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Abstract

Nanoindentation techniques recently developed to measure the mechanical response of crystals under external loading
conditions reveal new phenomena upon decreasing sample size below the microscale. At small length scales, material
resistance to irreversible deformation depends on sample morphology. Here we study the mechanisms of yield and plastic
flow in inherently small crystals under uniaxial compression. Discrete structural rearrangements emerge as a series of abrupt
discontinuities in stress-strain curves. We obtain the theoretical dependence of the yield stress on system size and geometry
and elucidate the statistical properties of plastic deformation at such scales. Our results show that the absence of dislocation
storage leads to crucial effects on the statistics of plastic events, ultimately affecting the universal scaling behavior observed
at larger scales.
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Introduction

Over the past years, experimental investigations have gathered

increasing evidence that plastic deformation of crystalline

materials proceeds through intermittent bursts of activity [1–8].

Plastic flow advances through a sequence of strain avalanches of

broadly distributed sizes. Avalanches have been observed

experimentally under stress control conditions at various scales.

Although such plastic fluctuations may be hard to detect at

macroscopic scales, they dramatically affect mechanical properties

of crystalline materials at smaller scales, ultimately producing

detrimental effects on material formability [9]. The introduction of

microcrystal compression testing [4] has allowed access to the

microscale and introduced sample size as a crucial variable in this

scenario. Size effects have dramatic consequences on yield, making

smaller samples harder to deform and more unpredictable [6]. It is

then natural to wonder if such behavior would hold unchanged

below the micrometer scale.

While several nanoindentation techniques have been developed

to measure material resistance to irreversible deformation and

plastic flow, the experimental observation of plasticity at the

nanoscale still represents an enormous challenge [10]. Colloidal

crystals, however, were proven to deform plastically by activating

dislocation motion, in remarkable analogy with crystalline

materials [11–14]. The unmatched advantage of working with

such systems is brought in by their size. Micrometer-sized colloidal

crystals may contain few thousands, or even hundreds, of particles.

This aspect allows one to project the problem of nanomechanics

into a length scale that is easily accessible on experimental

grounds. In this work, we address some of the challenges posed by

nanomechanics, by providing a theoretical study of the mecha-

nisms of yield and plastic flow in inherently small systems. We

propose a simple geometry, which can be reproduced in

experiments on two-dimensional micrometer colloidal crystals,

and provide robust input for mechanical testing of crystalline thin

films below the micrometer scale. Our aim is to show that at very

small scales the irreversible deformation of materials proceeds in a

novel way, deviating from the allegedly universal behavior

observed in larger systems. To this end, we investigate the

dependence of the yield stress on system size and geometry and the

statistical properties of plastic deformation and energy dissipation

in uniaxially compressed two-dimensional small crystals, by means

of atomistic simulations and analytical modeling.

Methods

We first consider the compression of perfect crystals of various

sizes and aspect ratios. Crystals are simulated as two-dimensional

aggregates of short-range interacting monodisperse particles in

their lowest energy configuration, that is a triangular lattice in the

xy plane. Boundaries parallel to the y direction are in contact with

rigid walls, while those parallel to the x direction are free (see

Fig. 1). Uniaxial compression is applied symmetrically along the x
direction. We consider two different compression protocols: i)

displacement-control, in which rigid walls are quasi-statically

displaced at equal constant velocities in opposite directions; ii)
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force-control, in which the force exerted on the walls is slowly

increased at a constant driving rate. We consider a set of N
particles located at the nodes of a triangular lattice and confined

