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Abstract

Changes in miRNA expression are a common feature in colon cancer. Those changes occurring in the transition from normal
to adenoma and from adenoma to carcinoma, however, have not been well defined. Additionally, miRNA changes among
tumor subgroups of colon cancer have also not been adequately evaluated. In this study, we examined the global miRNA
expression in 315 samples that included 52 normal colonic mucosa, 41 tubulovillous adenomas, 158 adenocarcinomas with
proficient DNA mismatch repair (pMMR) selected for stage and age of onset, and 64 adenocarcinomas with defective DNA
mismatch repair (dMMR) selected for sporadic (n = 53) and inherited colon cancer (n = 11). Sporadic dMMR tumors all had
MLH1 inactivation due to promoter hypermethylation. Unsupervised PCA and cluster analysis demonstrated that normal
colon tissue, adenomas, pMMR carcinomas and dMMR carcinomas were all clearly discernable. The majority of miRNAs that
were differentially expressed between normal and polyp were also differentially expressed with a similar magnitude in the
comparison of normal to both the pMMR and dMMR tumor groups, suggesting a stepwise progression for transformation
from normal colon to carcinoma. Among the miRNAs demonstrating the largest fold up- or down-regulated changes ($4),
four novel (miR-31, miR-1, miR-9 and miR-99a) and two previously reported (miR-137 and miR-135b) miRNAs were identified
in the normal/adenoma comparison. All but one of these (miR-99a) demonstrated similar expression differences in the two
normal/carcinoma comparisons, suggesting that these early tumor changes are important in both the pMMR- and dMMR-
derived cancers. The comparison between pMMR and dMMR tumors identified four miRNAs (miR-31, miR-552, miR-592 and
miR-224) with statistically significant expression differences ($2-fold change).
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Introduction

Colon cancer (CC) is one of the leading causes of cancer deaths

worldwide, with approximately 148,000 new cases reported in the

United States in 2009 [1]. The progression to CC is considered a

stepwise process with the accumulation of different genetic and

epigenetic alterations leading to a transformation from a normal

cell to a premalignant tumor and finally to a malignant and

potentially metastatic tumor (normal to adenoma to carcinoma

sequence). Current data clearly demonstrate the presence of

heterogeneity in this sequence of events. These include: (i) the

development of different types of precancerous lesions such as

villous adenoma, tubular adenoma, tubulovillous adenoma, and

serrated polyp with presumed differences in molecular defects; (ii)

transition to invasive cancer demonstrating very different molec-

ular abnormalities (e.g., tumors with and without defective DNA

mismatch repair); and finally, (iii) the development of sporadic

versus various forms of hereditary CC. The underlying factors

responsible for this heterogeneity, however, are still largely

unknown.

One of the clearest distinctions demonstrated so far for

sporadic CC is based on the presence or absence of functional

DNA mismatch repair (MMR) [2,3,4]. Tumors with defective

MMR (dMMR) have been identified in ,20% of sporadic CC

and are characterized by the presence of a particular tumor

phenotype, termed microsatellite instability (MSI). In sporadic

CC, three distinct MSI phenotypes have been described: MSS,

MSI-L and MSI-H [5]. The MSI-H phenotype is associated

with distinct clinicopathologic features [2,3,4], including a

more favorable outcome [6]. Among sporadic CC, the majority

of MSI-H cases results from inactivation of MLH1 due to

promoter hypermethylation (,95%) [2,3,4]. The remaining

,80% of CC with proficient MMR (pMMR), on the other

hand, follow a chromosomal instability (CIN) pathway and

are associated with a high frequency of aneuploidy and allelic

imbalance [7].
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Although the majority of CC appears to be sporadic with a mean

age at diagnosis in the mid-60 s, roughly 15–20% of cases arise within

familial aggregates, with known genetic conditions accounting only for

a small fraction of these. While hereditary CC has been recognized for

some time, the identity of genes involved in the disease process has only

recently been identified for many of the hereditary conditions. The

most prevalent hereditary form of CC is Hereditary Non-Polyposis

Colon Cancer (HNPCC), accounting for ,2–3% of all cases [8].

For HNPCC, germline mutations in the DNA MMR genes are

also responsible for this condition, with MLH1 and MSH2

accounting for the majority of cases (,40% each) and MSH6

and PMS2 accounting for a smaller percentage, ,10% and 5%,

respectively [2,8]. Tumors from these patients are also character-

ized by the presence of MSI-H and by loss of MMR protein

expression for the affected gene. Thus, the molecular etiology of

tumors involving dMMR is very heterogeneous, involving several

different genes and numerous mechanisms of gene inactivation,

including epigenetic, somatic and germline alterations.

There appears to be at least two significant pathways leading to

sporadic and hereditary CC. The first pathway, involving dMMR,

is thought to originate in a serrated precursor (the sessile serrated

adenoma) and accounts for all sporadic MSI-H CC (although not

all cancers arising via the serrated pathway are MSI-H). HNPCC

also gives rise to MSI-H CC. The second pathway is thought to

arise from tubulo/villous adenomas and leads to sporadic CC or

FAP-related CC characterized by tumor CIN and pMMR. Our

understanding of these pathways at a molecular level and their

involvement in the transition from normal to polyp to carcinoma,

although improving, remains incomplete.

