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Abstract

Streptococcus gallolyticus infections in humans are often associated with bacteremia, infective endocarditis and colon
cancers. The disease manifestations are different depending on the subspecies of S. gallolyticus causing the infection. Here,
we present the complete genomes of S. gallolyticus ATCC 43143 (biotype I) and S. pasteurianus ATCC 43144 (biotype II.2).
The genomic differences between the two biotypes were characterized with comparative genomic analyses. The
chromosome of ATCC 43143 and ATCC 43144 are 2,36 and 2,10 Mb in length and encode 2246 and 1869 CDS respectively.
The organization and genomic contents of both genomes were most similar to the recently published S. gallolyticus UCN34,
where 2073 (92%) and 1607 (86%) of the ATCC 43143 and ATCC 43144 CDS were conserved in UCN34 respectively. There
are around 600 CDS conserved in all Streptococcus genomes, indicating the Streptococcus genus has a small core-genome
(constitute around 30% of total CDS) and substantial evolutionary plasticity. We identified eight and five regions of genome
plasticity in ATCC 43143 and ATCC 43144 respectively. Within these regions, several proteins were recognized to contribute
to the fitness and virulence of each of the two subspecies. We have also predicted putative cell-surface associated proteins
that could play a role in adherence to host tissues, leading to persistent infections causing sub-acute and chronic diseases in
humans. This study showed evidence that the S. gallolyticus still possesses genes making it suitable in a rumen environment,
whereas the ability for S. pasteurianus to live in rumen is reduced. The genome heterogeneity and genetic diversity among
the two biotypes, especially membrane and lipoproteins, most likely contribute to the differences in the pathogenesis of the
two S. gallolyticus biotypes and the type of disease an infected patient eventually develops.
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Introduction

Streptococcus bovis, a member of Lancefield group D streptococci,

comprises a group of Gram–positive bacteria which are normal

inhabitants of the gastrointestinal tract of human and animals,

such as cattle, sheep, pigs, horses and dogs. In human, it is also the

causative agent of bacteremia [1,2,3], neonatal sepsis [4], neonatal

meningitis [5], adult meningitis [6] and has a well-known

association with infective endocarditis (IE) [3,7,8,9], colorectal

carcinoma [10,11,12,13,14] and liver diseases [15,16,17].

In the late 1970s, the improvement in biochemical analytical

methods allows the diversity among S. bovis strains to be

recognized and this led to devising schemes to distinguish strains

by biotype. Biotype I (classical S. bovis strains) strains can ferment

mannitol and produce extracellular glucan from sucrose, whereas

biotype II variants generally lack these traits. Biotype II S. bovis are

further subdivided into biotype II.1 and biotype II.2 based on

further biochemical characteristics [18,19,20]. In the past two

decades, advancement in genotypic characterization and sequenc-

ing technology allows microbiologists to further revise the

taxonomic classification of S. bovis [21,22,23,24]. Many of the

biotype I species have been reclassified as S. gallolyticus subsp.

gallolyticus (here after refer to as S. gallolyticus), biotype II.1 S. bovis as

S. infantarius and S. lutetiensis, and biotype II.2 S. bovis as S. gallolyticus

subsp. pasteurianus (here after refer to as S. pasteurianus). Because of

the clear association between S. bovis and several human diseases, it

is vital to accurately distinguish these organisms and identify the

differences between them in a genomic scale.

The purposes of this study were to (1) provide the first complete

genomic sequence of the two subspecies Streptococcus gallolyticus: S.

gallolyticus strain ATCC 43143 (biotype I) and S. pasteurianus strain

ATCC 43144 (biotype II.2) and (2) perform comparative sequence

analysis to investigate their genetic differences. Although both

strains were clinical isolates originally obtained from human blood,

through comparative analysis of the sequence information we

found that ATCC 43143 appears to have a genome that is more
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adapted to ruminal environment, equipped with many enzymes

for digesting plant materials. Being slightly larger in genome size

than ATCC 43144, ATCC 43143 also has more genes that encode

cell surface proteins and extracellular proteins that are potential

virulence factors. In contrast, ATCC 43144 is more adapted to

humans, losing many of the genes originally needed in the ruminal

environment. Also, in some point of its existence, ATCC 43144

had accepted foreign genetic materials, specifically a 13.3-kb nisin

U locus comprises 12 open reading frames, probably from the

lantibiotic-producing bovine pathogen S. uberis [25]. These results

indicate that the two closely related bacteria strains diverge in

genomic structure probably through adapting to different host

environment.

Materials and Methods

Bacterial Strains and DNA isolation
S. gallolyticus subsp. gallolyticus ATCC 43143 (F-1867, RG

Knight) [26] and S. gallolyticus subsp. pasteurianus ATCC 43144

(CDC 1723-81, RG Knight) [26] were obtained from the

American Type Culture Collection (ATCC). Both strains were

grown in brain heart infusion broth (Becton, Dickinson and

Company) at 37uC in an aerobic condition. Genomic DNAs were

extracted using Wizard Genomic DNA Purification Kit (Promega)

according to manufacturer’s instructions.

Genome Sequencing and Assembly
The genome of ATCC 43143 was sequenced to a 122-fold

coverage using a Genome Sequencer 20 (GS 20) instruments

(Roche) from one shotgun library and one paired-end library with

insert size of 2- to 3-kb. The genome of ATCC 43144 was

sequenced to a 34-fold coverage using GS 20 with one shotgun

library. Fosmid libraries of these two strains were constructed

using the CopyControl Fosmid Library Production kit (Epicentre)

in the pCC1FOS vector with insert size of 30- to 40-kb. The

fosmid libraries were sequenced from both ends by BigDye

Terminator v3.1 chemistry and ABI 3730xl DNA analyzer

(Applied Biosystems) giving around 10-fold coverage. The reads

generated from the GS 20 and fosmid end sequencing were

assembled by Newbler sequence assembler (version 1.1.03.24)

bundled with GS 20. Gaps between the contigs were closed using

fosmid end sequences as linking information and primer walking

on fosmid clones and PCR from chromosomal DNA. Illumina/

Solexa libraries were constructed and sequenced on a Genome

Analyzer II (Illumina) with a single read module of 36 bases read-

length. Low quality sequence regions of the assembled genome

sequences were eliminated by aligned all Solexa reads with 73-

and 190-fold of genome coverage for ATCC 43143 and

ATCC43144, respectively.

Bioinformatics Analysis
Protein coding sequences (CDS) were predicted with a

combination of prokaryotic gene prediction programs, namely

Glimmer v2.13 [27], Glimmer v3 [28] and GeneMarkHMM [29],

with the prediction accuracy of the translation initiation site (TIS)

improved by TiCo [30]. Automatic genome annotation was

performed using an in-house annotation pipeline involving a

collection of computational feature prediction tools. Protein

function was assigned based on BLASTP similarity search against

NCBI ‘nr’ (non-redundant protein) database, whereas protein

similarity with KEGG protein database was used for KEGG

orthology and pathway assignment [31]. Position-Specific Iterative

BLAST (PSI-BLAST) search against STRING protein database

[32] was used to define the clusters of orthologous group (COG)

functional classification of predicted proteins. Protein domains

were predicted by RPSBLAST and HMMER [33] using NCBI’s

Conserved Domain Database (CDD) [34] and Pfam [35]

respectively. Protein subcellular localization prediction was

performed by PSORTb [36]. Type I and Type II lipoprotein

signal peptides were predicted using SignalP [37] and LipoP [38]

respectively. Numbers of transmembrane helices in proteins were

predicted using TMHMM [39]. The codon table was generated

using CUSP program of EMBOSS [40], subsequently the tables

was used to calculate the normalized codon adaptation index

(CAI) using CAIcal [41]. Finally, CRISPRFinder was used to

predict clustered regularly interspaced short palindromic repeats

(CRISPRs) in the genome [42].