between two rigid walls (as in Fig. 1). Particles interact pairwise

through a short-range potential Vi j . For simplicity, we use a

Lennard-Jones potential, but any other short-range one would

lead to qualitatively similar results. We implement overdamped

dynamics simulations. This choice is inspired by experiments on

colloids, in the presence of a viscous carried fluid. The equation of

motion for each particle i at position ri

C
dr i

dt
~
X

j

f
r i{r j

d

� �
zfd (r i), ð1Þ

where C is the viscous friction coefficient of the carrier fluid, f is

the interparticle force, d the characteristic size of the particles, and

fd is the corresponding driving force for each deformation

protocol. We choose as units of space and time d and

t0~Cd2=V0 respectively, with V0 the amplitude of the inter-

particle potential, and we measure the driving force fd in units of

V0=d . As a consequence we can take V0~1 and d~1 without loss

of generality. In dimensionless units, the linear system sizes L0
x

considered range from L0
x~16 to L0

x~72. Particles are confined

by two rigid walls, that we model as two extra columns of particles

of the same size, commensurate with the crystalline planes (see

Fig. 1). In displacement control simulations, rigid walls are driven

quasi-statically with a constant velocity v~0:005 in simulation

units, whereas in the force control simulations the force exerted on

the walls is slowly increased at a constant driving rate equal to

0:005. In both cases, these values are sufficiently small to avoid the

overlap of plastic events. Smaller driving rates do not yield

significantly different results. Upon compression, the strain c is

measured as the ratio between the deformation along x and the

size of the undeformed sample, i.e. c~DLx=L0
x (engineering

strain), while the applied stress s is the force per unit surface (L0
yd )

exerted on the rigid walls.

The coupled Eqs. (1) for i~1,:::,N are integrated numerically

with an adaptive step size fifth-order Runge-Kutta method with

precision 10{6. Thermal and hydrodynamic effects on the

particles have been neglected. Thermal fluctuations can be

disregarded because the characteristic time for dislocation motion

is much faster than the characteristic time for thermal diffusion.

Moreover in the problem at hand, elastic interactions would

prevail over hydrodynamic interactions between the particles, if in

suspension.

Results and Discussion

Elastic loading and plastic yield
In both protocols, the response is initially elastic. In a perfect

crystal, the elastic limit is reached as soon as the motion of a pair of

opposite sign edge dislocations is activated, as in Fig. 2, marking

the beginning of the irreversible or plastic flow regime (see

Supporting Videos S1 and S2). We use this limit to define the yield

stress sy and the yield strain cy of the crystal.

By moving, dislocations allow the system to slip plastically and

emit/dissipate part of the stored elastic energy. The value of both

the yield stress sy and strain cy are found to be independent of the

deformation protocol. Figure 3 shows the dependence of the yield

stress on the geometry of the sample under examination. Different

systems sizes L and aspect ratios r~L0
x=L0

y are considered. Even

below the microscale, we qualitatively recover the inverse size

dependence of the yield stress that makes smaller samples stronger.

According to the literature, in larger systems the dependence of

the yield stress on the system size follows a power law [6], which

corroborates the view of plastic yield as a critical phenomenon,

dominated by scale free rearrangements of dislocation patterns

over finite-size effects [15]. Plasticity is dominated by bulk

phenomena and surfaces are somehow peripheral to such

mechanisms. At smaller scales, our results show instead that sy

is strongly affected by both size and geometry of the specimen.

Size effects at this length scale were experimentally observed in

compression tests in gold nanopillars [16], which were able to

relate the increase in hardness to the dislocation starvation

mechanism. Figure 2 shows that in our systems yield is mediated

by a single dislocation pair (or even by a dislocation alone in the

case of an imperfect crystal) and the onset of plasticity does not

require the collective motion of a complex dislocation network.

Dislocation interplay with boundaries thus becomes crucial. Early

studies showed that the interaction of dislocations with rigid

substrates is inherent to the strengthening of sheared thin films

[17,18]. Nevertheless, the role of rigid boundaries in uniaxial

compression experiments is still a matter of investigation.

The connection between the yield stress and the boundary

effects can be easily visualized in our simple model system. Up to

values of the stress very close to sy, the behavior of the system is

elastic and the strain energy per unit length is approximated by

Ee(sy)&s2
y

S

2Yr
, ð2Þ

where S is the specimen surface and Yr is the effective Young

modulus. Here and in the following we consider energies per unit

length, given the quasi two-dimensional nature of the problem. At

yield the onset of dislocation motion is almost instantaneous

compared to the dynamics of steady loading. Dislocations must

account for the stress distribution inside the compressed sample,

giving rise to the elastic energy density E. However, before

dislocation motion is initiated, the elastic energy stored in the

dislocated system must be comparable to the energy Ee right

before yield, as approximately no dissipation has occurred yet.

