplest function

increments a terminal’s score by one for each matching pretext/

text/postext combination. Thus, the final score for each terminal

can vary between zero and the query sequence length with zero

awarded complete mismatches and sequence length awarded to

exact matches. Several other scoring functions were used on an

experimental basis (e.g. differential scoring of text versus pretext/

postext), but did not appear to improve identification success (data

not shown).

Results and Discussion

The use of GenBank data necessitates an assumption of

underlying data quality that cannot be independently verified

without great difficulty. As a result, I assumed that there were no

sequencing errors, that all specimens were consistently identified,

and that the taxonomy used was sound. Given these assumptions,

the results presented here allow one to choose the most accurate

SIDE(s) for barcode data analysis.

Severity of identification tests
In general, SIDEs had greater rates of success for ‘weak’ tests of

species–level identification (i.e. those for which no congener was

included in the dataset; Figs. 2B and 3B) than they had for ‘strong’

tests (i.e. those for which congeners are represented in the data set;

Figs. 2C and 3C). Exceptions to this generalization include: WU-

BLAST and both tree–building algorithms of SAP using full–

length queries on the combined dataset; SAP Barcoder using full–

length queries on the matK dataset; and DNA-BAR/degenbar

using mini–barcode queries, The failure of WU-BLAST was

inconsistent and unexpected (see below).

Among weak tests, no SIDE was able to correctly identify all

queries–indicating that some of the tests that had been classified as

weak, based on taxonomy, were in fact more challenging.

In general strong tests of species–level identification appear to

be a much better means of discriminating among SIDEs than

weak tests (compare Figs. 2B and 2C). Due to a high degree of

congruence between weak and strong tests, weak tests do not

distort the interpretation of trends in the overall results.

Relative marker performance
In general matK data were better able to distinguish between

genera and species than rbcL data–this disparity is well document-

ed [25,34,44,49,50,59]. Deviation from this general pattern can

best be explained by difficulties with sequence alignment–rbcL is

much simpler to align than matK (see below).

Genus–level identification
Accurate genus–level identification is important for poorly

described (or sampled) groups as well as for the enforcement of

trafficking regulations. Regulators often list genera rather than

attempting to maintain an exhaustive list of species for poorly

described groups (e.g. Encephalartos, a CITES appendix 1 genus of

cycad [109]).

Genus–level tests of identification were largely successful

(w99%) for BRONX, DNA–BAR/degenbar, NCBI-BLAST,

and pairwise matching when full–length matK data were used

(Fig. 2A). It appears that rbcL is not variable enough to consistently

distinguish among genera (the greatest success rate was 97%).

Species–level identification success is a good, but imperfect,

predictor of genus–level identification success. For example,

although DNA-BAR/degenbar performed best for species–level

identification using full–length queries, BRONX was significantly

better at genus–level queries in the same analysis (Table 1)–this is

largely due to the explicit use of shared similarity in BRONX.

For identification of queries to genus, BRONX should be

preferred over other SIDEs tested here.

Mini–barcodes
Relative to full–length queries, identification success was much

lower for mini–barcode queries (Fig. 3). Among the strong tests of

species–level identification, the best score was 47%, achieved by

BRONX with combined matK and rbcL data. This does not

compare favorably to the best score achieved using full–length

queries (91%, DNA–BAR/degenbar).

With the exception of DNA–BAR/degenbar, relative perfor-

mance was similar among most SIDEs when mini–barcode queries

were used (Table 1). Given the extremely poor species–level

DNA Barcode Sequence Identification
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performance with mini–barcode queries and the corresponding

low success in genus–level identification with single marker data

(maximum of 82%), the strong synergistic performance of

BRONX with combined queries is notable (90%; B in Fig. 3A).

From the data presented here, it appears that users of mini–barcodes

should not expect accurate identifications even with the best available

SIDE. It seems that accurate identification is not possible because there

is not enough information in the mini–barcodes tested here.