Genome-wide approaches (expression profiling, genome-wide

SNP analysis, aCGH, next generation sequencing) are continuing to

refine our understanding of the process of tumorigenesis. The

discovery of a growing class of small non-coding RNAs, including

miRNAs, has revealed an even greater level of complexity for

cancer biology [9,10,11]. microRNAs (miRNAs) are 18–24 nt small

non-coding RNA molecules that predominantly inhibit gene

expression at the post-transcriptional level [9]. As miRNAs regulate

the expression of a large number of protein-encoding genes, a wide

range of biological processes are affected, such as metabolism,

organogenesis, development, and the determination of cell fate,

including death [10]. Altered expression of miRNAs has also been

associated with a variety of human disease, including cancer [11].

Although a growing number of studies have addressed miRNA

expression in CC [12,13,14,15,16,17,18,19,20], few have been

published on premalignant lesions in the colon [21,22,23,24,25]. In

particular, the role of miRNAs in the transition between normal

colon and polyp and between polyp and cancer is not understood.

In this study, global miRNA (735 miRNA targets) expression was

evaluated in 315 samples (52 normal colonic mucosa and 263 colon

tumors) using the BeadArrayTM platform (Illumina, Inc.) [26].

Samples selected for analysis were categorized by a number of

clinical and molecular criteria to explore tumor heterogeneity in

more detail, to discover biologically relevant miRNAs and to address

transitional changes from normal to adenoma and adenoma to

carcinoma. Tumor types included tubulovillous adenomas, adeno-

carcinomas with dMMR selected for both sporadic and inherited

cases, and adenocarcinomas with pMMR selected for stage (A, B, C,

and D) and age of onset (old- versus young-onset disease).

Methods

Ethics Statement
The Mayo Clinic Institutional Review Board reviewed and

approved for human studies the protocol entitled ‘‘The

Identification and Validation of miRNA Signature Profiles as

Biomarkers for Colon Cancer Progression’’ from Dr. Stephen

N. Thibodeau. The Committee noted that the human studies

aspects involve the use of samples collected under IRB-approved

protocols. The Committee determined that the consenting

process allows for future use of the samples as exemplified in

the current protocol. The majority of patients provided written

informed consent. For those who did not, samples were

anonymized.

Sample Selection
Specimens from patients with CC or polyps were selected from

two separate tumor registries. The first collection of samples was

obtained from all patients that underwent surgical resection for

CC during a three-year period from 1995 to 1998 (unselected).

The second collection, initiated in 2000, is an ongoing collection of

biospecimens from Mayo Clinic Rochester patients with colorectal

neoplasia. For the later registry, no pre-selection criteria have been

used by the registry except that only those polyps with a diameter

of $7 mm are collected for future use.

All tissue samples were snap frozen in liquid nitrogen at the time

of collection and then stored at 280uC for later use. Normal areas

of colonic epithelium were obtained from either the margin of

resection or adjacent to the tumor. All but one of the normal tissue

samples used for this study were matched with tumors. Rectal

cancers were excluded. Polyps were evaluated for histologic type,

with only tubulovillous adenomas selected for study. Pathologic

tumor staging was classified according to Dukes’ criteria [27].

Patient chart reviews were performed to obtain clinical charac-

teristics of the tumor, including tumor site, stage and age at

diagnosis.

Tumor Processing and RNA Extraction
Frozen tissue was cut on a cryostat to generate hematoxylin and

eosin (H&E) stained slides. For polyps, areas with at least 50%

adenoma were macro-dissected. For cancers, areas containing at

least 70% neoplastic cells or greater were macro-dissected. Tissue

sizes equivalent to 7 mm2 and 10-microns thick were sectioned

and placed in a vial containing 400 uL of RLT buffer (QIAGEN,

Chatsworth, CA) including 4 mL of b-mercaptoethanol. The vial

was then stored at 280uC until utilized for RNA extraction using

TRIzolH LSTrizol� (Invitrogen, Corp., Carlsbad, CA) according

to the manufacturer’s instructions.

DNA MMR Status
The majority of tumors with defective DNA mismatch repair

selected for this study were the same as those previously reported

upon and have been extensively characterized [28]. Tumor MSI

was assessed by comparing paired tumor and normal mucosa

DNA isolated (Qiagen DNA extraction kit) from formalin-fixed,

paraffin-embedded (FFPE) material with the use of 3–18

microsatellite markers, as previously described [28]. Tumors were

classified as MSI-H if $30% of markers demonstrated instability,

MSI-L if ,30% demonstrated instability, and MSS if none of the

markers demonstrated instability.

Immunohistochemical (IHC) analysis for protein expression was

performed on FFPE samples for MLH1 and MSH2 (all cases) and

MSH6 and PMS2 (subset), as previously described [29]. DNA

dMMR was defined by the presence of MSI (MSI-H) and/or the

absence of protein expression for MLH1, MSH2, MSH6 or

PMS2. DNA pMMR was defined by the absence of high levels of

microsatellite instability (MSS/MSI-L) and by the presence of

normal protein expression for MLH1, MSH2, MSH6 and PMS2.

miRNA Expression in Colon Polyps and Cancer
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Tumors with dMMR showing an absence of MLH1 were

further tested to determine the cause of gene inactivation, i.e.,

epigenetic (sporadic) versus germline (inherited). Either a methyl-

ation-specific PCR-based assay or a HPAII enzyme digest based

assay was utilized to test for promoter hypermethylation [30]. In

addition, a PCR-based assay for alterations within the V600E

mutation in BRAF was also performed. MLH1 cases demonstrat-

ing MLH1 promoter hypermethylation were classified as sporadic

(dMMR1). MLH1 cases with wild type BRAF and without MLH1

promoter hypermethylation were classified as germline (dMMR2).