This leads to the simple relation

Ee(sy)&
ð ð

s

Edxdy: ð3Þ

Equation (3) establishes a connection between the yield stress and

dislocation strain distribution. It also bears implicitly the

information about the dependence of the yield stress on the

system size and geometry.

The essence of our problem then lies in the stress distribution

that accounts for E. In particular, an anomalous stress concentra-

tion is required at rigid boundaries, in order to enforce the

condition of vanishing displacements. It is evident that boundary

conditions alter dramatically the energy landscape E in the

specimen and ultimately affect the yield stress, as prescribed by Eq.

(3).

An estimate of the yield stress
By means of elasticity theory, we can demonstrate that the stress

fields produced inside the sample by an edge dislocation close to a

rigid boundary are long ranged and decay as *1=r, thus showing

no screening effects, unlike dislocations close to free boundaries

[19]. For simplicity, we consider a positive straight edge
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dislocation with Burgers vector perpendicular to the rigid wall, a

distance l apart from the wall, as in Fig. 4 (left). The problem has

translational invariance along the z direction (plane strain

conditions): the wall is at x~0, the dislocation is placed in

(l,0,z). We can calculate the exact displacement field u as

u~uinf zuimgzw where uinf is the displacement field of the

original positive dislocation in (l,0,z) in an infinite medium, uimg is

the displacement of the image dislocation of opposite sign in

({l,0,z) and w is and additional field, which is analytic in xw0
and satisfies the equilibrium elastic equations

m+2wz(lzm)+(+:w)~0, ð4Þ

with boundary conditions such that the full u(0,y,z)~0, being m
the shear modulus and n the Poisson ratio. Eq. (4) with the given

boundary conditions is commonly known as the 1{plane problem

in linear elasticity. Several techniques can be devised to find exact

solutions [20] and the complexity resides solely on the complicated

form of boundary conditions. Here we follow [21] as reviewed by

[20] and observe that Eq. (4) can be rewritten as a Laplace

equation in the form

+2 wz
lzm

2m

x

y

z

0
BBB@

1
CCCAq

2
6664

3
7775~0, ð5Þ

where q~+:w is the dilatation. The problem can then be solved

using the Green function method, being the Green function for

Eq. (5) in the 1{plane geometry known from classical

electrostatics. While further details will be given in a future

Figure 1. System and stress strain curves. (Left) Schematic representation of a uniaxial compression test on a perfect crystal monolayer. (Right)
We obtain i) a serrated-flow stress response under displacement (or strain) control conditions, i.e. ruling the position of the bounding walls (inside the
grey boxes), or ii) a staircase shaped curve under force or stress control conditions, i.e. regulating the applied force on the driving walls. The dashed
line signals the location of the yield point.
doi:10.1371/journal.pone.0020418.g001

Figure 2. Dislocation nucleation at yield. (Left) Perfect crystal, a dislocation pair is nucleated. Dislocations are represented as pairs of 5- and 7-
coordinated particles, in blue and red respectively. (Center) Instantaneous velocity field of the particles. (Right) Surface-disordered crystal, dislocations
may be individually nucleated at surface steps.
doi:10.1371/journal.pone.0020418.g002
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publication [22], for the problem at hand we obtain

wx~
1

p
arctan

y

lzx
z

1

2(1{n)

ly

(lzx)2zy2

� �
z

z
x

p(3{4n)

y

(lzx)2zy2
z

l

2(1{n)

2y(lzx)

½(lzx)2zy2�2

" #
ð6Þ

wy~{
x

p(3{4n)

lzx

(lzx)2zy2
z

l

2(1{n)

(lzx)2{y2

½(lzx)2zy2�2

" #

wz~0:

From the above result, the elastic strain tensor eij , the stress

tensor sij and the elastic strain energy density E can be calculated

using linear elasticity. Interestingly, while the stress components

derived from uinf zuimg decay like *1=r2 (being that the stress of

a dislocation dipole), the stress due to w will decrease like *1=r.