Transfer RNA (tRNA) and transfer-messenger RNA (tmRNA)

genes were predicted using ARAGORN [43] and tRNAscan-SE

[44], and RNAmmer was used to perform ribosomal RNA gene

prediction [45].

Comparative Genomic Analysis
Publically available streptococci sequences on NCBI were

used for comparative analysis (http://www.ncbi.nlm.nih.gov/

genomes/lproks.cgi). Artemis [46] was used for data management

and DNAPlotter [47] was used for visualization of genomic

features. Mauve alignment tool was used for multiple genomic

sequence alignment and visualization [48]. Phylogenic analysis

was performed using MEGA4 [49] with multiple sequence

alignment by MAFFT [50] on streptococci 16S RNA sequences

and the resulting tree visualized using Archaeopteryx (successor to

ATV) [51].

Accession Numbers
S. gallolyticus ATCC 43143 and S. pasteurianus ATCC 43144 have

been deposited at GenBank/DDBJ/EMBL under accession

numbers AP012053 and AP012054, respectively.

Results and Discussion

Genome structure and general features of ATCC 43143
and ATCC 43144

The genome of S. gallolyticus ATCC 43143 and S. pasteurianus

ATCC 43144 each comprises a single circular chromosome of

2,362,241 bp and 2,100,077 bp respectively (Figure 1). The

general features are presented in Table 1. The average G+C

contents of both genomes are 37% and neither contains any

plasmids. There are 61 tRNA genes and five rRNA operons in

each chromosomes, with most of the tRNA genes situated close to

rRNA operons. A total of 2246 protein-coding genes are predicted

in ATCC 43143, much similar to the recently sequenced S.

gallolyticus UCN34 of the same biotype [52,53], with 255 (11.4%)

being either annotated as conserved hypothetical proteins or

proteins with no database match. Out of the 1869 predicted CDS

in the smaller ATCC 43144, 180 (9.6%) are hypothetical proteins

without functional assignment.

Streptococci phylogeny
Streptococci phylogeny was constructed based on the 16S

rRNA sequences of all sequenced bacteria of the Streptococcus

genus. The result was shown in Figure 2. The traditional

Lancefield grouping on streptococci matched the modern-day

16S rRNA analysis very well. The S. gallolyticus ATCC 43143, S.

gallolyticus UCN34 and S. pasteurianus ATCC 43144 were of the

Bovis group with ATCC 43143 phylogenetically more related to

UCN34 (both biotype I) than to ATCC 43144 (biotype II.2) of the

different subspecies.

Streptococcus gallolyticus Sequencing Project
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Proteomic homology analysis reveals streptococci core
genome and regions of genomic plasticity

Comparison in a genomic scale revealed high conservation in

both the sequence and gene order of the ATCC 43143, ATCC

43144 and UCN34 genomes (Figure 3). At the same time, strain-

specific regions, also known as regions of genomic plasticity

(RGPs) were also identified (Figure 4). Sequence comparison

against all of the other sequenced streptococcal genomes showed

91% of the CDS in ATCC 43413 and 80% in ATCC 43144 were

orthologous to UCN34. Protein conservation is lower compared

with other streptococci, with no more than 60% ATCC 43413

CDS and 70% ATCC 43144 CDS conserved in any single

Streptococcus species (Table S1 and Figure S1). There are 600

ATCC 43143 CDS and 585 ATCC 43143 CDS that are

conserved in all sequenced streptococci. A list of 108 conserved

CDS that are completely identical in peptide sequence in ATCC

43143, ATCC 43144 and UCN34 is provided in Table S2. The

average number of CDS in Streptococcus is roughly 2000 genes;

hence the streptococci core-genome consists about 30% of the

total predicted proteome. There are 99 (4%) ATCC 43143 CDS

and 116 (6%) ATCC 43144 CDS not conserved in any sequenced

streptococci (Table S3 and S4). The numbers rose to 410 (18%) in

ATCC 43143 CDS and 217 (12%) in ATCC 43144 CDS when

conservation in UCN34 was not considered, suggests the S.

gallolyticus genomes contained more subspecies-specific genes than

S. pasteurianus.

Eight RGPs (including 363 ORFs) and five RGPs (including 139

ORFs) were identified in ATCC 43143 and ATCC 43144

respectively (Figure 4, Table S5 and S6). These RGPs were also

well-matched with regions that showed low level protein

conservation compared with other streptococci. The correspond-

ing normalized CAI (nCAI) values of these RGPs were generally

Figure 1. Circular representation of the S. gallolyticus ATCC 43143 and S. pasteurianus ATCC 43144 genomes. From the outside in, the
outer two circles shows open reading frames oriented in the forward (red) and reverse (blue) direction, respectively. The third circle marks the rRNA
gene operon (pink) and the fourth circle shows the tRNA genes (orange). The fifth circle shows GC skew, purple indicating negative values whereas
olive for positive values. The inner-most circle shows the G+C% content plot.
doi:10.1371/journal.pone.0020519.g001

Table 1. General features of the S. gallolyticus ATCC 43143 and S. pasteurianus ATCC 43144 genomes and comparison with S.
gallolyticus UCN34.

Features S. gallolyticus ATCC 43143 S. pasteurianus ATCC 43144 S. gallolyticus UCN34

Biotype Type I Type II.2 Type I

Total Length (bp) 2,362,241 2,100,077 2,350,911

G+C Content (%) 37.5% 37.4% 37.6%

Predicted CDS 2246 1869 2223

Predicted Pseudogene 49 156 37

Coding Percentage 87% 85% 87%

Average Protein Length (aa) 301 295 306

Predicted rRNA 15 15 18

Predicted tRNA 61 61 71

doi:10.1371/journal.pone.0020519.t001
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lower than the rest of the genome. The CAI is a way to measure

synonymous codon usage bias and expression level of a given gene

[54]. Therefore high CAI value correlates with high levels of gene

expression, whereas low CAI value suggests lower gene expression

level and/or potential foreign origin from recent horizontal gene

transfer events. Many of these regions have unusual high or low

GC content as shown in Figure 4, which is an added sign of

foreign origin.

In ATCC 43143, region 1, 2 and 7 consist of mainly

hypothetical proteins and remnants of integrative elements. Most

of the ORFs in region 1 and 7 are arranged in the directions where

majority of the genes in that region resides. But, many of the

Figure 2. Phylogenetic relationship of S. gallolyticus to other sequenced streptococci. The multiple sequence alignment of 16S rRNA was
constructed using MAFFT. The evolutionary history was inferred using the UPGMA method and the bootstrap consensus tree inferred from 1000
replicates. The percentage of replicate trees in which the associated taxa clustered together in the bootstrap test are shown next to the branches. The
evolutionary distances were computed using the Jukes-Cantor method. All positions containing gaps and missing data were eliminated from the
dataset, and a total of 1240 positions in the final dataset. Bacillus subtilis strain 168 was included as an outgroup. Phylogenetic analyses were
conducted in MEGA4.
doi:10.1371/journal.pone.0020519.g002
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ORFs in region 2 are encoded in the negative strand where genes

surrounding region 2 are in positive strand. Together with low

nCAI values of the genes in this region, it is a clear indication of

foreign gene insertion. Region 3 includes a tryptophan operon and

a WXG100 eSAT-6 secretion system that is common in Gram-

positive bacteria. Most of the genes in this region were conserved

between ATCC 43143 and UCN34, but absent in ATCC 43144.