Cases involving MSH2, MSH6 or PMS2 (by loss of protein

expression by IHC or by germline testing) were also classified as

germline (dMMR2).

miRNA Profiling
Global miRNA (735 miRNA targets) expression was evaluated

using the BeadArrayTM platform (Illumina, Inc.) essentially as

described by Sarver et al. [16]. For each sample tested, 200 ng of

total RNA was utilized for the analysis.

Statistical Analysis
Study Design. Separate randomization schemes were created

to determine the order of tissue cryosectioning, RNA extraction

and the allocation of samples to the 96-well Sentrix Array Matrix

(SAM) plates to ensure that sample groups of interest and

demographic characteristics were well balanced over several

potential experimental effects.

Quality assessments. A total of 336 tissue samples (281

tumors and 55 normal tissue samples) from 282 subjects were

initially tested with the Illumina platform. For 54 of the patients,

both normal and tumor tissue were obtained from the same

individual (Table 1). For quality-control purposes, 8 samples

were tested one additional time and 5 samples were tested three

additional times (test for reproducibility), resulting in a total

of 23 replicate samples tested (total tested = 359). Twenty-five

additional negative and cutting controls were also utilized to assess

overall quality.

In addition to the laboratory quality-control assessments, global

quality and bias were assessed via several plotting techniques. All

analyses were performed on the log2 scale and results are

presented on the fold-change scale. Box-and-whisker plots were

used to assess global mean shifts in miRNA distribution or

concentration between specimens and SAMs. Pair-wise minus

versus average (MVA) plots for two specimens, defined as the per-

probe difference between the two specimens (vertical axis) versus

the per-probe average (horizontal axis) for the two specimens [31],

were used to assess agreement between technical replicates.

Residual MVA plots for a given specimen, defined as the

difference between that specimen and the average of all specimens

(vertical axis) versus the average of all specimens (horizontal axis)

[32], were used to assess the existence of and functional form of,

e.g., (non)linearity biases as a function of abundance. Plots of

principal component analysis (PCA) results were used to examine

(dis)similarity of specimens to negative control specimens and

existence of SAM effects. Box plots and dot plots were used to

assess the nature and consistency of per-probe SAM effects.

Detection rates were assessed for each specimen, with probe

detection defined as p-values ,0.01.

Based on these quality assessment analyses, a total of 21 of the

359 samples (including some replicates) were removed from

further study. Twelve were found to be more similar in expression

distribution to negative control specimens based on box plots,

detection rates and PCA plots and one specimen had an extremely

high but narrow range of expression. An additional seven

specimens had obviously different floor and ceiling effects in

residual MVA plots and clustered closer to the negative control

specimens in PCA. One additional sample was eliminated since it

was the only one in its class. Thus, there were 338 samples (318

unique and 20 replicates) from 268 subjects remaining for analysis.

Preprocessing. The abundance distribution of the 735

miRNA and 20 control probes spanned a wide range, with 40%–

60% of probes detected in samples passing quality assessment (using

a 0.01 detection p-value threshold). In addition, there was no a priori

reason to expect an asymmetric distribution of changes [16]. Thus,

the 338 specimens passing the initial quality assessment were

normalized together via quantile normalization [31]. Post-

normalization residual MVA plots demonstrated that average

nonlinear bias was successfully removed. However, plots of PCA

results demonstrated that a SAM effect remained. Contrast

Table 1. Samples used for differential expression and principal component analysis.

Category Samples
Samples Plus
replicates

Excluded Samples
following QC

# of Samples Normalized and
eligible for DE (M/F)

# of Samples used
PCA/Cluster M/F

normal colon 55 55 3 52 (24/28) 52 (24/28)

adenoma 41 41 0 41 (28/13) 41 (28/13)

pMMR1, Stage A 3 3 0 3 (2/1) 3 (2/1)

pMMR1, Stage B 75 79 3 76 (42/34) 72 (42/30)

pMMR1, Stage C 47 52 5 47 (22/25) 43 (21/22)

pMMR1, Stage D 33 35 5 30 (18/12) 30 (18/12)

pMMR2, young 11 14 1 13 (11/2) 10 (8/2)

dMMR1, Sporadic 57 63 4 59 (27/32) 53 (21/32)

dMMR2, Inherited 11 14 0 14 (8/6) 11 (5/6)

dMMR3, Other 3 3 0 3 (3/0) 0

Total 336 359 21 338 (185/153) 315 (169/146)

QC, Quality Control.
DE, Differential Expression.
PCA, Principal Component Analysis.
M, male; F, female.
doi:10.1371/journal.pone.0020465.t001
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estimates and dot plots revealed that, while there was almost no

SAM effect for the majority of probes, a handful showed changes up

to 2-fold between SAMs that were consistent across all specimens on

each SAM and were not driven by outlier points. That is, consistent

SAM-by-probe interactions were observed. Thus, residuals from

linear models with SAM in the model fit on a per-probe basis to

quantile normalized data were used as the final normalized, SAM-

adjusted data. These linear models gave results within decimal dust

of empirical Bayes methods since the sample size is large [33].

Residual MVA plots, box plots and per-probe dot plots showed

no trend over time for the one sample serving as a cutting control

with tissue cut seven times over the two months it required to

process all of the tissue samples. Residual and pair-wise MVA plots

showed good overall agreement between technical replicates

placed on different SAMs. The largest SAM effect observed was

2.33-fold (log2 scale difference of 1.22), and only a handful of

probes had SAM effects of 2-fold. 91.5% (691/755) of probes had

SAM effect estimates ,1.2-fold.