Overall, the stress field of an edge dislocation close to a rigid

boundary will hence be long-ranged, as opposed to the case a free

boundary. As a consequence, stress fields are able to sample the

entire system size and are responsible for the size-sensitivity of the

yield stress.

In the case of our simulations, however, Eq. (6) may seem of

limited help in calculating the strain energy E at yield for our

model system, where we have two fixed boundaries, two free

surfaces and two dislocations of opposite signs, as the exact

solution of such a problem would be great complexity.

Nevertheless, an approximation of the integral in Eq. (3) can be

provided as follows. Fig. 4 (right) shows the result of the

superposition of the solutions for the shear stress of two edge

dislocations of opposite signs, as calculated from Eq. (6), arranged

in a configuration which mimics the one observed at yield in our

simulations for the perfect crystal. For simplicity we consider

Burgers vectors along x, but the general solution would lead to

similar results [22]. In such a configuration, the condition of zero

displacement at the vertical walls is not met anymore, however one

can prove that the deviations from zero affect the stress and the

strain energy in a negligible way if the dislocations are far apart. At

the same time, Fig. 4 (right) shows that the two dislocations behave

like a dipole, in the sense that the stress goes rapidly to zero outside

the region enclosed by them, approximating the stress field close to

free boundaries. Such observation is verified analytically and is

valid for all stress components.

We can conclude that the configuration in Fig. 4 (right) provides

an acceptable approximation for the elastic problem in our

simulations and an estimate for the strain energy E in Eq. (3).

Finally, upon inverting Eq. (3) and computing numerically the

integrals of E, we evaluate the yield stress and its dependence on

the system size and geometry. Predictions from our theory are

given in Fig. 3 (solid lines) and are in remarkably good agreement

with our simulation results, presented below (discrete points) ,

suggesting that boundaries and shape effects are essential in our

problem. Given the nature of the approximations involved, we

stress that ours is just a dimensional estimate. However the

agreement with simulations corroborates the view that the role

played by boundaries is integral to nanoplasticity.

Plastic avalanches
As soon as the yield point is reached, the response of the system

to further loading differentiates depending on the deformation

protocol. Under conditions of displacement control, stress-strain

curves are characterized by serrated yielding, while they assume a

staircase shape under conditions of stress control. We emulate

realistic realizations of compressed samples by introducing

randomness at free boundaries as follows. The initial state of

each realization is obtained from the perfect crystal by extracting a

random number of particles from one free surface and relocating

them at random positions on the opposing surface. In this way

both the number of particles and the linear size of all simulated

specimens are kept constant, while the morphologies of their free

surfaces are allowed to vary stochastically. Strain plateaus Dc in

force control or stress drops Ds in displacement control always

correspond to plastic events in which dislocation motion is

reactivated in order to reduce the elastic energy stored during

prior loading phases (see Fig. 1). Remarkably, a statistical analysis

of event sizes over several realizations of surface disorder (Fig. 5)

reveals that sizes are power-law distributed as

p(Ds)*Ds{ts p(Dc)*Dc{tc : ð7Þ

Due to the limited system size, moving dislocations easily leave

the sample through free boundaries. Pioneering studies have shown

that in sub-micrometer Ni samples, pure mechanical loading can

induce dislocation depletion within the sample [23]. In our case

plastic flow proceeds through the activation and motion of few

dislocations at a time, while no storage is observed (see Supporting

Video S3). Such phenomenology differs from the widely accepted

picture of plastic flow at larger scales. Yet, our statistical study leads

to broadly distributed plastic events for several system sizes,

suggesting that kinematic constraints and long range dislocation

interactions still rule plastic flow, as shown in Fig. 5. The cumulative

distribution is defined as pc(x)~

ðx

0

p(x’)dx’. Upon a closer

inspection, a noticeable difference in the exponent value is

nevertheless encountered, as we show in the following.