An ATCC 43143 strain-specific exopolysaccharide biosynthesis

gene cluster was found to be located in region 4, and some of the

proteins in this cluster have sequence similarity with peptides from

S. thermophilus, Bacteroides vulgatus or Clostridium botulinum. Region 5

has several predicted transporters and enzymes of Clostridium and

Figure 3. Local collinear blocks (LCBs) of the chromosomal sequences of the three strains of S. gallolyticus. Representation of
chromosomal similarity of the three strains was generated by the Mauve alignment software. Nine local collinear blocks (LCBs) were identified with
connecting lines joining the regions on the chromosomes that are homologous in the three genomes. LCBs drawn below the black horizontal line
represent homology found in the reverse strand of the chromosome. Uncolored regions within the LCBs or in-between LCBs indicate the presence of
strain-specific sequences.
doi:10.1371/journal.pone.0020519.g003

Figure 4. Circular representation of protein conservation of (a) S. gallolyticus ATCC 43143 and (b) S. pasteurianus ATCC 43144. From
the outside in, the outer two circles showed the open reading frames (ORFs) oriented in the forward (red) and reverse (blue) directions respectively.
The third and forth circles marked the homology with other sequenced bacteria and streptococci respectively, with darker the line denoting more
genomes having the putative protein orthologs and whiter lines otherwise. The fifth and sixth circle shows the degree of protein sequence homology
with UCN34 and the other S. gallolyticus strain (ATCC 43144 in figure 4a and ATCC 43143 in figure 4b) respectively, with a color-scale running from
the most similar in red to least similarity in green. The seventh circle shows the normalized codon usage values of the ORFs, with a color-scale
running from the higher values in red to lower values in green. The location of transposases, Tn elements and phage proteins are marked by lime
colored lines. Strain-specific regions (regions of genomic plasticity) are marked by bold numbers.
doi:10.1371/journal.pone.0020519.g004
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other Firmicutes origins. Also in this region, there are genes coding

for the biofilm-associated proteins GtfA, GtfB and GbpC, which

were also found in UCN34 but not ATCC 43144. One the other

hand, the dihydroxyacetone (Dha) kinase gene cluster conserved in

ATCC 43143 and ATCC 43144 in region 5 suggests they (but not

UCN34) can utilize dihydroxyacetone via a PEP-dependent

phosphotransferase system, hence using Dha as carbon and

energy source. Or the Dha kinase would allow the utilization of

glycerol for adaptation in host environment [55] or the synthesis of

methylglyoxal for adaptation in certain environment [56]. A

Tn916-like transposable element, composed of 16 genes with a low

nCAI value, was found region 6. This region also contains one pili

locus and a tannase gene that was present in UCN34 but lost in

ATCC 43144. Region 8 in ATCC 43143 comprises mainly

hypothetical proteins that have high sequence similarities with

proteins from S. agalactiae that were not found in UCN34 and

ATCC 43144 and the nCAI values of genes were also lower in the

area.

Like region 4 in ATCC 43143, the corresponding location in

ATCC 43144 (region 1) contains a strain-specific exopolysacchar-

ide biosynthesis gene cluster with ORFs sharing similarity with

proteins from Bacillus cereus and Clostridium thermocellum. A

glucuronic acid utilization gene cluster was found in region 2,

and a S. uberis nisin U-like gene locus responsible for the

production and immunity of nisin-like lantibiotics was found in

region 3. Both gene clusters were not found in ATCC 43143 and

UCN34. Region 3 and 4 contains many ORFs coding for

hypothetical proteins and Tn5252-like conjugative transposons. A

large number of genes in region 3 have low nCAI value, which is a

clear indication that many of the genes are of foreign origin.

Region 5 contains several sugar uptake-related genes that were

missing in both UCN34 and ATCC 43143, they includes endo-

beta-N-acetylglucosaminidase, glucokinase, glucosidases, manno-

sidases and a sugar ABC transporter.

Genome dynamics and host adaptation
Although S. gallolyticus ATCC 43143 and S. pasteurianus ATCC

43144 shares many homologous proteins, detailed comparison

revealed a striking genome adaptation event occurring in the two

subspecies of S. gallolyticus, presumably due to the different host

microenvironments these two bacteria commonly resides.

It was found that ATCC 43143 retained many proteins that

can transport, utilize and degrade various types of complex plant

polysaccharides. The mtlARFD (SGGB_0982,SGGB_0985) op-

eron encodes the phosphoenolpyruvate (PEP)-dependent phos-

photransferase system that can import and phosphorylate

mannitol in the environment, where mannitol is a major

photosynthetic product in plants and fungi [57,58]. Celluloses

and pectins are major carbohydrates making up the cell walls of

plants, enzymes such as cellulase (encoded by SGGB_0358) and

pectate lyase (SGGB_1576 and SGGB_1577) can digest these

complex carbohydrates into simpler by-products. The pectinase

gene in ATCC 43144 (SGPB_1461) is the truncated version of

SGGB_1577. Degradation enzyme mannan endo-1,4-beta-man-

nosidase (encoded by SGGB_0206) in ATCC 43143 can trigger

random hydrolysis of beta-1,4-mannosidic linkages in mannans,

galactomannans and glucomannans, breaking up the major

polymers of hemicellulose in the wall of higher plants. The

extracellular fructan beta-fructosidase (also known as exo-

inulinase) encoded by SGGB_0110 has a high nCAI value. The

highly expressed exo-inulinase can hydrolyse fructans naturally

found in many plants to take advantage of this abundant

carbohydrate in rumen. Also, long-chain polysaccharides can be

broken down by alpha-amylases. ATCC 43143 has four copies of

the alpha-amylase genes (SGGB_0736, SGGB_0740, SGGB_

1033 and SGGB_1646) whereas ATCC 43144 only has one

(SGPB_0905), meaning ATCC 43143 may be more efficient in

degrading complex carbohydrates. The presence of cinA gene

(SGGB_0137) encoding the cinnamoyl ester hydrolase in ATCC

43143 that can release cinnamic acids from various plant

materials (such as esterified arabinoxilan). This gene is known

to be present in rumen microorganisms [59], and together with

its ability to degrade a wide range of plant products, foster the

hypothesis that ATCC 43143 is a rumen-adapted bacterium.

Another important phenotype that differentiates the S. gallolyticus

from S. pasteurianus is the ability of S. gallolyticus to tolerate tannic

acid by producing tannase enzyme. Tannins are soluble

secondary polyphenolic compounds produced by plants that

pose a toxic effect to herbivores, tannin-sensitive fungi and

bacteria. ATCC 43143 has two genes that encode the tannin

degrading enzymes, SGGB_0917 encodes the extracellular

tannase and SGGB_1624 encodes the cytoplasmic tannase, and

gallic acid is produced as the major by-product. Upon oxidative

breakdown, the gallic acid is converted to simple aliphatic acids

and can enter citric acid cycle to be used as an alternative carbon

supply [60]. Report from Noguchi et. al. showed an association

between tannase-producing Staphylococcus lugdunensis with ad-

vanced-stage colon cancer, inspired by the association between

S. gallolyticus and endocarditis and colon cancer [10,14,61,62].

The extracellular tannase gene has an nCAI value of 1.132

(among the 10% of genes with high nCAI values) whereas the

nCAI of the cytoplasmic counterpart is 1.038. The extracellular

tannase of S. gallolyticus could be highly expressed to counteract

with the high tannin rumen environment.

Unlike ATCC 43143, biotype II.2 ATCC 43144 has lost many

of the degradation enzymes for plant materials and has sets of

genes that are useful for using compounds in the nutrient-rich

environment, suggesting it may have evolved to survive as human

gastrointestinal bacteria. In plant and bacteria, L-rhamnose is a

major constituent of the cell wall, biofilms, glycosides, and

glycolipids and plays an important physiological role [63,64,65].

The alpha-L-rhamnosidase gene found in ATCC 43144

(SGPB_1760) allows the bacterium to utilize environmental L-

rhamnose in the gut. ATCC 43144 also has enzymes that can

digest short-chained and simple sugars that are abundant in the

human intestine. The oligo-1,6-glucosidase encoded by malL

(SGPB_0717) is responsible for the hydrolysis of oligosaccharide.