Per-probe detection rates together with plots of per-probe

standard deviation (SD) over all normalized specimens (n = 338)

versus average expression over all normalized specimens demon-

strated clear floor and ceiling effects in the abundance distribution.

A per-probe threshold SD of #0.4 in these specimens on the log2

scale was used to filter out ‘‘non-informative’’ probes in a manner

agnostic to group [34]. This resulted in 123 probes with 0%

detection rates, 37 saturated probes, and 376 mid-abundance

probes with low SD being filtered out, leaving 199 informative

probes with a SD .0.4.

Differential expression. Per-probe linear mixed effects

models with contrast statements were used to assess differential

expression using the quantile normalized, SAM-adjusted data.

Subject was included as a random effect in order to account for

correlation between multiple observations per subject (technical

replicates and the paired nature of all but one normal sample). A

SAM effect was included in the model to account for the degrees

of freedom used in the per-probe removal of the SAM effect.

Distributions of p-values and false discovery rates [35,36]

(calculated based on model results for all 735 miRNA probes)

were used to give a general sense of whether true differences exist.

Actual significance was assessed using the more conservative

Bonferroni corrected p-values based on 0.05/735 = 6.861025 for

each comparison together with fold-change cutoffs to incorporate

biological significance. Six main groups were compared: normal,

polyp, pMMR1 (old onset), pMMR2 (young onset), dMMR1

(sporadic) and dMMR2 (germline). Additional comparisons

included pMMR1 Stages B, C and D (Stage A with n = 3 was

left out of this comparison due to the small sample size), as well as

the pMMR1 MSS and MSI-L groups.

Adjusting variables were included where appropriate to avoid

possible confounding with histology. Tumor stage was included as

a covariate in models assessing differences between tumor types to

adjust for possible imbalances of disease severity due to stage.

Location in the colon was not included as a covariate in models

comparing pMMR and dMMR tumors as this was considered to

be part of the biology of the tumors. No covariates were included

in models comparing the polyp or normal groups with other

groups since neither stage nor location in the colon are relevant for

these groups.

Visualization of Data. Visualization for the presence of

global effects was accomplished through unsupervised clustering

and PCA utilizing unique tissue samples only (318 of 338 samples);

the technical replicates were excluded from these analyses. For

samples with multiple technical replicates, the replicate specimen

labeled ‘‘1’’ was chosen. PCA analyses were conducted on

per-probe mean-centered and SD-scaled data using Partek [37]

and the R function prcomp [38]. Unsupervised clustering analyses

were performed on per-probe median-centered data in Partek

using Pearson’s dissimilarity matrix for calculation of distances

between individual samples and the average linkage method for

calculation of distances between two clusters. Points or specimen

labels were colored on plots by known clinical grouping

information.

Results

Sample characteristics
Following extensive quality assessment of the miRNA profiling

results (see Methods), 338 tissue samples from 268 patients were

utilized for further analysis. Normal and tumor tissue samples (not

including any of the technical replicates) included 52 normal

colonic mucosa, 41 tubulovillous adenomas, 158 adenocarcinomas

with pMMR selected for stage (3 Stage A, 72 Stage B, 43 Stage C

and 30 Stage D) and age of onset (148$50 years versus 10,50

years), and 64 adenocarcinomas with dMMR selected for both

sporadic (53 dMMR1) and inherited CC (11 dMMR2) as outlined

in Table 1.

All cases with sporadic dMMR (dMMR1) had MLH1

inactivation due to promoter hypermethylation. The inherited

dMMR group (dMMR2) was composed of cases having: (i) a

known germline mutation in either MLH1 (n = 1) or MSH2 (n = 3);

or (ii) loss of protein expression for MSH2 (n = 3), MSH6 (n = 2) or

PMS2 (n = 2) by IHC and presumed to have a germline mutation

in these genes. Several cases with dMMR were not easily

categorized (dMMR3) and because of the small number, these

were eliminated from further analysis. Of the 268 subjects, 119

were female and 149 were male.

Global miRNA expression differences between normal
colon, adenoma and carcinoma

PCA and hierarchical cluster analyses, both unsupervised, were

used to visualize miRNA expression patterns present at a global

level in our expression dataset. Overall, there was a clear separation

between groups composed of normal, adenoma, pMMR1 and

dMMR1 derived tissues when examined by both unsupervised PCA

(Figure 1A) and hierarchical clustering (Figure 1B) using the set

of 199 ‘‘informative’’ probes obtained as described in Methods. Of

interest, however, hierarchical clustering also suggests the presence

of two sub-populations for the dMMR1 group of tumors, which

appears to be driven by a cluster of miRNAs (the majority from

chromosome 14) showing low expression in one group and high

expression in the other (indicated by arrow in Figure 1B).

The global miRNA expression patterns were then visually

examined in various pre-defined tumor sub-groups to determine if

these could be distinguished. The PCA plots for these analyses are

shown in Figure 2 (data not shown for the hierarchical cluster

analyses). Within the pMMR1 group of tumors, there were no

apparent discernible differences based on stage, either across all

three stages or between any two stages (Stage A not included due

to small numbers), or based on gender. Additionally, no separation

of groups was visible between tumors with an older age of onset

($50 y/o, pMMR1) and those with a younger age of onset

(,50 y/o, pMMR2). An analysis of tumors within each of the two

dMMR subtypes, dMMR1 (somatic) versus dMMR2 (germline),

also showed no discernible differences.

Because tumors are often classified by their MSI status (MSS,

MSI-L and MSI-H), these three groups were further examined

for expression differences together, then systematically in pairs.

