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Abstract

Autism is a neurodevelopmental disorder characterized by deficits in verbal communication, social interactions, and the
presence of repetitive, stereotyped and compulsive behaviors. Excessive early brain growth is found commonly in some
patients and may contribute to disease phenotype. Reports of increased levels of brain-derived neurotrophic factor (BDNF)
and other neurotrophic-like factors in autistic neonates suggest that enhanced anabolic activity in CNS mediates this
overgrowth effect. We have shown previously that in a subset of patients with severe autism and aggression, plasma levels
of the secreted amyloid-b (Ab) precursor protein-alpha form (sAPPa) were significantly elevated relative to controls and
patients with mild-to-moderate autism. Here we further tested the hypothesis that levels of sAPPa and sAPPb (proteolytic
cleavage products of APP by a- and b-secretase, respectively) are deranged in autism and may contribute to an anabolic
environment leading to brain overgrowth. We measured plasma levels of sAPPa, sAPPb, Ab peptides and BDNF by
corresponding ELISA in a well characterized set of subjects. We included for analysis 18 control, 6 mild-to-moderate, and 15
severely autistic patient plasma samples. We have observed that sAPPa levels are increased and BDNF levels decreased in
the plasma of patients with severe autism as compared to controls. Further, we show that Ab1-40, Ab1-42, and sAPPb levels
are significantly decreased in the plasma of patients with severe autism. These findings do not extend to patients with mild-
to-moderate autism, providing a biochemical correlate of phenotypic severity. Taken together, this study provides evidence
that sAPPa levels are generally elevated in severe autism and suggests that these patients may have aberrant non-
amyloidogenic processing of APP.
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Introduction

Autism, which is a neurodevelopmental disorder, is mostly

characterized by deficits in verbal communication, impairment in

social interactions, and the presence of repetitive, stereotyped, and

compulsive behaviors. [1]. First described by Kanner in 1943 [2],

the prevalence of the disorder has increased in recent years to near

1 in 110 [3,4,5], likely a combination of increased social

awareness, broader disease classification, and true increase in

disorder prevalence. Unfortunately, the neurobiological basis of

the disorder is at present very poorly understood. Behavioral

phenotypes exhibit very high heterogeneity, which has led to the

concept of the autism spectrum. Studies of twins show high autism

spectrum concordance between monozygotic twins (60–90%) and

very low concordance between dizygotic twins (10%), stressing the

significant heritable basis of the disorder [6]. Syndromes with

increased prevalence of autism (i.e. Fragile X syndrome, Rett

syndrome) and rare mutations linked to the disorder have

highlighted the contribution of synaptic dysfunction to disorder

etiology [7].

A widely replicated finding made by both head circumference

measurements and volumetric MRI is the presence of macrocephaly in

a proportion of autistic patients (15–30%), with up to 90%

demonstrating some degree of brain overgrowth in early years

[8,9,10,11]. This trajectory of early brain overgrowth has also been

established in at least one longitudinal study [12]. The exact nature of

this overgrowth is not quite clear, as expected increases in neuronal and

synaptic densities were not found when autistic brains were analyzed

by N-acetylaspartate magnetic resonance spectroscopy. Instead

reduced neuronal and synaptic densities were found [13]. However,

studies have found increased levels of brain-derived neurotrophic factor

(BDNF) and other neurotrophic factors in the blood of autistic neonates

and adults [14,15,16], suggesting that enhanced anabolic activity in the

CNS may mediate this overgrowth effect.

In this context, we previously assayed the peripheral levels of the

secreted alpha-secretase product of the amyloid-b precursor protein

(APP), or sAPPa, in autistic and control samples [17]. APP is a type I

transmembrane protein that undergoes proteolytic processing by

secretase enzymes to liberate soluble fragments. APP expression is
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regulated at both the transcriptional and post-transcriptional level.

The APP promoter has a complex structure containing many

proximal and distal regulatory elements that mediate constitutive

and stimulated regulatory activities [18,19,20,21,22,23]. Regulatory

elements in the 59UTR can independently drive promoter activity,

such as a reported CAGA box [24]. Regulatory elements in the

59UTR may also post-transcriptionally regulate APP expression.