Figure 3. Yield stress in our nano-scale geometry. Smaller
systems are stronger, but also different aspect ratios r induce different
yield patterns. Discrete data: simulation results. Solid lines: theoretical
predictions (see main text).
doi:10.1371/journal.pone.0020418.g003
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Plastic event sizes are commonly quantified in experiments by

looking at the amount of energy Wdis released during each event

or, under stress control conditions, by recording the magnitude of

platen displacements. By defining the stored potential energy as

U~
X

ivj
Vij , each variation of U in our simulations will be

given by the energy balance relation

DU~WdiszWext: ð8Þ

Here the dissipated energy Wdis can be measured as the time

integral of the dissipated power, i.e. Wdis:
ð

dWdis~
X

i

ð
fividt

(force time velocity for all particles), whereas Wext is the work done

by the external load, Wext~

ð
sdc. The strain is the sum of its

elastic and plastic components c~celzcp. As in our system no

defect accumulation is encountered, we have Ds!Dcel (linear

elasticity) and evidently DU*(Dcel)
2.

Let us first consider the case of force control. If focusing on a

single platen displacement event, we have Ds^0 and Dcel^0.

This implies that the change in stored elastic energy is roughly

zero, DU^0, and, according to Eq. 8, Wdis^Wext, which means

that the dissipated energy comes essentially from the work done

during the platen displacement event of magnitude Dc^Dcp.

Then evidently Wdis*Dcp, as the amount of slip due to a moving

dislocation is proportional to the energy dissipated in the process

[24]. This relation indeed is verified in our simulations , as shown

in Fig. 6(a). Experimental studies at larger scales show that both

quantities follow a power-law distribution, decaying with an

exponent close to the mean-field value t~3=2 [24]. The striking

aspect of the exponent t is its universality [9]. In our model, which

aims to reproduce nanoscale plastic flow, the exponent tc*0:9
deviates substantially from the universal value, suggesting that at

such scales the microscopic dislocation dynamics giving rise to

plastic deformation are qualitatively different. Signals of univer-

Figure 4. The role of rigid boundaries. (Left) Shear stress distribution around an edge dislocation in an infinite medium. The right side of the
picture is shaded, indicating that we are interested in how the stress field changes upon imposing a rigid boundary. (Center) Shear stress distribution
around an edge dislocation located near a rigid boundary. (Right) Shear stress distribution due to a pair of opposite sign dislocations, confined within
two rigid walls. Stresses rapidly vanish in the y direction. Color code: Lighter regions indicate positive stresses, darker regions negative stresses.
Vanishing stresses are represented in light blue. Curves of equal stress are represented as a guide to the eye. For simplicity, the case of Burgers
vectors perpendicular to the walls was considered here.
doi:10.1371/journal.pone.0020418.g004

Figure 5. Statistics of plastic events. Left: (a) Distribution of platen displacements p(Dc) in force-control simulations, decaying with an exponent
tc&0:9. (b) Cumulative distribution pc of platen displacements. Right: (a) Distribution of stress drops in displacement-control simulations, decaying
with an exponent ts&0:7. (b) Cumulative distribution of stress drops pc(Ds).
doi:10.1371/journal.pone.0020418.g005
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sality breakdown also come from experiments of compressed high-

purity LiF micropillars [25].

Under displacement control conditions, instead, the statistical

analysis of plastic flow and dissipated energy can be performed by

looking at the distribution of stress drops (Fig. 5(b)). In Fig. 6(b) we

show the evolution of the energy balance during compression. For

quasi-static driving, stress drops occur almost instantaneously, i.e.

at constant total strain (Dc^0, or Wext^0). This implies that,

during the stress drop, a sudden decrease of the elastic strain Dcel

of the crystal must occur at the expense of increasing its plastic

strain, jDcel j^jDcpj. According to Eq. 8, being Wext^0 during

the stress drop, the energy dissipated by plastic avalanches must

balance the change of internal energy, DWdis^DU . Then, as in

the the case of force control, since there is no accumulation of

large numbers of defects, Ds!Dcel and DU*(Ds)2 . Being stress

drops distributed according to a power-law of exponent ts, we

obtain the following exponent relation tE~(tsz1)=2 for the

dissipated energy distribution, which for ts*0:7 yields tE*0:85,

in good agreement with the results obtained for tc in the force

control protocol. We emphasize that stress drops in displacement-

controlled deformation are in principle different from stress

increments between bursts in force-controlled tests. Recent

experimental studies have shown the stress increments are

Weibull-distributed in Mo micro- and nanopillars [26].