As expected, the MSI-H group (defined as dMMR) clustered

miRNA Expression in Colon Polyps and Cancer
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separately from both the MSI-L and MSS groups (both defined as

pMMR). However, the MSI-L and MSS groups showed no

discernible differences (Figure 2).

Differential expression between normal colon, adenoma
and carcinoma

We conducted group-based statistical comparisons on a probe-

by-probe basis using linear models for several pre-defined analyses

in an effort to identify statistically significant differentially

expressed miRNAs. Overall, highly significant differences were

observed between several of the groups for specific miRNAs

using a Bonferroni corrected p-value threshold for signifi-

cance (6.861025). Table 2 provides a count of the miRNAs

demonstrating significant expression fold changes at varying

cutoffs ($2.0 and $4.0). Table 3 shows the nine statistically

significant differentially expressed miRNAs with the greatest fold

change (fold change of $4), while Figure S1 shows the dot plots

for each of these among the various tissue subgroups.

The change in expression level that occurs in the normal to

adenoma to carcinoma sequence for each of the nine miRNAs can

clearly be seen in Figure S1. Five of the nine show consistent

changes across all groups compared to normal, with miR-135b

and miR-31 up-regulated and miR-1, miR-137 and miR-9 down-

regulated in all samples. HS_29 is up-regulated in all of the

carcinomas but not in the polyps, miR-552 and miR592 are up-

regulated in the polyps and pMMR tumors but not the dMMR

tumors, and finally, miR99a is down-regulated in polyps with

intermediate levels in both the pMMR and dMMR tumor groups.

Using the Bonferroni P-value threshold along with a fold change

in expression level of $2, a total of 54 miRNAs were identified

among the various comparisons (Table 2, Table S1). Thirty one

miRNA were differentially expressed between normal colon tissue

and adenomas. A comparison of normal colon tissue to the two

main carcinoma groups (pMMR1 and dMMR1) identified 31 and

28 significant miRNAs, respectively, utilizing these criteria.

Finally, 6 and 11 significant miRNAs were identified when

adenomas were compared to the two carcinoma groups. The heat

map, shown in Figure 3, illustrates the relative expression

differences of these miRNAs among the groups being studied.

Of interest, the majority (23 of the 31) of miRNAs that were

differentially expressed between normal and adenoma with fold

changes of $2 were also differentially expressed in the comparison

of normal to both the pMMR and dMMR tissue groups, for

example miR-135b and miR-31 (Table S1). Additionally, the

Figure 1. Plots of principal components from PCA analyses and unsupervised hierarchical clustering. (A) Plots of principal components
from PCA analyses. Horizontal axis corresponds to principal component 1 (PC1), vertical axis corresponds to PC2, depth axis corresponds to PC3. The
percent of variation explained by a particular PC is indicated in the axis label. Points are colored by group status with blue representing normal
epithelium, purple representing polyp, green representing pMMR1, and red representing dMMR1. Two different orientations are provided. (B)
Unsupervised hierarchical clustering of miRNA profiles using the set of 199 ‘‘informative’’ probes obtained as described in Methods. Samples are
indicated along the horizontal axis and include normal colon, adenomas, pMMR1 carcinomas and dMMR1 carcinomas with group membership
indicated by the color bar between the dendogram and the heat map. miRNAs are indicated by the vertical axis. The color bar below indicates level of
expression.
doi:10.1371/journal.pone.0020465.g001
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levels and direction of the changes relative to normal for most of

these were consistent between adenoma and carcinoma. In

addition to the similarities noted for the adenoma and carcinoma

groups, however, differences in expression were also identified. Of

the 43 miRNAs that were significantly differentially expressed with

fold changes of $2 in the two tumor groups, 20 did not meet these

criteria in the polyp group (e.g., miR-375, mir-147, etc.), although

several others miRNAs had significant but smaller levels of

expression difference in the polyp group (e.g., miR-188-5p, miR-

210) (Table S1). When the tumor groups were compared directly

to the polyp group, 20 miRNAs were identified; 9 up-regulated

(e.g., miR-483-3p, miR34b) and 11 down-regulated (e.g., miR-

552,miR-592).

Although PCA and cluster analysis was able to separate the

pMMR1 and dMMR1 subgroups (Figure 1), there were surprisingly

few miRNAs that were significantly differentially expressed between

these two groups (Table 2 and Table S1). Only four miRNAs

(miR-31, miR-224, miR-552, miR-592,) were found at a 2-fold

change or higher. As noted for the adenoma comparisons, the

majority of miRNAs that were differentially expressed between the

normal colon tissue and the pMMR1 group with fold changes $2

were also differentially expressed in the comparison of normal colon

tissue to the dMMR1 tissue group. Again, the levels and direction of

these changes relative to normal for most of these miRNAs were

consistent between these two comparisons (Table S1).