Examples include an iron responsive element [25] and IL-1

responsive element [26] involved in regulating stimulated transla-

tion of the APP transcript. The APP 39UTR also mediates post-

transcriptional regulation through several stability control elements

that regulate APP mRNA stability [27,28,29]. MicroRNA sites in

the 39-UTR also regulate APP expression, with miR-101 mediating

a very potent inhibitory effect on translation [30,31]. Once

expressed, APP is sequentially cleaved by b-secretase (BACE1)

and the c-secretase complex, releasing sAPPb and amyloid-b (Ab)

peptide, the major component of amyloid plaques found in

Alzheimer’s disease [32]. Ab is liberated from APP in two

predominant forms: the more abundant 40 amino acid form

(Ab1-40) and the less abundant, more fibrillogenic, 42 amino acid

form (Ab1-42). Alternative cleavage of APP by a-secretase and c-

secretase releases the non-amyloidogenic 3kDa peptide (p3 peptide)

and sAPPa, instead of intact 4 kDa Ab and sAPPb [32,33]. sAPPc
may be released if APP is cleaved by the c-secretase complex at the

C-terminus of the Ab domain prior to a- or b-secretase cleavage.

The various forms of sAPP are distinguished by the length of Ab
domain contained at the C-terminal end: sAPPc contains the full Ab
domain, sAPPa contains only residues 1–6 of Ab, and sAPPb
completely lacks the Ab sequence. These three sAPP species

primarily constitute the pool of total sAPP in the human plasma as

mentioned subsequently in the text. Notably, sAPPa has been well

characterized and previously found to exhibit a wide array of

neurotrophic activities [34,35] that might be important for

neurodevelopment. Further, sAPPa has been shown to stimulate

the transdifferentiation of adult bone marrow progenitor cells

(MAPCs) to neuronal phenotypes [36].

We postulate that elevated levels of sAPPa could also contribute

to brain overgrowth in a pathological state. In our previous study,

we discovered that in a subset of patients with severe autism and

aggression, plasma levels of sAPPa were significantly elevated

relative to controls and patients with mild-to-moderate autism [17].

This has led us to the hypothesis that sAPPa may contribute to an

anabolic environment in the central nervous system (CNS) leading

to brain overgrowth in autism. However, one weakness of the

previous study was small sample size. Here, we extend our previous

finding of increased sAPPa levels in severe autism in a larger,

independent cohort of patients. For the first time we demonstrate

that the increase in the sAPPa level is a general finding in severe

autism that does not require an aggressive behavioral phenotype.

Further, we find that BDNF levels are decreased in the plasma of

patients with severe autism as compared to controls. Crucially, we

also report a decrease in levels of both Ab1-40 and Ab1-42 peptides

and sAPPb in severely autistic patients as compared to controls.

These results suggest that the non-amyloidogenic processing

pathway may be favored in severe autism with the implication that

increased neurotrophic sAPPa may contribute to a state of anabolic

excess promoting overgrowth in the autistic brain.

Results

Sample Demographics
Thirty-nine patients, including 34 males, were recruited for this

study using the inclusion criteria described above (Table 1).

Eighteen patients with no overt neurological or psychiatric

abnormalities served as normal controls. Six patients with

confirmed autism diagnoses were classified with mild-to-moderate

disease as specified by CARS score between 30 and 36.5. Fifteen

autistic patients were classified as severe based on CARS score of

37 or greater. Mean ages (in years 6SD) at the time of plasma

collection for controls, mild-to-moderate and severely autistic

patients were 8.1764.33, 6.1660.68, and 6.4063.04, respectively.