Relative SIDE performance
Statistically significant differential SIDE performance (Table 1)

resulted in a range of interrater agreement values (Table 2). There is

moderate agreement among SIDEs for full–length queries

(k = 0.487–0.633). In contrast, little agreement can be detected

among SIDES when mini–barcode queries are used (k = 0.137–

0.198). The lack of agreement is the result of conflicting sets of

incorrect identifications combined with the high frequency of

Figure 2. Tests of identification using full–length queries. Frequency of success, with 95% confidence intervals, for tests of (A) genus–level
identification; (B) weak tests of species–level identification (i.e. those for which no congeners are represented in the data set); (C) strong tests of
species–level identification (i.e. those for which congeners are represented in the data set); and (D) all tests of species–level identification. B = BRONX;
C = CAOS; D = DNA–BAR/degenbar; F = forced (constrained) tree–search; J = SAP neighbor joining; L = pairwise matching (local alignment); N = NCBI-
BLAST; P = pairwise matching (global alignment); S = SAP Barcoder; T = de novo tree–search; and W = WU-BLAST.
doi:10.1371/journal.pone.0020552.g002
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Table 1. Multiple comparison tests of SIDE genus– and species–level identification performance (p = 0.05).

comparison genus–level tests species–level tests

full–length mini–barcode overall full–length mini–barcode overall

B vs. C BwC – – BwC – –

B vs. D BwD BwD BwD BvD BwD BwD

B vs. D0 – BwD0 – – BwD0 –

B vs. F BwF BwF BwF BwF BwF BwF

B vs. J BwJ – – BwJ – –

B vs. L BwL – – BwL – –

B vs. N BwN BwN BwN BwN BwN BwN

B vs. P BwP BwP BwP BwP BwP BwP

B vs. S BwS – – BwS – –

B vs. T BwT BwT BwT BwT BwT BwT

B vs. W BwW BwW BwW BwW BwW BwW

C vs. D CvD – – CvD – –

C vs. D0 – – – – – –

C vs. F CvF – – CvF – –

C vs. J C = J – – C = J – –

C vs. L CvL – – CvL – –

C vs. N CvN – – CvN – –

C vs. P CvP – – CvP – –

C vs. S CvS – – CvS – –

C vs. T CvT – – CvT – –

C vs. W CvW – – CvW – –

D vs. D0 – DwD0 – – DwD0 –

D vs. F DwF DvF DvF DwF DvF DvF

D vs. J DwJ – – DwJ – –

D vs. L DwL – – DwL – –

D vs. N DwN DvN DvN DwN DvN DvN

D vs. P DwP DvP DvP DwP DvP DvP

D vs. S DwS – – DwS – –

D vs. T DwT DvT DvT DwT DvT DvT

D vs. W DwW DvW DvW DwW DvW DvW

D0 vs. F – D0vF – – D0vF –

D0 vs. J – – – – – –

D0 vs. L – – – – – –

D0 vs. N – D0vN – – D0vN –

D0 vs. P – D0vP – – D0vP –

D0 vs. S – – – – – –

D0 vs. T – D0vT – – D0vT –

D0 vs. W – D0vW – – D0vW –

F vs. J FwJ – – FwJ – –

F vs. L FvL – – FvL –

F vs. N FvN FvN FvN FvN FvN FvN

F vs. P FvP FwP F = P FvP FwP F = P

F vs. S FwS – – FwS – –

F vs. T F = T F = T F = T F = T F = T F = T

F vs. W FwW FvW F = W FwW FvW F = W

J vs. L JvL – – JvL – –

J vs. N JvN – – JvN – –

J vs. P JvP – – JvP – –
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ambiguous identifications produced by mini–barcode queries.

Analysis of combined markers produced slightly more agreement

among SIDES when mini–barcode queries were used, whereas full–

length queries produced a result in between the single marker results.

Identification success did not consistently increase with combined

data (Figs. 2, 3). Given that matK and rbcL are part of the same locus

(plastid genome) and therefore track the same history [110] their

combination should either increase identification success or have no

observable effect. For BRONX, a synergistic effect was always

observed when markers were combined. Simple pairwise matching

displayed synergism except when genera were identified using mini–

barcode queries. Synergism was generally, but not consistently,

observed in tree–based methods (parsimony forced and de novo tree–

search; SAP neighbor joining; and SAP Barcoder). A synergistic effect

was also observed for DNA–BAR/degenbar when full–length queries

were used, but slight antagonism was observed when mini–barcode

queries were used. WU-BLAST, and to a lesser extent NCBI-BLAST,

displayed an antagonistic effect when data were combined (see below).