A number of additional pre-planned comparisons showed

minimal differences between specific subgroups. Two of these

comparisons included pMMR1 versus pMMR2 (old vs. young) and

dMMR1 versus dMMR2 (sporadic vs. germline) (Table 2 and
Table S1). Of note, differences between these groups were also not

evident in the PCA and cluster analyses. Other analyses that did not

demonstrate any significant expression difference between the

groups with large fold change ($2-fold change) included: 1) MSS

versus MSI-L; 2) stage within the pMMR1 group; 3) proximal

versus distal normal epithelium; and 4) normal epithelium from

patients with dMMR tumors versus those from patients with

pMMR tumors (data not shown). For proximal versus distal origin

of the polyps, 1 miRNA of significance was identified meeting this

threshold (miR-31 with a fold change of 3.25).

miRNA cluster on Chromosome 14
For those miRNAs that were significantly differentially

expressed (p = 6.861025 cut-off) at a fold change of 1.41 or

higher (log2$0.5) in either direction, their chromosomal distribu-

Figure 2. Plots of principal components from PCA analyses. Horizontal axis corresponds to principal component 1 (PC1), vertical axis
corresponds to PC2, and depth axis corresponds to PC3. Points are colored by group status. The percent of variation explained by a particular PC is
indicated in the axis label. (A) pMMR1 evaluated by Dukes stage; (B) evaluation by age of onset (pMMR1 - old and pMMR2 - young). (C) evaluation of 2
groupings of dMMR cases (dMMR1 - epigenetic silenced MLH1 and dMMR2 - germline); (D) the pMMR1 groups MSI-L and MSS tumors. Colors for each
of the groups being compared are shown in the upper right legend box.
doi:10.1371/journal.pone.0020465.g002
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tion was examined to determine if there was either over- or under-

representation on a particular chromosome compared to what

might have been expected when compared to the overall

frequency distribution of all miRNAs tested. When the distribution

of significantly differentially expressed miRNAs from all compar-

isons was considered over chromosomal locations (using the same

p-value threshold and fold change), over twice as many were found

on chromosome 14 than expected (Figure 4). When this

distribution was considered separately for each comparison

(Table 2), the chromosome 14 over-representation was due

almost entirely to the normal colon tissue – adenoma comparison.

Hierarchical cluster analysis of the probes was performed using the

95 significant miRNAs identified with a fold change $1.41 for the

normal colon tissue - adenoma comparison in order to assess

which miRNAs were behaving similarly. One of the clusters

resulting from this analysis contained 16 miRNAs, all of which

mapped to a single location at chromosome 14q32. The probes in

this cluster showed decreased expression in adenomas with

intermediate levels in both the pMMR and dMMR carcinoma

groups. Examples for two of these miRNAs, miR-379 and miR-

411 are shown in Figure 5.

Discussion

We examined the miRNA expression pattern in a large set of

clinically and molecularly well-characterized tissue samples. Several

key observations were made. First, unsupervised PCA and cluster

analysis demonstrated that normal colon tissue, adenomatous tissue,

pMMR1-derived carcinomas and dMMR1-derived carcinomas

were all clearly separated, supporting the presence of unique

molecular differences between these groups of tissue. Although

distinctions between normal/tumor and pMMR/dMMR tumors

have been previously reported [13,14,16,17,18,19,20], this is the

first report in which a set of well-defined tubulovillous adenomas

have been tested for global expression differences and shown to be

distinct from normal colon and both pMMR- and dMMR-derived

tumor tissue. The few reports on miRNAs in colon adenomas have

Table 2. Number of miRNAs meeting the specified
significance criteria of p,6.861025 and with various levels of
Fold Change (up or down) for specified comparisons.

Comparison Fold Change $2.0 Fold Change $4.0

normal vs. adenoma 31 6

normal vs. pMMR1 31 3

normal vs. pMMR2 25 (all) 3 (all)

normal vs. dMMR1 28 5

normal vs. dMMR2 28 (21) 5 (4)

Adenoma vs. pMMR1 6 -

Adenoma vs. pMMR2 7 (5) -

Adenoma vs. dMMR1 11 2

Adenoma vs. dMMR2 11 (5) 1 (1)

pMMR1 vs. dMMR1 4 1

pMMR1 vs. pMMR2 - -

dMMR1 vs. dMMR2 - -

Total unique 54 9

Numbers in parentheses indicate the number of miRNAs in common with the
row directly above.
doi:10.1371/journal.pone.0020465.t002
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largely been restricted to the analysis of only selected targets

[21,22,23,24,25].

Second, probe-by-probe comparisons in various group com-

parison analyses identified a set of changes in miRNA levels that

are consistent with a normal to adenoma and adenoma to

carcinoma sequence. A comparison of normal tissue to adenomas,

normal tissue to pMMR carcinomas and normal tissue to

dMMR carcinomas identified 31, 31 and 28 miRNAs that were

Figure 3. Unsupervised hierarchical clustering of miRNA profiles using the set of 54 probes meeting the Bonferonni significance
criteria (p-value ,6.861025) and $2-fold change in either direction by differential expression analyses. Samples are indicated along
the horizontal axis and include normal colon, adenomas, pMMR carcinomas (1 and 2 combined) and dMMR carcinomas (1 and 2 combined) with
group membership indicated by the color bar between the dendogram and the heat map. miRNAs are indicated by the vertical axis. The color bar
below indicates level of expression.
doi:10.1371/journal.pone.0020465.g003