One-way ANOVA did not detect any statistically significant

differences in the mean age between any of the groups (F = 1.316,

p = 0.281). Two children with autism had epilepsy. All children

with severe autism were mentally retarded as determined by IQ

scores less than 70. Medication history and other clinical features

for most patients were non-significant.

sAPPa is Elevated in the Plasma of Severely Autistic
Patients

As a first step in characterizing the expanded set of patient

plasma samples encompassing control, mild-to-moderate, and

severely autistic patients, plasma levels of total sAPP (a and b
combined) were analyzed by Western blot using the well-

characterized monoclonal anti-N-terminus APP antibody 22C11

[45] , which detects C-terminal truncated sAPP in the absence of

full-length APP. HSA-immunosubtracted plasma samples were

used in this analysis. Total sAPP bands were densitometrically

quantified using Image J software. No significant difference was

observed between control and either category of autistic patient by

ANOVA (F = 0.239, p = 0.788) (Figure 1).

To determine if the primary biochemical change observed in our

previous study of autistic and control patients was also observed in

the larger patient set under study here, sAPPa levels were

specifically assayed by ELISA. Initial tests revealed that the linearity

and sensitivity of this ELISA was suboptimal due to non-specific

binding attributed to the high protein content of unmodified human

plasma (data not shown). Therefore, all plasma samples were HSA-

immunosubtracted prior to analysis. No change was observed in the

mean levels of sAPPa between control and mild-to-moderate

autistic patients. Notably, a very distinct and statistically significant

increase in sAPPa (,20%) was observed in severely autistic patients

relative to controls following ANOVA (F = 3.82, p = 0.032) and

post-hoc Dunnett’s multiple comparison test (p = 0.032) (Figure 2).

This confirms the finding of increased plasma sAPPa in severely

autistic patients with aggression described in our previous study but,

importantly, the results described here did not require coexisting

behavioral aggression. Therefore, elevated peripheral sAPPa
appears to be a trend observed in the broader population of

severely autistic patients. sAPPa ELISA levels were further

normalized to total sAPP Western signals (relative units) and while

there was a trend for elevated sAPPa:total sAPP ratios in severely

autistic samples (data not shown), no statistically significant

differences were observed between any groups following ANOVA

(F = 2.725, p = 0.079).

sAPPb is Decreased in the Plasma of Severely Autistic
Patients

To determine if the secreted APP product of amyloidogenic

processing, sAPPb, was altered in the plasma of autistic patients in

this plasma set, sAPPb levels were assayed in HSA-immunosub-

tracted plasma by a specific sandwich ELISA. Indeed, sAPPb
levels were significantly decreased (,60%) in the plasma of

severely autistic patients relative to controls (Figure 2B) as

determined by ANOVA (F = 3.223, p = 0.05) and post-hoc

Dunnett’s multiple comparison test (p = 0.035). Ratios of

sAPPb:total sAPP were also calculated and no significant
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differences were observed between any groups (data not shown)

following ANOVA (F = 1.876, p = 0.168).

Ab Peptides are Decreased in the Plasma of Severely
Autistic Patients

Increased plasma sAPPa and decreased sAPPb might suggest,

among other possible explanations, that full-length APP is

preferentially processed along the non-amyloidogenic pathway in

severe autism. To test whether production of the end-product of

the amyloidogenic pathway was also affected, both Ab1-40 and

Ab1-42 plasma levels were independently assessed by ELISA.

These assays were not affected by the high protein content of

plasma. Thus, unprocessed plasma samples were used for ELISA

analysis. The level of Ab1-40 was unchanged between control and

mild-to-moderate autistic patients but was significantly decreased

(,60%) in severely autistic patients relative to controls following

ANOVA (F = 4.487, p = 0.018) and post-hoc Dunnett’s multiple

comparison test (p = 0.031) (Figure 3A). Similarly, plasma Ab1-42

levels demonstrated no change in patients with mild-to-moderate

autism as compared to controls but a nearly significant decrease

(,50%) in severely autistic patients as compared to controls

following ANOVA (F = 3.340, p = 0.047) and post-hoc Dunnett’s

multiple comparison test (p = 0.055) (Figure 3B). Ratios of Ab1-

40:Ab1-42 revealed no significant difference between any groups

following ANOVA (F = 0.589, p = 0.56) (Figure 3C).