Simple pairwise matching
The type of alignment–local versus global–did not appreciably

change the performance of simple pairwise matching (Table 1;

Figs. 2, 3). The vast majority of differences in alignment occurred

among pairs of highly dissimilar sequences. There were few

changes in alignment among pairs of similar sequences–as a result

the rate of identification success barely changed (i.e. both

alignment algorithms were able to correctly recognize pairs of

identical sequences).

For full–length queries, pairwise matching performed better,

relative to other SIDEs, among strong tests of species–level

identification where alignments were difficult (e.g. tree–search with

matK), but worse when alignments were uncomplicated (e.g. most

rbcL only analyses; L and P in Fig. 2C). The performance of

pairwise matching was surpassed only by BRONX and DNA-

BAR/degenbar (Table 1). For strong tests of species–level

identification using mini–barcode queries, many algorithms

consistently performed better than pairwise matching–only

DNA–BAR/degenbar and both tree–building algorithms of SAP

performed worse (Fig. 3C).

The performance of the NCBI implementation of BLAST was

indistinguishable from pairwise matching in the statistical analysis

of species–level identification, but in some circumstances (e.g.

combined data, mini–barcode queries) is statistically more robust.

Therefore, NCBI BLAST should be used in preference to pairwise

matching.

Pairwise matching is not computationally efficient, but it is a

consistent means of identifying query sequences. The success rate

of pairwise matching is a useful performance threshold: worse

performance is indicative of problems with a given SIDE; better

performance indicates that the limits imposed by the pairwise

alignment used in the matching algorithm (see Methods) have

been overcome and/or additional variation (e.g. indels) has been

extracted from the sequences. Thus, for the datasets examined

here, species–level performance with full–length queries lower

than 88% for matK, 68% for rbcL, and 91% for combined data are

cause for concern as are species–level performance with mini–

barcode queries lower than 35% for matK, 14% for rbcL, and 37%

for combined data.

Tree–based identification
The alignment of matK was complex–a median unaligned length

of 1239 bp (IQR = 1080–1366 bp) became 4005 aligned positions.

Of the aligned positions, 2187 were parsimony informative

(54.6%). In addition, there were 778 informative indels for a total

of 2965 informative characters. Portions of the MUSCLE

alignment appear arbitrary and capricious.

comparison genus–level tests species–level tests

full–length mini–barcode overall full–length mini–barcode overall

J vs. S JvS – – JvS – –

J vs. T JvT – – JvT – –

J vs. W JvW – – JvW – –

L vs. N LwN – – L = N – –

L vs. P L = P – – L = P – –

L vs. S LwS – – LwS – –

L vs. T LwT – – LwT – –

L vs. W LwW – – LwW – –

N vs. P NvP NwP NwP N = P NwP NwP

N vs. S NwS – – NwS – –

N vs. T NwT NwT NwT NwT NwT NwT

N vs. W NwW NwW NwW NwW NwW NwW

P vs. S PwS – – PwS – –

P vs. T PwT PvT P = T PwT PvT P = T

P vs. W PwW PvW P = W PwW PvW P = W

S vs. T SvT – – SvT – –

S vs. W SvW – – SvW – –

T vs. W TwW TvW T = W TwW TvW T = W

doi:10.1371/journal.pone.0020552.t001

Table 1. Cont.
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The alignment of rbcL was uncomplicated–a median unaligned

length of 624 bp (IQR = 612–633 bp) became 674 aligned

positions. The majority of length variation was introduced by an

Epifagus virginiana (L.) W.P.C.Barton sequence. The plastid genome

of E. virginiana is greatly reduced presumably due its loss of

photosynthetic function–many gene regions are highly modified

and/or apparently non–functional [111]. Of the aligned positions,

388 were parsimony informative (57.6%). In addition, there was

an informative indel.

Despite the greater number of parsimony informative positions

in the matK matrix, there was no significant difference in tests of

species–level identification between the two markers (T in Fig. 2).