ATCC 43144 also contains both beta-galactosidase isoenzymes:

lacZ (SGPB_0344) and lacG (SGPB_0173 and SGPB_0910), which

converts lactose in dairy products to galactose and glucose,

whereas ATCC 43143 has the lacG version of the isoenzyme

(SGGB_1039). Also, a conserved cluster of twelve genes

(SGPB_0953,SGPB_0964) known to be involved in beta-

glucuronide and D-glucuronate degradation was identified in

ATCC 43144 (Figure 5). Glucuronidation is an important

detoxification pathway in vertebrates whereby glucuronic acid is

linked with toxins, and proteins encoded by this gene cluster will

allow the bacterium to use glucuronides as alternative carbon

source. The external beta-glucuronide is exported into the cell via

glucuronide transporter (UidB) and converted into D-glucuronate

by beta-glucuronidase (UidA). The D-glucuronate is then

converted into pyruvate and glyceraldehyde-3-phosphate by series

reactions catalyzed by glucuronate isomerase (UxaC), mannonate

dehydrogenase (UxuB), mannonate dehydratase (UxuA), 2-

dehydro-3-deoxygluconokinase (KdgK) and keto-deoxy-phospho-

gluconate aldolase (KdgA) [66].

Streptococcus gallolyticus Sequencing Project
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Unique biosynthesis enzymes in ATCC 43143
Through genome comparison, several biosynthetic enzymes are

found to be uniquely present in S. gallolyticus ATCC 43143. It was

found that ATCC 43143 has the panDCB (SGGB_0203

,SGGB_0205) locus that is involved in pantothenate (vitamin

B5) biosynthesis. Pantothenic acid is an essential nutrient required

for the synthesis of coenzyme A and acyl carrier protein, which in

turns play important roles in fatty-acid metabolism, citric acid

cycle, biosynthesis of polyketides and several other reactions [67].

Without the ability to synthesize this essential compound, the

survival of the bacteria could be greatly hindered. A panC and panD

double-deletion Mycobacterium tuberculosis mutant had limited

pathogenesis in mice model [67]. Like vitamin B5, vitamin B6 is

an essential metabolite required as cofactor in numerous

enzymatic and biochemical reactions. The deoxyxylulose 5-

phosphate (DXP)-dependent biosynthesis pathway is the pre-

dominant methods where bacteria synthesize vitamin B6 [68],

and the key enzyme in this pathway is the pyridoxal 59-phosphate

synthase consisting the synthase subunit PdxS and the glutamin-

ase subunit PdxT [69]. In ATCC 43143, the pdxST gene is

predicted to locate at SGGB_1182 and SGGB_1183, whereas

ATCC 43144 lacks these two genes. Without the ability to

catalyze the de novo biosynthesis of pantothenate and pyridoxal 59-

phosphate will likely confer a B5 and B6 auxotrophic phenotype

in ATCC 43144.

In the genome of ATCC 43143, a region comprises the seven

structural genes required for tryptophan biosynthesis was identi-

fied and it has a gene order of trpEGDCFBA (SGGB_0550,
SGGB_0556), a conserved organization found in many Gram-

positive bacteria carrying this locus, such as Bacillus subtilis and

other Firmicutes [70].Without the trp locus, ATCC 43144 will be

required to uptake external tryptophan in order to have this

essential amino acid for survival.

A five-gene glg locus (SGGB_0765,SGGB_0770) involves in

converting metabolized carbohydrates into intracellular glycogen

storage polymers was found in ATCC 43143 and UCN34. The

organization of the glg locus (glgBCDAP) is identical to many

bacteria with the exception that the glgD gene in ATCC 43143

seems to have a frameshift mutation causing it to become a

putative pseudogene. The ability to produce storage glycogen

allows the bacteria to have a better chance of survival and

prolonged the period of exposure to host tissue when sugars were

depleted.

This absence of the pan, dex, trp and glg loci suggest ATCC

43144 seemed to reside in an environment generally much more

nutrient-rich than ATCC 43143, and the ability of de novo

biosynthesis of certain essential metabolites is not survival-critical

and can be obtained readily from the environment, for example in

human gut with nutrients from food ingestion and by-products

from human gut microbiota.

Figure 5. Conserved glucuronate and mannonate utilization gene cluster structure. Bacteria in the comparison includes: S. pasteurianus
ATCC 43144, S. uberis 0140J (SUB), S. suis 98HAH33 (SSV), S. suis 05ZYH33 (SSU), S. pyogenes MGAS10270 (SPH), S. agalactiae A909 (SAK), S. agalactiae
NEM316 (SAN) and S. agalactiae 2603 (SAG). The direction of the arrows represents the coding strand of the ORFs. The arrows were shaded to
represent different functions of the ORF as shown in the legend. Hypothetical ORFs were outlined in black.
doi:10.1371/journal.pone.0020519.g005
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Resistance and defense mechanisms against other
bacteria, bacteriophages and host’s immune response

Antibiotic resistance. Early reports showed the vex-vnc locus

plays a major role in autolysis and vancomycin tolerance in S.

pneumoniae [71,72,73,74]. The proposed mechanism of autolysin

activation and vancomycin tolerance involves the vex/pep27/vncSR

locus whereby upon binding of vancomycin onto the bacterial cell

wall, it triggers the expression of the locus, the death signal peptide

pep27 produced is transported into the extracellular space via

Vex123 transporter system. The signal in turn activates VncS

leading to dephosphorylation of VncR. Dephosporylated VncR

causes the change in gene expression leading to the activation of

major autolysin, LytA. Mutagenesis studies of this locus has shown

increase tolerance to multiple antibiotics, including penicillin and

vancomycin. In S. pasteurianus ATCC 43144, the locus encoded by

SGPB_0613 to SGPB_0617 is lacking the pep27 gene. The nCAI

values of the genes are low and the locus is flanked by transposase

and integrase, suggesting they originated possibly from S.

pneumoniae in the past through horizontal gene transfer.

Bacteria often produce broad-spectrum antimicrobial peptides

and proteins called bacteriocins to suppress surrounding bacteria

to gain colonization advantageous over bacteria without immuni-

ty. In 2005, a gene locus termed nsu, responsible for the lantibiotic

class bacteriocin nisin biosynthesis and resistance, was discover in

the bovin pathogen S. uberis [25]. A locus similar to nsu was also

identified in ATCC 43144 and has a low nCAI value

(SGPB_1100,SGPB_1111, Figure S2). The nsuT gene encodes

the ABC transporter and is hypothesized to function as a

lantibiotic translocator/transporter. However, in ATCC 43144,

the nsuT gene has a point mutation. With it being a possibly

pseudogene and being non-functional, it raise doubt on the ability

of the bacterium to secrete nisin into the environment successfully.

A bacteriocin locus containing 22 genes (SGGB_1990,
SGGB_2011) were identified in the S. gallolyticus ATCC 43143

genome (Figure 6), and the corresponding genomic region in

ATCC 43144 is almost completely deleted. In this locus, there are

five competence genes organized as two operons (comAB and

comCDE), a two-component regulatory system, two bacteriocin-

associated membrane-bound metalloproteases (Abi proteins,

SGGB_2010,SGGB_2011), regulatory protein BlpS, small mo-

lecular weight bacteriocins and immunity genes. Like the pln locus

from Lactobacillus plantarum and sag locus from S. pyogenes, the Abi

genes are located at the downstream of the bacteriocin locus in

ATCC 43143, which involves in providing self-immunity against

the effect of bacteriocins [75].

The coupling of competence and bacteriocin production is not

an uncommon phenomenon, and even a beneficial topological

arrangement. In B. subtilis, the comS gene was located within one of

the operon (srfA operon) required for biosynthesis of a surfactin.