To further characterize changes to the balance of non-

amyloidogenic and amyloidogenic APP processing products across

patient samples, levels of Ab peptides (products of amyloidogenic

processing) were normalized to levels of sAPPa (product of non-

amyloidogenic processing) as determined by ELISA. Levels of

both Ab1-40 and Ab1-42 were more significantly reduced in

severely autistic samples relative to controls following sAPPa
normalization (Figure 4), as indicated by ANOVA [(F = 7.281,

p = 0.002) and (F = 4.875, p = 0.015), respectively] and post-hoc

Dunnett’s multiple comparison test (p = 0.003 and p = 0.012,

respectively). This highlights the inverse nature of changes to the

secreted products of the amyloidogenic and non-amyloidogenic

pathways in the plasma of these severely autistic patients.

BDNF Protein Levels are Decreased in the Plasma of
Severely Autistic Patients

BDNF has reported links to autism and may have functional

roles similar to sAPPa. To determine if the levels of BDNF were

altered in the plasma of our patient set, unprocessed samples were

assayed by human BDNF specific ELISA. Preliminary ELISA

analyses indicated that high protein levels in unprocessed samples

did not affect sensitivity and linearity of the assay (data not shown).

Peripheral BDNF levels have been reported to change with age

Table 1. Demographic information for study participants.

Patient
No Dx CARS Age (yrs)a Sex Ethnicity

1 Normal 15 7.7 Male Caucasian

2 Normal 15 6.0 Male Caucasian

3 Normal 15 5.3 Female Caucasian

4 Normal 15 4.8 Female Caucasian

5 Normal 15 6.5 Male Caucasian

6 Normal 15 4.2 Female Caucasian

7 Normal 15 7.7 Male Hispanic

8 Normal 15 11.8 Male Caucasian

9 Normal 15 14.7 Male Caucasian

10 Normal 15 18.3 Male Caucasian

11 Normal 18 11.3 Male Caucasian

12 Normal 15 9.6 Male Caucasian

13 Normal 15 13.6 Male Caucasian

14 Normal 15 3.8 Male Caucasian

15 Normal 15 7.5 Male Caucasian

16 Normal 15 2.7 Male Caucasian

17 Normal 15 2.8 Male Caucasian

18 Normal 15 8.9 Male Caucasian

19 Autism (M) 30 5.7 Male Caucasian

20 Autism (M) 33 7.0 Male Caucasian

21 Autism (M) 36 6.4 Male Caucasian

22 Autism (M) 30 6.5 Male Caucasian

23 Autism (M) 33 6.3 Male Caucasian

24 Autism (M) 32.5 5.1 Male Caucasian

25 Autism (S) 50 6.0 Male Caucasian

26 Autism (S) 52 5.5 Male Caucasian

27 Autism (S) 42 6.7 Male Caucasian

28 Autism (S) 57 6.4 Male Caucasian

29 Autism (S) 48 5.9 Male Caucasian

30 Autism (S) 43 5.2 Male Caucasian

31 Autism (S) 47 5.6 Male Caucasian

32 Autism (S) 37 4.7 Female Caucasian

33 Autism (S) 43 7.8 Female Caucasian

34 Autism (S) 39 7.9 Male Caucasian

35 Autism (S) 39 2.8 Male Caucasian

36 Autism (S) 40 5.9 Male Caucasian

37 Autism (S) 56 6.1 Male Caucasian

38 Autism (S) 45 3.2 Male Caucasian

39 Autism (S) 53 16.5 Male Caucasian

(M), mild-to-moderate autism; (S), severe autism; CARS, Childhood Autism
Rating Scale total scores.
aAge in years at time of blood draw.
doi:10.1371/journal.pone.0020405.t001