As indicated by the performance of the simple pairwise

matching algorithm, the ambiguity of the matK alignment is likely

Figure 3. Tests of identification using mini–barcode queries. Frequency of success, with 95% confidence intervals for tests of (A) genus–level
identification; (B) weak tests of species–level identification (i.e. those for which no congeners are represented in the data set); (C) strong tests of
species–level identification (i.e. those for which congeners are represented in the data set); and (D) all tests of species–level identification. B = BRONX;
D = DNA–BAR/degenbar with redundancy of 10; D0 = DNA–BAR/degenbar with redundancy of 30; F = forced (constrained) tree–search; J = SAP
neighbor joining; L = pairwise matching (local alignment); N = NCBI-BLAST; P = pairwise matching (global alignment); S = SAP Barcoder; T = de novo
tree–search; and W = WU-BLAST.
doi:10.1371/journal.pone.0020552.g003
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responsible for inconsistent tree–based performance–it is difficult

for an alignment program to exactly mirror the arbitrary and

capricious alignment of reference sequences when adding query

sequences. As a result the placement of the query sequences in the

phylogenetic tree may deviate from the reference sequences they

most resemble [11,22,23].

The most parsimonious trees were 62,315 steps (CI = 0.10,

RI = 0.85) for the matK dataset; 8146 steps (CI = 0.09, RI = 0.89)

for the rbcL dataset; and 71,459 steps (CI = 0.10, RI = 0.86) for the

combined datasets (all tree statistics were calculated excluding

uninformative characters). Using the strict consensus of these trees

as positive constraints, the forced tree–search was statistically

indistinguishable from the de novo tree–search (F and T in Fig. 2;

Table 1). The computer time required for the forced tree–search is

however greatly reduced due to the restricted portion of tree–space

examined.

The CAOS algorithm did not perform well (C in Fig. 2)–all

other SIDEs were significantly better (Table 1). This is probably

best explained by the rampant homoplasy in both datasets

(ensemble CI = 0.09, 0.10 [112]). CAOS seeks ‘pure’ and ‘private’

attributes to be used for query classification–pure attributes cannot

be homoplastic and private attributes usually are not [it is possible

for a private attribute to be homoplastic if the other occurrence(s)

do not define clades]. In either case, homoplastic characters

greatly reduce the number of classifiers that CAOS can use and

thereby reduce the performance of the CAOS algorithm.

Irregardless of homoplasy, the CAOS algorithm is dependent

upon tree topology and therefore benefits from, and is limited by,

the method that was used to build the CAOS reference tree.

Parsimony–based tree–building methods consistently produced

more correct species–level identifications than either of the SAP

[13,20] tree–building algorithms (F and T vs. J and S in Fig. 2;

Table 1). It appears that sequence alignment plays a role in the

differential performance between parsimony and SAP–the parsi-

mony methods align all reference sequences with MUSCLE

whereas SAP aligns a subset of the reference sequences using

ClustalW2. Even when alignment is unambiguous (i.e. rbcL) the

performance is not equal (parsimony is superior). Thus both the

method of tree construction and tree interpretation are responsible

for performance differences. SAP’s Barcoder algorithm is much

more computationally intensive than the neighbor joining

algorithm, but it significantly out performed the neighbor joining

algorithm and therefore should be used preferentially (J and S in

Fig. 2; Table 1).

Relative performance rankings using mini–barcode queries

were similar to full–length queries (Fig. 3; Table 1).

Unlike other SIDEs, all tree–based methods are forced to

assume that the identified terminals are ‘monophyletic’ [11]. The

frequent violation of this assumption [113,114] lowers the

performance of all tree–based SIDEs. The impact of terminal

non–monophyly on the data presented here is not known.

As previously noted [11,115], when alignment is not a concern,

conventional tree–based methods seem to offer a mediocre, but

viable, means of identification (e.g. rbcL), but when alignment is

difficult, tree–based methods should be avoided (e.g. matK) with

preference given to BRONX, DNA-BAR/degenbar, NCBI-

BLAST, and pairwise matching.

DNA–BAR/degenbar
For strong tests of species–level identification using full-length

queries DNA–BAR/degenbar was significantly better than all

other SIDEs (D in Fig. 2; Table 1). However, DNA–BAR/

degenbar failed to correctly identify almost all mini–barcode

queries (maximum 11.24% success). Tripling the coverage

(redundancy) of the reference database produced significantly

worse results (D and D0 in Fig. 3; Table 1). The failure of DNA-

BAR/degenbar with mini–barcodes can be traced to the scoring

algorithm’s use of logical exclusions (i.e. x NOT y) [11]. DNA-

BAR/degenbar fails because absence of evidence (i.e. a short

query sequence) is taken as evidence of absence.