The lysis of surrounding sensitive microorganisms makes DNA

available during competence event [76,77]. In S. pneumoniae,

competence event is found to trigger the expression autolysins

LytA and LytC [78]. In S. mutans, the competence-stimulating

peptide (CSP) is found to induce the co-expression of genes

involves in competence and bacteriocin/autolysin production,

possibly an evolutionary adaption strategy, enhancing the

dissemination of fitness-enhancing genes between microorganisms

living in the same ecological niche. [79,80,81].

beta-Lactam antibiotics are the most widely used chemothera-

peutic agents to treat bacterial infections [82]. Bacteria can gain

resistance by several strategies, namely exportation of the

antibiotics, decreased permeability of the bacterial outer mem-

brane, expressing beta-lactamases that can hydrolyze the antibiot-

ics, and modification of the target itself, i.e. the penicillin-binding

protein (PBP). From genomic analysis, it was clear that both

ATCC43143 and ATCC43144 harbor the genes for enzymatic

degradation of beta-lactams and have a mosaic PBP gene pool.

Both S. gallolyticus strains possess multiple copies of beta-

lactamase genes in their chromosomes, they are SGGB_0012,

SGGB_0845, SGGB_1549, SGGB_1939, SGGB_1972 and

Figure 6. Organization of the bacteriocin blp-like locus in S. gallolyticus ATCC 43143, S. pasteurianus ATCC 43144 and S. gallolyticus
UCN34. Regions with sequence similarity are shaded with light gray background. The direction of the arrows represents the coding strand of the
ORFs. The arrows were shaded to represent different functions of the ORF as shown in the legend.
doi:10.1371/journal.pone.0020519.g006
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SGGB_2084 in ATCC 43143, and SGPB_0014, SGPB_0724,

SGPB_1447, SGPB_1788, SGPB_1815 and SGPB_1893 in

ATCC 43144 respectively. Most beta-lactamases have a broad-

spectrum profiles, together with the presence of multiple sets of

beta-lactamases, the effectiveness of beta-lactam antibiotics could be

greatly undermined.

Bacteria generally have three to more than eight PBPs, and

their exact in vivo functions are mostly not known, but they are

believed to function as transpeptidase, transglycosylase, and

carboxypeptidase in cell wall cross-linking [83]. PBPs are divided

into the high-molecular mass (HMW) and low-molecular mass

(LMW) PBPs, the HMW PBPs are subdivided into class A and

class B based on differences in the sequences of the N-terminal

regions [83,84]. In ATCC 43143 and ATCC 43144 six types of

penicillin binding protein, including five HMW PBPs and one

LMW PBP, were predicted. The penicillin-binding protein 1A

(SGGB_0453 and SGPB_0380), penicillin-binding protein 1B

(SGGB_0083 and SGPB_0082) and penicillin-binding protein 2A

(SGGB_0128 and SGPB_0124) are considered as class A HMW

PBPs, while penicillin-binding protein 2B (SGGB_0625 and

SGPB_0523) and penicillin-binding protein 3 (SGGB_0442 and

SGPB_0368) are class B HMW PBP. The only LMW PBP gene

predicted in ATCC 43143 and ATCC 43144 is predicted to

encode a D-alanyl-D-alanine carboxypeptidase (penicillin-binding

protein 5/6) (SGGB_0351 and SGPB_0275).

CRISPR/Cas-mediated phage resistance. Clustered

Regularly Interspaced Short Palindromic Repeats (CRISPR) is a

common cellular defense mechanism employed by bacteria against

phage infections. Based on the CRISPR classification, the

CRISPR found in ATCC 43143 and ATCC 43144 belong to

the ‘‘Nmeni’’ subtype (CRISPR/Cas Subtype Nmeni) [85].

Bacteria carrying this CRISPR subtype are vertebrate pathogens

and commensals.

S. gallolyticus ATCC 43143 has seven CRISPR-associated genes

forming two CRISPR loci, whereas S. pasteurianus ATCC 43144 has

three CRISPR-associated genes forming a single CRISPR locus

(Figure S3). The two CRISPR loci in ATCC 43143 have different

repeat patterns (TGTTTTACGGTTACTTAAATCTTGAGAG-

TACAAAAAC and GTTTTGGAACCATTCGAAACAGCA-

CAGCTCTAAAAC) containing 10 and 29 spacer sequences

respectively. The CRISPR locus repeat pattern in ATCC 43144

is TGTTTTACGGTTACTTAAATCTTGAGAGTACAAAAAC,

similar to the CRISPR1 repeat in ATCC 43143, and it contains 37

spacer sequences. Putative CRISPR leaders, defined as low-

complexity and A/T-rich noncoding sequence, were found imme-

diately upstream of the first repeat of all CRISPR loci. Sequence

analysis of the leader sequences of ATCC 43143, ATCC 43144 and

UCN34 revealed the leader of CRISPR1 in ATCC 43143 is identical

to that in ATCC 43144, whereas the rest of the leaders share little

similarity, although leader sequence conservation has previously been

described [86]. The presence of TATA-like box within the leader

sequence led to the speculation that leader might act as a promoter

for the transcription of the CRISPR, and has been observed in

archaeon Sulfolobus acidocaldarius [87] and Pyrococcus furiosus [88].

Location-wise, the two CRISPR loci in ATCC 43143 are found

between 1,477,224,1,486,444 bp and between 1,395,041,
1,397,515 bp in ATCC 43144. The genes flanking the 59 end

the CRISPR loci are found to be conserved in ATCC 43143 and

ATCC 43144, whereas the genes flanking the 39 end of the

CRISPR locus in ATCC 43144 are found to be transposases, and

this probably had resulted the excision of the second CRISPR

locus from ATCC 43144.

Regarding spacer sequence diversity, of the total 76 spacer

sequences, only three are identical in nucleotide sequence

(TTGAACTCAAACAGACATTTGAAGAATGGT), and they

are all located within the second CRISPR locus in ATCC

43143. There is one spacer sequence (TTAGGAGACAACGT-

TGTCGTTGGTGCTGGC) in ATCC 43144 was also found

outside its CRISPR region. This 30-nt spacer sequence was also

found in SGPB_0947 which encodes the maltose O-acetyltransfer-

ase. The first CRISPR locus in ATCC 43143 and CRISPR locus in

ATCC 43144 has three CRISPR-associated proteins, Cas2, Cas1

and Csn1. The second CRISPR locus in ATCC 43143 has four

CRISPR-associated proteins, Csn2, Cas2, Cas1 and Csn1. Cas1

appears to be a dsDNA endonuclease, and Cas2 may act as a

sequence-specific endoribonuclease that cleaves ssRNAs. In the

Nmeni subtype, the Csn1 is proposed to be a multi-domain protein,

performing the functions of Cas3 and Cas4 that is missing in this

subtype (i.e. helicase/exonuclease). Csn2 doesn’t appear to present

in all Nmeni CRISPR/cas loci and its function is unknown.

Polysaccharide capsule heterogeneity in ATCC 43143 and

ATCC 43144. Bacterial capsule is the primary defense

mechanism against host innate immune system during infection.

It protects the organism from phagocytosis, and allows the bacteria

to survive in the bloodstream and disseminate from the initial site

of infection to other parts of the body. Therefore the capsule is

often considered an important virulence factor for many human

pathogens [89,90].

The capsular polysaccharide (cps) biosynthesis locus in S.

gallolyticus ATCC 43143 and S. pasteurianus ATCC 43144 is located

downstream of the deoD gene which encodes the purine-nucleoside

phosphorylase (not related to capsule biosynthesis). In ATCC

43143, the cps cluster consists of 19 genes (SGGB_0926 to

SGGB_0944), whereas in ATCC 43144 has 17 genes (SGPB_0807

to SGPB_0823) and UCN34 has 14 genes (Figure 7). With

comparative sequence analyses, it was found that the first six genes

at the 59 end of the cps locus were highly conserved, where the first

two genes (cpsX and cpsY) encode the transcription regulators LytR

and LysR respectively. The following four genes (cpsA, cpsB, cpsC

and cpsD) encode the capsular biosynthesis transcriptional

activator, two protein-tyrosine phosphatases and a capsular chain

length determinant protein. One the other hand, the rest of the

genes at the 39 end of the cps locus have low nCAI values,

consisting of several sugar transferases, polysaccharide polymerase

and flippase, are species- or strain-specific (Table S7). In UCN 34,

most of genes at the 39 end shared high sequence and

organizational similarities with S. pneumonia, especially S. pneumonia

str. Him18, str. Dr. Melchior and ATCC 700669. On the other

hand, the genes in ATCC 43143 and ATCC 43144 were derived

from a collection of different bacteria. Considering the low

sequenced similarity observed in these genes, it is possible that

these capsular genes were acquired from an unknown donor

bacterium that has not yet been sequenced.