Figure 1. Plasma levels of total sAPP in control and autistic
patients. Plasma levels of total sAPP (a and b) were assayed by
Western blot from control and autistic patients. Autistic patients were
classified as mild-to-moderate or severe based on clinical CARS score.
Total sAPP bands were analyzed by scanning the final blot followed by
densitometry, ImageJ quantification, and normalization against b-actin
bands. Statistical significance was assessed using ANOVA. No significant
differences observed in mean total sAPP levels between control or
autistic patients.
doi:10.1371/journal.pone.0020405.g001
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[14] so that this is an important consideration in study design. In

the current study, patient age was somewhat variable but did not

differ significantly between groups. In order to increase the power

of analysis, we analyzed the differences in BDNF levels using an

ANCOVA model with age as a covariate, disorder classification as

a grouping variable, and plasma BDNF levels as a dependent

variable. This analysis allowed for the variation in BDNF levels

associated with disorder diagnosis to be estimated independent of

variation associated with age. Plasma BDNF levels (Figure 5A)

were found to be significantly decreased (,45%; F = 3.672,

p = 0.036) in severely autistic patients relative to controls following

post-hoc Sidak’s adjustment for multiple comparisons (p = 0.038).

No significant differences were observed between mild-to-moder-

ate autism and controls (p = 0.311) or between mild-to-moderate

and severe autism (p = 0.98) as assessed by post hoc Sidak’s

correction. Comparing estimated marginal means (Figure 5B)

derived from model parameter estimates revealed that regressing

out age-associated variability enhanced the decrease in mean

plasma BDNF levels observed in severely autistic patients relative

to controls. No significant correlation was found between plasma

levels of sAPPa and BDNF as evaluated using Pearson’s

correlation coefficient (R = 20.081, p = 0.634).

Discussion

In the present report, we demonstrate that, in a much larger

patient cohort, sAPPa levels are increased and BDNF levels

decreased in the plasma of patients with severe autism (determined

by CARS score) as compared to controls. On the contrary, sAPPb
levels are decreased in the plasma of severely autistic patients.

Further, we present evidence for the first time that both Ab1-40

and Ab1-42 levels are significantly decreased in the plasma of

patients with severe autism relative to controls. Taken together our

results demonstrate that the non-amyloidogenic pathway may be

preferentially active in severely autistic patients. These findings

apparently do not extend to patients with mild-to-moderate

Figure 2. Plasma levels of sAPPa and sAPPb in control and autistic patients. (A) Plasma sAPPa and (B) sAPPb levels were quantified from
albumin-depleted samples of control and autistic patients by corresponding ELISA procedures. sAPPa and sAPPb quantities were normalized against
immunodepleted plasma protein concentrations. No difference was observed in the mean plasma sAPPa and sAPPb levels of mild-to-moderate cases
of autism relative to controls. Plasma sAPPa levels were significantly increased and sAPPb levels decreased in severely autistic patients relative to
controls Statistical significance assessed using ANOVA followed by post-hoc Dunnett’s t-test for multiple comparisons (*p,0.05).
doi:10.1371/journal.pone.0020405.g002

Figure 3. Plasma levels of Ab1-40 and Ab1-42 in control and autistic patients. (A) Ab1-40 levels were quantified by a specific sandwich
ELISA in plasma samples. Ab1-40 quantities were normalized against plasma protein concentrations. Statistical significance was assessed by ANOVA.
Plasma Ab1-40 levels are significantly decreased in severely autistic patients relative to controls (*p = 0.031). (B) Ab1-42 levels were quantified by
ELISA in non-immunodepleted plasma samples. Absolute Ab1-42 quantities were normalized against plasma protein concentrations. Statistical
significance was assessed by ANOVA. Plasma Ab1-42 levels are significantly different among all groups as analyzed by ANOVA. Differences in levels
between severely autistic patients and normal controls are nearly significant (p = 0.055). (C) Ratios of Ab1-40 and Ab1-42 were calculated. No
significant differences were observed between any groups (p = 0.56).
doi:10.1371/journal.pone.0020405.g003
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autism, providing a biochemical correlate of phenotypic severity.

However, it should be noted that the total number of mild-to-

moderate patients was quite low in this study, likely reducing

power of detecting true differences between this group and

controls.

Any putative plasma-based biomarker requires replication with

independent clinical cohorts. In this context, the present study

replicates and extends our previous work [17], which was - to our

knowledge - the first published account of abnormal levels of AD-

associated biomarkers in autistic patients, thereby providing

validation of this finding in two independent cohorts. The primary

finding from our original study is, for the most part, in agreement

with data from the current study, which uses a less restrictive

classification scheme whereby severe autism is defined by CARS

score .36, without requiring coexistent aggressive behavior.