Figure 4. Distribution of miRNAs across the chromosomes. Open bars represent the total number of probes available on the Illumina platform
distributed by known chromosomal location. Shaded bars represent those miRNAs with significant fold changes according to Bonferroni criteria that
are greater than 1.41 in either direction (i.e., log2$|0.5|).
doi:10.1371/journal.pone.0020465.g004
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differentially expressed with a 2-fold change or higher, respective-

ly. Of interest, the majority of miRNAs that were differentially

expressed between normal and adenoma were also differentially

expressed in both the pMMR and dMMR tissue groups. The

miRNAs showing the greatest difference in expression between

normal and adenoma that were also similarly changed in the

tumor groups include miR-135b (6.89-fold), miR-31 (4.76-fold),

miR-137 (-10-fold), miR-1 (-4.64-fold), miR-9 (-4.43-fold). Fur-

thermore, of the 31 miRNAs differentially expressed between

normal tissue and adenoma ($2-fold change and p-value #6.8e-

5), 11 up- and 20 down-regulated, 26 (84%) were also differentially

expressed with a fold change of $1.41 in the normal/pMMR1

comparison while this was the case for 27 (87%) in the normal/

dMMR1 comparison (Table S1). Importantly, all but one of

these miRNAs was differentially expressed in the same direction,

the single exception being miR-552 for the normal/dMMR1

comparison. Thus, the primary difference observed between the

adenoma and carcinoma comparisons for many of the miRNAs

appears to be a difference in the magnitude of the fold change

(Table S1). In addition to these similarities, however, significant

differences were noted. Several of the miRNAs identified were

differentially expressed in the normal-carcinoma comparisons but

not statistically different in the normal-adenoma comparison, for

example miR-375, miR-196b, miR-153, miR-147 and miR-642

(Table S1). Note that the fold difference in miRNA expression as

measured by the Illumina array is relative and not absolute.

Determination of the absolute miRNA expression differences

would require the use of more quantitative methods. As we have

previously described the accuracy of this platform [16,39],

additional studies to confirm miRNA expression differences were

not performed for this report.

These data fit well with a multi-hit model of tumorigenesis. In

this model, some initiating events are required to transition from

normal to adenoma, while additional events are required to

transition from adenoma to carcinoma. The substantial overlap for

those miRNAs that are both statistically significant and show large

fold changes between the normal-adenoma and the normal-

carcinoma comparison suggests that many, if not most, of these

miRNA changes are acquired early and persist throughout the

later stages of malignant transformation. It is important to note,

however, that these data should be interpreted with caution. The

measured differences in these experiments reflect the average

change observed for all cells present in the tissue of interest. Given

the presence of substantial cellular heterogeneity, specific cell-

based studies (such as in situ hybridization) will be required to

distinguish those changes originating from the neoplastic cells

compared to those from stromal or inflammatory cells. Thus, some

of the early and persistent changes detected in these analyses may

be due to changes in non-tumor related cellular processes.

Additionally, the magnitude of expression differences is also

dependent on the extent of the cellular heterogeneity, that is, the

ratio of neoplastic to non-neoplastic cells.

Of the nine miRNA targets that demonstrated the largest fold

changes, six were found in the normal to adenoma comparison

(Table 3). Five of these showed similar expression differences in

the two carcinoma groups. Of these six, four have not previously

been implicated in adenoma formation (miR-31, miR-1, miR-9

and miR-99a) and, thus, represent novel findings. Of interest,

miR-9 has been implicated in the c-myc pathway [40], an

oncogenic pathway well characterized in CC. A great deal of

literature exists for miR-31, demonstrating that this miRNA

regulates a number of essential signaling pathways in mammalian

cells and has been implicated in several aspects of tumorigenesis,

including metastatic progression and tumor cell growth [41]. miR-

1 is abundantly expressed in normal skeletal muscle and is

implicated in muscle differentiation [42]. In tumor conditions,

miR-1 was found to be down-regulated leading to the deregulation

of genes associated with myogenesis [43].

Two of the miRNAs demonstrating the largest fold changes for

the normal to adenoma comparison, miR-137 (decreased

expression) and miR-135b (increased expression), have previously

been reported to be important early events in colon carcinogen-

esis. For miR-137, Balaguer et al. [21] demonstrated the specific

involvement of this miRNA in both colon adenomas and

carcinomas. They demonstrated that the decreased expression is

due to abnormal hypermethylation and that transfection of this

miRNA in CC cell lines significantly inhibited cell proliferation.

This study, along with others in oral cancer and in glioblastoma

[44,45], strongly implicates a tumor suppressor model for miR-

137. In another study, Nagel et al. [24] found that miR-135a and

135b were up-regulated in both colon adenomas and carcinomas,

consistent with results from our study. In addition, they showed

Figure 5. Dot plots demonstrating expression distribution within study groups. Vertical axis is expression on the log2 scale. Horizontal axis
indicates group membership and sample sizes per group. Dashes indicate mean expression in that group. miRNA names are indicated in headers.
doi:10.1371/journal.pone.0020465.g005
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that miR-135 targets the 39 untranslated region of APC, suppresses

its expression, and induces downstream Wnt signaling. The APC

gene has long been recognized as a key tumor suppressor in

sporadic and hereditary CC [46]. In addition to the adenomas, it

is important to note that miR-137, miR-135 and the novel

miRNAs miR-31, miR-1, miR-9 were all found to be significantly

differentially expressed in both pMMR and dMMR tumors,

suggesting that these alterations are biologically involved in these

two very different types of tumors. Of interest, we have recently

shown that miR-183, one of the miRNAs that is highly expressed

in both colon adenomas and carcinomas, negatively regulated

EGR1 expression, which in turn affects the expression of PTEN.

Further, miR-183 is implicated in tumor cell migration by the

negative regulation of both EGR1 and PTEN [47].

Chr 14q32 contains one of the most miRNA rich regions in the

human genome with over 25 miRNAs organized into at least five

clusters [48]. Results from our current study demonstrated

significant involvement of this miRNA cluster in CC development,

with decreased expression in adenomas and intermediate levels

(between normal and adenoma) in the carcinoma subgroups

(Figure 3). The corresponding orthologous miRNAs in mice are

maternally imprinted and are controlled by imprinting control

regions present upstream of these miRNA clusters [49]. Previous

reports have shown that miR-127 present in this region is

epigenetically regulated and can be modulated by chromatin-

modifying drugs [50]. Further, 14q32 miRNAs are also down-

regulated in several solid tumors [51] including osteosarcoma [52].