The genetic organization of the cps locus is widely conserved in

many bacteria species, the regulatory genes are often located at the

59 end, and genes involves in sequential steps of oligosaccharide

biosynthesis, modification and assembly in the 39 end. The

diversity observed in the make-up of genes in the 39 end of the cps

locus allows the assembly of different monosaccharids with

different glycosidic linkage during capsule biosynthesis, thus

introduce capsular heterogeneity and variety in antigenic proper-

ties. This phenomenon had been reported in several pneumococ-

cal studies [91,92,93,94].

Bacterial cell-surface components and their roles in
host-pathogen interactions

The interaction between bacteria and host cells involves the

binding of cell surface proteins and polysaccharides to surface
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receptors on host tissue cells. This adherence event is the critical

step in the pathogenesis of bacterial infection. S. gallolyticus cell

surface, like many other Gram-positive bacteria, is decorated with

a variety of proteins and polysaccharides that are either covalently

or non-covalently bound to the bacterial cell wall. The cell-surface

components of S. gallolyticus can be broadly divided into the

following categories: (1) LPXTG-like proteins, (2) pseudopili, (3)

surface lipoproteins and (4) capsule.

LPXTG surface proteins and characterization of multiple

pilus loci. Proteins containing C-terminal cell wall sorting

signal LPXTG-like motif are covalently attached to peptidoglycan

by membrane-associated cysteine protease-transpeptidase sortases

[95,96,97]. The functions of these LPXTG-containing proteins

range from adhesins involving in host cell interaction and biofilm

formation, antigens receptor, enzymes to virulence factors.

Almost all Gram-positive bacteria have sortase-like proteins and

so far, these sortases are classified into four families. In S.

gallolyticus, two types of sortases were identified: sortase A

(SGGB_0178, SGGB_1117, SGGB_1666 and SGGB_2153 in

S. gallolyticus ATCC 43143 and SGPB_0986 in S. pasteurianus

ATCC 43144) and family 3 sortase (SGGB_1566, SGGB_2020

and SGGB_2209 in ATCC 43143 and SGPB_1845 in ATCC

43144). In general, sortase A proteins are necessary for the

anchoring of the majority of the LPXTG-containing proteins.

Family 3 sortases anchor fewer proteins than class A sortases, and

it recognizes a glycine residue after the LPXTG motif instead of

an acidic residue.

A total of 29 LPXTG-containing proteins were identified in

ATCC 43143 and 15 in ATCC 43144 (Table S8), of which 11 are

conserved in both strains. Most of the shared proteins are

transporter components and enzymes such as ribonucleases,

lactocepin (proteinase), pullulanases and phospho-N-acetylmur-

amoyl-pentapeptide-transferase. In ATCC 43143, 18 LPXTG-

containing proteins, including eight cell wall surface proteins and

five collagen-binding proteins, are not found in ATCC 43144. The

remaining five proteins are fructan beta-fructosidase (SGGB_

0110), glucan-binding protein C (SGGB_1047), fimbrial subunit B

protein (SGGB_1567), phosphotransferase system component

protein (SGGB_1964), and bacteriocin (SGGB_2003). Four

LPXTG-containing proteins uniquely found in ATCC 43144

includes a DHA2 family major facilitator superfamily (MFS)

transporter (SGPB_0884), glucan-binding protein (SGPB_1131),

collagen-binding Cna protein (SGPB_1661) and cell wall surface

protein (SGPB_0680). Some of the LPXTG-containing proteins

are highly conserved and commonly found in many other bacteria

(e.g. transport system component proteins and PBP 1A), whereas

some are uniquely found within some Streptococcus species. Two

examples are SGGB_0110 and SGGB_0730. SGGB_0110

encoding the exo-inulinase is only found in S. gallolyticus UCN34,

S. uberis 0140J, S. mutans UA159 and NN2025, S. sanguinis SK36

and S. gordonii CH1. SGGB_0730 encoding the lactocepin and it is

conserved in S. gallolyticus UCN34, S. mitis B6, three stains of S.

agalactiae (NEM316, A909 and 2603V/R), S. thermophilus LMD-9,

S. sanguinis SK36, S. gordonii CH1 and three stains of S. suis (P1/7,

98HAH33 and 05ZYH33).

Bacterial pili are putative virulence factors and have been

recognized as one of the mediators of initial host-pathogen

interactions, by acting as an adhesin to a variety of host epithelia

cells. Pili are an assembly of multimeric fibers of LPXTG-

containing surface proteins.

Both ATCC 43143 and UCN34 have three pili loci predicted

in their genomes, whereas only one is predicted in ATCC

43144. Having multiple pili loci might mean that S. gallolyticus

have a more complex cell surface structure than S. pasteurianus

(Figure 8).

Common and unique surface lipoproteins. Lipoproteins

are special class 2 signal peptide containing proteins covalently

attached to membrane lipid after cleavage by signal peptidase II.

Figure 7. Comparison of the capsule biosynthesis loci in S. gallolyticus ATCC 43143, S. pasteurianus ATCC 43144 and S. gallolyticus
UCN34. The 39 regions with sequence similarity are shaded with light gray background. The direction of the arrows represents the coding strand of
the ORFs. The arrows were shaded to represent different functions of the ORF as shown in the legend. Hypothetical ORFs were outlined in black.
doi:10.1371/journal.pone.0020519.g007
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Lipoproteins have been found to be involved in physiological

functions such as adhesins, transporters, receptors, enzymes or

virulence factors [98].

Using computational prediction methods, 52 genes in S.

gallolyticus ATCC 43143 were predicted to encode for lipoproteins

and 36 in S. pasteurianus ATCC 43144, and 26 are conserved in

both strains (Table S9). Of the total 62 uniquely identified

lipoproteins in two strains, 26 are proteins without known function

and another 26 are substrate/solute-binding protein components

of sugar, amino acid, iron, phosphate and other metal ion

transport systems. Of the remaining 10 genes, four are conserved

in both strains, they are: N-acetylmuramoyl-L-alanine amidase

(SGGB_0721 and SGPB_0611), cyclophilin A (SGGB_1704 and

SGPB_1517), and preprotein translocase YidC (SGGB_1801,

SGGB_2060, SGPB_1631 and SGPB_1869). A L,D-transpepti-

dase lipoprotein (SGGB_0601) and extracellular tannase

(SGGB_0917) are uniquely found in ATCC 43143, whereas

carboxylesterase type B (SGPB_1074), nisin immunity protein

(SGPB_1100), GNAT family acetyltransferase (SGPB_1197) and

endo-beta-N-acetylglucosaminidase (SGPB_1523) appear only in

ATCC 43144.

Adhesins associated with virulence. Based on sequence

similarity comparison, several genes in S. gallolyticus ATCC 43143

and S. pasteurianus ATCC 43144 were found to be highly similar to

adhesins known to be associated with virulence, endothelial cell

adherence and IE in other bacteria (Table 2).

The substrate-binding lipoprotein MtsA is located within the mts

operon (SGGB_2028,SGGB_2030 and SGPB_1852,SGPB

_1854). In S. agalactiae and S. pyogenes, the mts operon encodes

the components for the ATP-binding cassette (ABC) transport

systems responsible for metal ion acquisition, such as iron,

manganese, and zinc [99,100]. Highly homologous proteins were

identified in several species of streptococci and enterococci and

this protein family had been designated LraI (lipoprotein receptor-

associated antigen I). LraI proteins are often found to be associated

with virulence. Besides MtsA, other well-studied LraI proteins

include FimA from S. parasanguis [101,102], FimB from S.

gallolyticus [103], SsaB from S. sanguis [104,105], ScaA from S.

gordonii [106], PsaA of S. pneumoniae [107,108], SloC from S. mutans

[109,110] and EfaA from Enterococcus faecalis [111,112,113].