Specifically, our past study demonstrated that sAPPa levels were

significantly increased in patients with severe autism and

aggression relative to controls and mild-to-moderate autism. Our

current study replicated this finding in a larger, independent

cohort and, importantly, found the trend to maintain significance

without the requirement for coexistent behavioral aggression. The

implication is that elevated peripheral sAPPa is a general finding

across the population of severely autistic patients. We also

analyzed levels of various amyloidogenic products of the APP

pathway. The finding that the major products of amyloidogenic

processing (Ab1-40, Ab1-42, and sAPPb) are all decreased in

severely autistic patients lends credence to the idea that the non-

amyloidogenic pathway is favored in severely autistic patients.

Some minor discrepancies between the previous and current

studies exist and are described below. First, total sAPP plasma

Figure 4. Plasma Ab levels normalized to sAPPa. To better characterize the balance between amyloidogenic and non-amyloidogenic pathways
in autism, ratios of (A) Ab1-40:sAPPa and (B) Ab1-42:sAPPa were calculated for each patient. Both ratios were significantly reduced following ANOVA
and post-hoc Dunnett’s multiple comparison test. *p = 0.003, +p = 0.012.
doi:10.1371/journal.pone.0020405.g004

Figure 5. Plasma levels of BDNF in control and autistic patients. BDNF levels were quantified by ELISA in plasma samples from control and
autistic patients. Absolute quantities were normalized against plasma protein concentrations. (A) Mean BDNF levels are significantly reduced in
severely autistic patients compared to controls when adjusting age as a covariate and following post-hoc Sidak’s adjustment for multiple
comparisons. (B) Estimated marginal means for plasma BDNF levels were computed with the age covariate held at 86.18 months. The mean
difference between control and severely autistic patients is enhanced when age is regressed (*p = 0.038). Thus, BDNF levels are decreased in the
plasma of severely autistic patients relative to controls.
doi:10.1371/journal.pone.0020405.g005
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levels were found to consist of primarily the a-secretase cleaved

product of APP (sAPPa) species and were elevated in severe autism

with aggression in the original study. The current study did not

demonstrate any significant difference between levels of total sAPP

in plasma of autistic and control samples. One potential

explanation is that the Western immunoblotting technique used

to assay total sAPP levels in this study is only semi-quantitative and

may not be sensitive enough to detect subtle differences in total

sAPP between severely autistic and control patients. Second, the

degree by which sAPPa was increased in the original study was

much greater than in the current study. One possible explanation

for this discrepancy is that, as mentioned, the criterion for

inclusion into the severe autism group was less stringent for the

present study as compared to the original. It is possible that plasma

levels of sAPPa are increased more significantly in subgroups of

autistic patients with more homogenous behavioral phenotypes

and/or genotypes. The development of sophisticated classification

schemes that cluster patients into groups with more phenotypic

homogeneity or provide phenotype factors that approximate

continuous variables for covariate analysis would likely identify

larger biological differences in the levels of plasma sAPPa between

groups. Such methods based on individual ADI-R items have been

suggested [46,47] and could be incorporated into future study

designs. Third, the original study did not detect the decrease in

plasma levels of Ab1-40 or Ab1-42, which were detected in the

current study. However, in the original study, a trend towards

decreased levels of both Ab species was noticed despite not

reaching statistical significance. The enhanced power of the

current study likely enabled the true differences in Ab peptide

levels between severely autistic and control patients to attain

significance.

As mentioned, the strength of the current study is in the

increased power. Our previous study included 10 control and 10

autistic patient samples (3 severe with aggression and 7 mild-to-

moderate). Here we include for analysis 18 control, 6 mild-to-

moderate, and 15 severely autistic patient plasma samples. While

the power of the mild-to-moderate analyses is still low and may

explain why no differences were observed compared to controls,

the power associated with control versus severe autism analyses is

greatly enhanced.