Compared to numerical studies of size effects in dislocation

dynamics at the microscale [9], which highlight a strong size

dependence of the avalanche distribution cutoff, our small systems

span a very narrow linear size range. Plasticity is thus always

mediated by equally small numbers of dislocations and maximum

avalanche sizes for systems with initial size L0
x~16, 24 and 32 do

not give rise to appreciable differences in the avalanche-size cutoff

as plastic flow advances. It should also be noted that by definition

of c, platen displacements are always Dcv1, and similarly under

displacement control, large stress drops are bounded by the very

nature of the short-range interatomic potential considered.

As for the origin of the anomalous avalanche exponents, we

should remark that the novel behavior is related to the inability of

the system to store large numbers of dislocations. In the absence of

collective behavior, plastic flow departs from the traditional

picture of cooperative dislocation organization. In fact our

simulations show a behavior which approximately recalls a

sequence of load-unload events, much in the spirit of stick-slip

dynamics or fracture/failure mechanics. We notice that an energy

release exponent very close to 1 has been recently encountered in

simulations of yielding and failure of heterogeneous materials in

the plastic steady state [27]. However the rationale behind the

analogy with our finding remains to be ascertained. Finally, a

statistical analysis of surface roughness of strained systems would

provide further insights into the nature of plasticity at such scale.

However, linear sizes of our free surfaces are only one order of

magnitude larger than the lattice constant and such a study would

not lead to significant results. Further studies in this direction are

currently under way.

Conclusions
In conclusion, we have shown that the onset of plasticity at small

scales is mediated by few dislocations. The number and

arrangement of nucleated dislocations must account for the

distribution of stress stored inside the crystal during the elastic-

loading regime, allowing one to estimate the dependence of the

yield stress on sample size and geometry. Our results confirm that

both size and shape are crucial factors in determining the strength

of materials at these scales. We find that plastic flow occurs in an

intermittent manner reminiscent of irreversible deformation at

larger length scales. Plastic avalanches of broadly distributed sizes

are still observed, however, the absence of dislocation storage has

important effects on the scaling characteristics of viscoplastic

dynamics, which ultimately violate the universal mean-field

behavior observed at larger scales. Our results are thus a

significant example of source-limited deformation [23] and arise

naturally from the impossibility of such a small system to store

dislocations . The new exponent values are obtained for a two-

dimensional crystal geometry and should be relevant for thin films

of several self-assembled nanoparticles under external loading

conditions and amenable of experimental analysis in colloidal

systems.

Supporting Information

Video S1 The first appearance of a dislocation pair signals the

onset of yield for the perfect system. As soon as each dislocation

reaches the opposite rigid boundary, plastic activity stops and the

the first event is over. The animation consists of 7 snapshots of the

dynamics. Top: dislocations are represented as pairs of 5- and 7-

Figure 6. Energy balance during plastic flow. (a) Temporal evolution of the nominal strain c and (inset) the dissipated energy in a force control
compression test. In the quasi-stationary limit, platen displacements occur at constant stress and the dissipated energy is proportional to the increase
of plastic strain. (b) Energy balance in a displacement control compression test. Stress drops occur at almost constant strain.
doi:10.1371/journal.pone.0020418.g006
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coordinated particles, in blue and red respectively. Bottom:

velocity field corresponding to the dislocation configuration above.

The modulus of the velocity vector is represented. Lower velocities

are in red, higher in violet, according to the color scheme of the

visible spectrum.

(MOV)

Video S2 Time evolution of the velocity field at the time-steps

shown in Video 1. Moving dislocations trigger particle motion and

thus elastic energy dissipation.

(MOV)

Video S3 Dislocation dynamics in the flow regime. Plastic events

correspond to the activation of few dislocations at a time.

Dislocation storage is not observed for such small systems. The

animation consists of 20 snapshots of the dynamics. Conventions

are as in Video 1.

(MOV)
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