The ATP-binding protein of the competence pseudopilus

operon encoded by comGA (SGGB_0087 and SGPB_0086) shares

Figure 8. Putative pili loci in S. gallolyticus UCN34, S. gallolyticus ATCC 43143 and S. pasteurianus ATCC 43144. The pili loci were divided
into three groups according to their genomic locations. The direction of the arrows represents the coding strand of the ORFs. The arrows were
shaded to represent different functions of the ORF as shown in the legend. Hypothetical ORFs were outlined in black.
doi:10.1371/journal.pone.0020519.g008
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significant sequence similarity with the pilB gene found in Group B

Streptococcus (GBS). In GBS, the gene codes the major pilin

subunit and has been found to facilitate the adherence and

invasion of the human brain microvascular endothelial cells [114],

contribute to innate immune resistance [115] and biofilm

formation [116].

SGGB_1362 from ATCC 43143 and SGPB_1289 from ATCC

43144 encode the cell wall-associated autolysin and fibronectin-

binding protein AtlA. The homologous protein was first identified

in S. mutans [117], and since then this autolysin has been

implicated in cellular processes such as cell separation, biofilm

formation, competence and most recently a virulence factor

associated with IE [118,119].

Glucosyltransferases (GTFs) are part of the major surface

protein antigens in streptococci and they are involved in cell

adhesion and biofilm formation. In ATCC 43143, the proteins are

encoded by the gtfA (SGGB_1044) and gtfB (SGGB_1046),

whereas ATCC 43144 does not have these two genes. In S.

mutans, GTFs are the major virulence factors in dental caries

[120,121], however when it comes to IE, the reports had been

contradicting. Munro et. al. (1993) and Shun et. al. (2005) shows

the Gtfs contribute to the development of infective endocarditis

[122,123], whereas Nomura at. al. (2006) and Nemoto et. al.

(2008) found the S. mutans blood isolates were defective in Gtfs, and

they had a lower susceptibility to phagocytosis and were different

from the typical oral strains [124,125].

Missing competence genes in ATCC 43144. In

streptococci, the autoinducer peptide pheromone competence-

stimulating peptide (CSP)-mediated quorum-sensing (QS) is

known to involve in competence development for genetic

transformation, biofilm formation, and autolysis. The gene

encoding the CSP peptide is comC, it is often organized with

comD and comE to form an operon. The peptide pheromone ComC

is exported into the extracellular space by the CSP secretory

apparatus ComAB [126,127]. On the outside of the cell, the CSP

signal interacts with the membrane-bound sensor kinase receptor

ComD which autophosphorylates the ComE response regulator

and triggers phosphorylation cascade which turns on late

competence genes involved in DNA uptake, recombination and

biofilm production.

In S. gallolyticus ATCC 43143, the competence genes comAB

(SGGB_2008 and SGGB_2009) and comCDE (SGGB_1998,

SGGB_1999 and SGGB_2000) are located within the bacteriocin

locus. The corresponding region in S. pasteurianus ATCC 43144 is

absent, meaning it lacks the necessary competence genes for

genetic transformation through the Com system.

Competence pseudopilus. Beside the Com DNA binding-

uptake machinery, S. gallolyticus ATCC 43143 and S. pasteurianus

ATCC 43144 also have a seven-gene ComG operon

(SGGB_0087,SGGB_0093 and SGPB_0086,SGPB_0092).

The comGA and comGB are predicted to encode ABC transporter

and products of comGC, comGD, comGE, comGF and comGG are

similar to the major and minor pseudopilins. The function of the

comG apparatus is likely to form a pilus-like structure, also called

competence pseudopilus in B. subtilis [128], necessary to bring the

exogenous DNA to a membrane DNA receptor ComEA

(SGGB_0636 and SGPB_0541) during transformation. Type IV

pilin and pseudopilins homologues in Gram-negative bacteria

have been found to associate with virulence [129,130,131].

Lack of important biofilm formation genes in ATCC

43144. Biofilms are produced by many species of bacteria to

create an extracellular matrix consisting of exopolysaccharides,

proteins and DNA where mono- or multi-specific microorganisms

can interact with each other and the environment [132,133,134].

Biofilm formation is often associated with bacterial infection and

bacteria exist as biofilm are less susceptible to antimicrobial agents,

inhibitors and host immune system, thereby adding to their

survival and ultimately facilitate the dissemination of the

pathogens to new tissues and organs [135,136,137].

The aggregated sticky glucan polymers are formed by the action

of the GTFs that promote the cell-cell attachment and facilitate

biofilm formation. As mentioned in the previous section, S.

gallolyticus ATCC 43143 GTFs were encoded by gtfA (SGGB_1044)

and gtfB (SGGB_1046), where the GtfA produces water-insoluble

alpha-1,3- linked glucosidic polymers and GtfB makes both alpha-

1,3- linked water-insoluble and alpha-1,6- linked glucosidic water-

soluble polymers. In S. pasteurianus ATCC 43144, the correspond-

ing region was replaced by a membrane protein and five

hypothetical proteins that have no homology to any known or

published protein sequences.

In close vicinity, the cell wall-anchoring glucan-binding protein

C encoded by gbpC (SGGB_1046) is located downstream of gtfC.

GbpC has been shown to be involved in plaque biofilm formation

and infective endocarditis in several streptococci, including S.

mutans [138].

The CovSR (also known as CsrSR) two-component system was

predicted only in ATCC 43143 (SGGB_1812 and SGGB_1813)

and UCN34 (GALLO_1825 and GALLO_1826) but not ATCC

43144. CovSR have been shown to regulate gtf genes in other

Streptococcus. In S. pyogenes, Cho et. al. showed mutants lacking the

covR gene failed to form biofilm [139]. In S. mutans, CovR exists as

an orphan response regulator and it has been shown to be essential

for biofilm development and cariogenesis [140]. With the absence

of most of essential biofilm-associated genes such as gtfA, gtfB, gbpC

and covSR, ATCC 43144 may not be able to form biofilm.

However, the VicRK two-component signal transduction

system that are also known to regulate the transcriptional level

of gtfBC in S. mutans [141] were found in both strains, encoded by

SGGB_1550 and SGGB_1551 in ATCC 43143 and SGPB_1448

and SGPB_1449 in ATCC 43144. This could indicate that due to

some gene deletion event in the past, the gtf genes previously

existed in all S. gallolyticus species were lost in S. pasteurianus.

Identification of cell wall-anchored peptidoglycan

hydrolase. Peptidoglycan hydrolases (PGHs), also referred to

as autolysins, are enzymes that can cleave covalent bonds in the

bacterial peptidoglycan and hence participate in daughter cell

separation, peptidoglycan expansion and turnover. PGHs are

exported by the dedicated system, holins, which are composed o

homo-oligomeric complexes. Besides the housekeeping activities,

holin-autolysin systems were also implicated in antibiotic-induced

lysis [142], programmed cell death [143], biofilm formation [144]

and bacterial pathogenesis by producing degraded cell wall

Table 2. List of known bacterial adhesins associated with
virulence, adherence to human endothelial cells and infective
endocarditis.

Genes UCN34 ATCC 43143 ATCC 43144

fimB/ssaB/scaA/psaA/
mtsA/efaA

GALLO_2047 SGGB_2030 SGPB_1854

pilB GALLO_0087 SGGB_0087 SGPB_0086

gtfbC GALLO_1055
GALLO_1057

SGGB_1044
SGGB_1046

NA

atlA GALLO_1368 SGGB_1362 SGPB_1289

doi:10.1371/journal.pone.0020519.t002
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components inflammatory components [145,146], releasing of

virulence factors and assisting bacterial adherence [147].