Analyses from two independent laboratories have recently

confirmed a portion of these findings [48,49]. The first study

demonstrated increased plasma sAPPa levels in a large sample of

autistic patients relative to controls without requiring separate

analysis by autism severity level. This lends further credence to our

conclusion that sAPPa levels are significantly increased in the

plasma of severely autistic patients. Whether this increase

represents a generalized finding in autism or is restricted to a

more homogeneous subgroup of autistic patients sharing a

common disorder etiology is still not clear.

Autism appears to be characterized by a state of excess brain

growth in some patients, as evidenced by the widely replicated

finding of macrocephaly (i.e. enlarged head circumference) in 15-

30% of autistic patients and up to 90% in some studies

[9,10,12,50]. This volumetric deviance tends to initiate around

12 months of age and continues until middle childhood after

which point some patients may have smaller than average brain

volumes [11,50]. Some studies suggest an increase in the relative

proportion of white matter to grey matter and cerebellar

abnormalities [9,10]. Further, a decrease in the size of corpus

callosum suggests that disruptions in interhemispheric connections

may exist [51]. These findings suggest that an excess of short, local

circuit connections in an environment of general brain overgrowth

may be favored in autism [52]. Importantly, amyloid plaque found

in AD does not appear to be a component of the neuropatholog-

ical description of autism [53]. Given that processing of full-length

APP to sAPPa precludes the generation of Ab, we would not

expect that elevated sAPPa in autism would presage future plaque

deposition. This is further supported by the decreased levels of

both forms of Ab peptide levels in the plasma of severely autistic

patients tested here.

The biological activity of the secreted metabolite of APP is well-

established. The first recognized biological effect of sAPP was its

requirement for the normal proliferation of fibroblasts in culture

[54] in addition to the promotion of neuronal PC12 cell adhesion

to culture substratum [55]. Studies on cultured neurons and

animals quickly followed and have since identified trophic effects

that include the: 1) enhancement of neurite outgrowth

[56,57,58,59,60,61], 2) stimulation of neural stem cell proliferation

[62,63,64], differentiation and migration [65], 3) promotion of

synaptogenesis [66,67,68], and 4) modulation of synaptic plastic-

ity, learning and memory [69,70]. Additionally, sAPP has been

demonstrated to protect neurons against a variety of insults that

include glucose deprivation and excitotoxicity, Ab and reactive

oxygen species, and ischemic brain injury [71,72,73]. Following

the discovery of multiple secretase activities [74,75], sAPPa was

found to mediate the majority of neuronal-enhancing effects.

Specifically, the neuroprotective action of sAPPa against glucose

deprivation, excitotoxicity, and Ab toxicity is 100-fold greater than

that mediated by sAPPb [76]. The effects of excess sAPPa are

unknown and only beginning to be studied. Recently, Conti et al.

[77] found plasma sAPPa higher in a small sample of adults with

Down’s syndrome compared to both intellectually disabled and

control subjects. Autism has been associated with 10% of children

with Down’s syndrome.

Based on the data from our past and current work, we

hypothesize that the elevated levels of peripheral sAPPa observed

in severe autism is an indicant of metabolic imbalance in the CNS

– specifically an anabolic state driven by high levels of sAPPa and

perhaps other neurotrophic factors (other than BDNF) in the

brains of these patients. In our hypothesis, this state of anabolic

excess is likely to contribute to the biological substrate of the

disorder. Given the wide array of neurotrophic effects, we predict

that excessive levels of sAPPa in the brains of severely autistic

patients would induce neurodevelopmental changes that mimic

the volumetric and neuropathological changes observed in autism

[11]. What may underlie the increase in sAPPa in autism? A

decrease in beta-secretase processing is the most likely possibility,

supported by the decrease in levels of sAPPb and both Ab1-40 and

Ab1-42 peptides observed in this study. An increase in alpha-

secretase processing is a second, not mutually-exclusive, possibility.