DNA–BAR/degenbar is highly effective when there is little

missing data (e.g. full–length queries), but this SIDE should not be

used when query length differs substantially from reference

sequence length (e.g. mini–barcode queries). This failing results

in the placement of DNA–BAR/degenbar below all other

methods in the overall rankings (Table 1).

BLAST
The performance of BLAST implementations on single marker

datasets was not very different from one another, but the NCBI

implementation was significantly better than the WU implemen-

tation (Table 1). In either case, the performance was not

outstanding (N and W in Fig. 2).

The utter failure of WU-BLAST with combined matK and rbcL

queries was therefore unexpected. The method of calculating a

unified BLAST score for combined matK and rbcL queries (see

Methods) cannot be solely responsible for this failure because the

same method was used for both BLAST implementations and the

NCBI implementation performed as expected (i.e. midway

between its performance for strong tests of species–level identifi-

cation using single marker queries). The calculation of unified

scores for the combined dataset could however be improved as

evidenced by the better performance of the simple pairwise

matching algorithm.

Both BLAST implementations maintained their relative ranking

when confronted with mini–barcode queries.

Past comparisons of barcode SIDEs [11] have found BLAST

performance to be stronger than other procedures. In relative

terms, the performance reported here is not as good–likely due to

more stringent criteria for judging identification success (see

Methods). BLAST is a rapid means of query sequence identifica-

tion, but other SIDEs provide greater accuracy and consistency. If

BLAST is used, the NCBI implementation should be preferred.

BRONX
For genus–level identification, BRONX was consistently

superior to other SIDEs tested here (Figs. 2A, 3A; Table 1). For

species–level identification, BRONX consistently outranked all

other SIDEs save DNA-BAR/degenbar (Figs. 2C, 3C; Table 1).

The failure of DNA-BAR/degenbar with mini–barcode queries

served to increase the overall rank of BRONX above that of all

other SIDEs.

The use of logical exclusions in the DNA-BAR/degenbar

scoring algorithm [11], but not in the BRONX scoring algorithm

explains the superior performance of DNA-BAR/degenbar in tests

Table 2. Similarity of SIDE performance measured by Fleiss’
index of interrater agreement (k).

full–length queries mini–barcode queries

matK 0.633 0.191

matK & rbcL 0.563 0.198

rbcL 0.487 0.137

doi:10.1371/journal.pone.0020552.t002
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where the length of the queries closely matches the length of the

sequences in the reference database. The disadvantage of using

logical exclusions is made abundantly clear when using mini–

barcode queries–DNA-BAR/degenbar reliably and catastrophi-

cally fails. For this reason BRONX was explicitly designed to use

only unambiguous context/text presence in its scoring. Unfortu-

nately this decreases the performance when query sequence length

closely matches that of the reference database.

BRONX should be used in preference to other SIDEs when

there is imperfect overlap between query and reference sequences

(e.g. mini–barcode queries against a full–length database) or when

identifications to genus are desired.

Conclusions
SIDEs that do not consistently perform as well as pairwise

matching are manifestly flawed. Thus, the data presented here

suggest that due to inconstant performance no tree–based method

should be used for barcode sequence identification.

The performance of pairwise matching was better than WU-

BLAST, but not statistically distinguishable from that of NCBI-

BLAST. Given that NCBI-BLAST is computationally much faster

than pairwise matching, NCBI-BLAST should be used in

preference to pairwise matching.

BRONX performs better than all other SIDEs when there is

imperfect overlap between query and reference sequences, but

when the query sequence length closely matches the reference

database, DNA-BAR/degenbar exhibits superior performance.

BRONX consistently produced better identifications at the genus–

level.

Supporting Information

Dataset S1 A comma separated text file containing:
genus, specific epithet, specimen identification number
used in this study, matK GenBank accession, matK DNA
sequence, matK mini–barcode, rbcL GenBank acces-
sion, rbcL sequence, rbcL mini–barcode, and an indica-
tion of use in the reference dataset.
(CSV)

Dataset S2 A FASTA formatted text file of matK
sequences aligned with MUSCLE (used for some tree–
based identifications). Sequence names correspond to the

specimen identification number in Dataset S1.

(FASTA)

Dataset S3 A FASTA formatted text file of rbcL sequenc-
es aligned with MUSCLE (used for some tree–based
identifications). Sequence names correspond to the specimen

identification number in Dataset S1.

(FASTA)
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