In a recent study comparing mice iPS cells with embryonic stem

cells, the complete miRNA locus was down regulated due to

hypermethylation in the imprinting control regions [53]. Based

on these previous studies, it is very likely that the transition

from normal colon to adenoma is characterized by epigenetic

alterations that lead to the down-regulation of the 14q32 miRNAs

in colon adenomas.

As previously published [13,16,17,18,19], our studies also

demonstrate that tumors with defective DNA mismatch repair

differ with respect to their miRNA expression profile from those

with proficient DNA mismatch repair. Although these two tumor

groups were separated by both PCA and cluster analysis, only a

few miRNAs demonstrated statistically significant expression

differences ($2-fold) between the two (miR-31, miR-552, miR-

592, miR-224). It is important to note, however, that many of the

significant miRNAs identified among the three main two-group

comparisons between normal-adenoma, normal-pMMR and

normal-dMMR (Table S1) were common to each other.

Collectively, these observations indicate that although the

clinically relevant pMMR and dMMR tumor subtypes differ with

respect to their global miRNA expression patterns, the specific

changes observed for these two tumor types are also quite similar

to each other. As noted above, this similarity may reflect critical

common tumor-specific processes, or they may also reflect local

non-tumor-related cellular functions.

There are several noteworthy negative findings in this study.

Among the pMMR1 group of tumors, for example, no separation

of groups was observed by unsupervised PCA and cluster analysis

for stage, gender, age of onset or between the MSS and MSI-L

groups. These observations are consistent with the differential

expression analyses in which there were few or no statistically

significant differences between the comparisons. An analysis

across tumors for each of the two dMMR subtypes (dMMR1 and

dMMR2) also showed no discernible differences. All dMMR

tumors, regardless of their origin (germline or epigenetic), dem-

onstrated similar global miRNA expression patterns. This is the

first systematic comparison of these two different subgroups of

MMR tumors. Overall, these data suggested that the underlying

molecular characteristics among those cases within both the

pMMR group (young, old, Stages I-IV, MSS, MSI-L) and within

the dMMR group (different MMR genes, different mechanisms

of gene inactivation) are more similar to each other than

expected. Although there may be a greater degree of heteroge-

neity at the level of gene mutations and among genes involved in

particular pathways, the overall miRNA profiles appear to be

fairly homogeneous. Alternatively, more subtle expression

differences that have significant biologic effects may still be

present but not easily distinguishable with the methods used in

this study. Of note, however, the cluster analysis did suggest

the possible presence of two sub-populations within the dMMR1

group of tumors, even though these were restricted to cases

having epigenetic inactivation of MLH1 (Figure 1B). Addi-

tional studies will be required to confirm this latter intriguing

observation.

Tumors with pMMR are characterized by the presence of

widespread chromosomal gains and loss, and these changes have

been detected by a variety of techniques such as Allelic Imbalance

and array CGH studies [54]. Tumors with dMMR on the other

hand, demonstrate few of these changes and overall tend to be

near-diploid [2]. The nine most significant differentially expressed

miRNAs identified in this study (Table 3) all map to regions

commonly found to have gains or losses in CC (loss of 1p, 2p,

5q, 9p, 15q, 18q and 21q and gain of 1q, 7q and 20q) [54].

Chromosomal alterations as measured by array CGH [55] for a

subset of the cases could not explain the expression differences

observed for any of the six miRNAs examined (data not shown),

although the data for those miRNAs that map to multiple sites

(mir-9, 1q, 5q, 15q; and miR-1, 18q and 20q) are more difficult to

interpret. Overall, these data suggest that copy number differences

are not likely to be responsible for the expression differences

observed for the six miRNAs examined. For at least one of these,

mir-137, methylation appears to be the primary mechanism

leading to abnormal expression [21].

In summary, this is the first systematic analysis of global miRNA

changes in colon adenomas along with several well-defined sub-

groups of colon adenocarcinomas. The data presented provides an

expanded view of miRNA changes that occur in the process of

carcinogenesis. We have identified several miRNAs (miR-31, miR-

1, miR-9, miR-99a, miR-137 and miR-135b) that show significant

differential expression in adenomas compared to normal colon

tissue, with several of these linked to critical pathways previously

identified for CC, including APC/WNT signaling and cMYC. The

finding of several novel miRNAs provide the opportunity to

identify associations with known CC pathways or the identification

of novel pathways and mechanisms that might be important in the

transition from normal to adenoma and from adenoma to

carcinoma. We also provide evidence that the miRNA changes

detected in the early stages of disease are important in both

pMMR and dMMR tumors. This data suggested the involvement

of common biologic pathways in both types of tumors, in spite of

the presence of numerous molecular differences between them,

including differences at the miRNA level. Finally, we also

demonstrate a high degree of similarity between a number of

tumor subgroups, again highlighting the involvement of common

biologic pathways.

Supporting Information

Figure S1 Dot plots for those miRNA targets with fold
change (up or down) $4 and with p,6.861025. Vertical

axis is expression on the log2 scale. Horizontal axis indicates group
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membership and sample sizes per group. Dashes indicate mean

expression in that group. miRNA names are indicated in headers.

(TIF)

Table S1 miRNA targets with fold change (up or
down) $2 and with p,6.861025 for the various group
comparisons.

(DOC)
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