The Cid/Lrg operons are the well-studied holin-antiholin

system encoded on the bacterial chromosome that may have a

role in protein export. In streptococci, unlike S. agalactiae and S.

mutans that have both cidAB and lrgAB genes, S. gallolyticus 43143, S.

gallolyticus UCN34 and S. pasteurianus ATCC 43144 only has the

cidAB holin homologues and the cidA gene in ATCC 43143 was

predicted to be a pseudogene due to in-frame mutation

(SGGB_0970 in ATCC 43143, SGPB_0848/SGPB_0847 in

ATCC 43144 and GALLO_0983/GALLO_0982 in UCN34).

Based on protein domain prediction, UCN34 has a single phage-

encoded holin gene GALLO_0471 situated within a region

inserted with prophage genome, whereas the corresponding

chromosomal regions in ATCC 43143 and ATCC 43144 do not

have prophage insertion, nor do they have any predicted phage-

associated holin genes.

Table 3 showed a list of putative peptidoglycan hydrolases in

ATCC 43143, ATCC 43144 and UCN34 based on computational

prediction. Among the 16 autolysins, 13 proteins contain type I

signal peptide residues and one has type II signal peptide residues,

therefore they are exported via the general secretory (Sec)

pathway. Of the reminding two autolysins, one is a phage-

associated cell wall hydrolase encoded by GALLO_0472.

Together with the holin gene GALLO_0471, they formed a

holin-lysin lysis cassette (lytPR) found in bacteriophages. The other

autolysin is a lysozyme (1,4-beta-N-acetylmuramidase) that was

conserved in all three S. gallolyticus strains, and is likely to be

dependent on holins for export. Based on nCAI calculation, the

extracellular peptidoglycan hydrolases encoded by SGGB_0018 in

ATCC 43143 and SGPB_0021 in ATCC 43144 both have high

nCAI values of 1.197 and 1.181 and ranked 25th and 30th among

all the genes respectively. This enzyme is likely the major

peptidoglycan hydrolase produced in these bacteria.

ESAT-6 secretion pathway in S. gallolyticus. The ESAT-6

secretion system (Ess) pathway was first identified in Mycobacterium

tuberculosis where important etiological agents of human

tuberculosis (TB), ESAT-6 and CFP-10, are secreted via this

pathway [148]. The ESAT-6 homologues have been identified in

various Gram-positive bacteria, including Staphylococcus aureus,

Bacillus subtilis, Bacillus anthracis, Listeria innocua, Listeria

monocytogenes, Clostridium acetobutylicum, Corynebacterium diphtheriae

and Streptomyces coelicolor. Due to the presence of a central WXG

motif in this family of 100-residue proteins, the pathway is also

referred to as WXG100 secretion system (Wss) and most recently

as the Type VII secretion system [149,150]. The presence of

streptococcal ESAT-6 homologue was first reported in S. gordonii

(Challis) [151] and the crystal structure of EsxA from S. agalactiae

was determined recently (PDB ID: 3O9O and 3GWK) [152]. In

this study, a putative Ess gene cluster containing a 97-residue

ESAT-6 homologue (esxA) and six other genes (essA, esaB, essB, essC,

esaA and esaC) implicated in the translocation of EsxA were

identified in ATCC 43143 (RGP 3) and UCN34. Unlike some

Gram-positive bacteria that possess two WXG100 proteins, EsxA

and EsxB, which can form heterodimers, S. gallolyticus only has one

WXG100 protein. The esxA gene of ATCC 43143 has an unusual

high nCAI value (1.193) and was ranked the 29th among all the

genes in the genome. This suggests that it can be highly expressed

upon activation and could be an important factor contributing to

S. gallolyticus pathogenesis. The S. gallolyticus EsxA proteins

(SGGB_0519 in ATCC 43143 and GALLO_0553 in UCN34)

share 35% amino acid sequence identity with other predicted

streptococcal EsxA homologues, namely S. sanguinis, S. agalactiae, S.

gordonii and S. equi subsp. zooepidemicus. With the discovery of

increasing number of bacteria possessing the components for the

Ess pathway, it is plausible to consider the WXG proteins might

not be the only target of this secretion system and other yet-to-be-

identified effector proteins might locate outside the Ess gene locus.

Table 3. Predicted peptidoglycan hydrolases in S. gallolyticus ATCC 43143, S. gallolyticus UCN34 and S. pasteurianus ATCC 43144.

ATCC 43143 ATCC 43144 UCN34 Descriptions
Signal Peptide
Prediction PSORTb Prediction

SGGB_0018 SGPB_0021 GALLO_0019 extracellular peptidoglycan hydrolase SpI Extracellular

SGGB_0176 - - signal peptide containing protein SpI Unknown

SGGB_0281 - - CHAP domain containing protein SpI Unknown

SGGB_0313 SGPB_0234 GALLO_0240 N-acetylmuramoyl-L-alanine amidase SpI Extracellular

- - GALLO_0472 phage-associated cell wall hydrolase CYT Unknown

SGGB_0721 SGPB_0611 GALLO_0740 N-acetylmuramoyl-L-alanine amidase SpII Extracellular

SGGB_1191 - GALLO_1197 signal peptide containing protein SpI Cellwall

SGGB_1301 SGPB_1211 GALLO_1307 extracellular mannosyl-glycoprotein endo-beta-N-
acetylglucosaminidase

SpI Extracellular

SGGB_1362 SGPB_1290 GALLO_1368 serotype determinant, cell wall hydrolase/autolysin SpI Unknown

SGGB_1513 SGPB_1412 GALLO_1518 lysozyme (1,4-beta-N-acetylmuramidase) CYT Unknown

SGGB_1667 - GALLO_1652 signal peptide containing protein SpI Cytoplasmic
Membrane

SGGB_1973 - GALLO_1989 signal peptide containing protein SpI Unknown

SGGB_2159 - - putative glucosaminidase SpI Unknown

SGGB_2169 - - cell surface-associated protein autolysin AtlA SpI Unknown

SGGB_2276 SGPB_2002 GALLO_2243 transglycosylase-like extracellular protein SpI Extracellular

SGGB_2277 SGPB_2003 GALLO_2244 LysM domain containing extracellular protein SpI Extracellular

doi:10.1371/journal.pone.0020519.t003
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Concluding remarks
In summary, we report the first complete genome of S.

pasteurianus (reference strain ATCC 43144), the genomic sequence

of S. gallolyticus reference strain ATCC 43144 and their in silico

analyses. The S. gallolyticus (formerly known as S. bovis biotype I) is a

known human pathogen which has been shown to be associated

with serious illnesses such as IE and colorectal cancer, whereas S.

pasteurianus (biotype II.2) causes neonatal sepsis and meningitis in

infants and adults.

Through analyzing the RGPs, we provided evidence of an

association between genome plasticity and genome adaptive

evolution. Although both ATCC strains were isolated in human

blood, the gene contents of the ATCC 43143 RGPs suggest it is still

largely a ruminal strain, whereas ATCC 43144 has a streamlined

genome, possibly evolved to adapt to a non-rumen environment.

The additional biosynthesis gene clusters found in each strain could

relate to their fitness under specific conditions. Considering both S.

gallolyticus subspecies were highly similar in their genomic contents,

the processes of genome reduction/expansion were a much recent

event due to environmental and host adaptation, moving from a

herbivore to man. With the completion of S. gallolyticus TX20005

(also known as biotype I strain 2703) genome sequencing around the

corner [153,154], we hope with this work, microbiologists and

clinician scientists can gain further understanding of the S. gallolyticus

core genome and the effect of genomic differences on their virulence

and pathogenesis.

This study contributes to our understanding of the pathogenesis of

this species by delineating not only the known, but novel putative

virulence factors, and also genes and processes that would aid the

bacteria to colonize, flourish and cause disease. Future studies will focus

on elucidating the precise roles of the novel lipoproteins predicted in

this work and gain insights into the S. gallolyticus pathogenesis.
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