We also cannot rule out changes to holo-APP expression. In this

context, mGluR5-dependent signaling may contribute. A mech-

anism for mGluR5-dependent translation of APP recently has

been described [78]. In this pathway, translation of APP mRNA is

constitutively inhibited by binding of (Fragile X mental retardation

protein) FMRP to the mRNA. FMRP is a RNA-binding protein

that represses translation of targeted mRNA transcripts, including

APP [78], locally within dendrites [79] and in an activity-

dependent manner. A proposed mechanism underlying repression

of APP translation by FMRP involves recruitment of CYFIP1, a

FMRP-binding partner, to the APP transcript. CYFIP1 then binds

to eIF4E and inhibits its interactions with other binding partners of

the translation initiation complex [80]. Following activation of

mGluR5 receptors, FMRP dissociates from the APP mRNA and

translation proceeds. Interestingly, excessive mGluR5 signaling

events (due to absence of FMRP) have been described in Fragile X

syndrome, a syndrome with high prevalence of co-morbid autism
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[81,82]. Genetic down-regulation of mGluR5 signaling was shown

to reverse the behavioral deficits in FMRP-KO mice [83,84]. If

mGluR5 signaling is enhanced in severely autistic patients,

excessive APP translation would be expected, inevitably leading

to higher sAPPa levels. Simple mGluR5 antagonism would be

expected to reverse this effect.

A separate candidate neurotrophin shown to be dysregulated in

the blood and serum of autistic patients is BDNF. The original

report on peripheral BDNF levels found a significant increase in

archived neonatal dried blood samples from autistic patients

relative to controls [16]. This led to the hypothesis that elevated

BDNF in the CNS may contribute to brain overgrowth observed

in autism [85]. Specifically, an early pre-or postnatal rise in BDNF

may herald eventual brain overgrowth while other factors may

support overgrowth at later ages. Follow-up studies, including

some from independent labs have either demonstrated a similar

increase in peripheral BDNF with autism [14,15,86], found no

association with autism [87], or demonstrated reduced peripheral

BDNF levels with autism [88,89] , as found in this report. The

discrepancy between studies likely arises from differences in

sample types analyzed, assay methods used, repeated freeze-thaw

cycles and age of patients when samples were collected. In

typically developing individuals, peripheral BDNF levels have

been found to rise rapidly with age [14], and then decrease into

adulthood [89]. Consequently, due to the anticipated effect of age

on BDNF, and because of a somewhat high variation of age in our

tested samples, we utilized patient age as a covariate when

analyzing BDNF levels. Using the ANCOVA model, we observed

a significant decrease in the levels of plasma BDNF in severely

autistic patients relative to controls. If peripheral BDNF levels

correlate well with brain BDNF levels as has been suggested [90],

our finding of decreased plasma BDNF would suggest that BDNF

alone cannot account for brain overgrowth in autism. Indeed, a

recent study has found decreased BDNF levels in the brains of

autistic patients as compared to controls and has suggested this

may lead to reduced BDNF-Akt-Bcl2 anti-apoptotic signaling in

autism [91]. This finding lends further credence to the idea that

sAPPa or other neurotrophic factors must contribute to this

phenotype. At the neuronal and synapse level, it is noteworthy that

BDNF-p75NTR-dependent signaling appears to promote devel-

opmental axon pruning through axon degeneration [92]. A CNS

environment of excess sAPPa and reduced BDNF might be

expected to promote neuronal proliferation, differentiation, and

synaptogenesis along with a deficit in axon pruning, leading to a

state of general brain overgrowth.

Neurobiologically, the contrasts between neurodegenerative

conditions (such as Alzheimer’s and some forms of schizophrenia)

and conditions involving overgrowth/overactivity of growth

pathways (such as FXS and autism) are quite intriguing and our

recent work has addressed the molecular-pathway underpinnings

of such contrasts (Sokol et al, 2011). The present work should lay

the path for further research beyond autism. For example, it is not

clear whether the sAPPa-mediated brain overgrowth pathway

described herein is applicable to autism only or can be extended to

other psychiatric disorders with either brain overgrowth or

undergrowth. Autism-spectrum and psychotic-spectrum condi-

tions (i.e. schizophrenia, bipolar disorder, and major depression)

represent two major suites of disorders of human cognition and

behavior with altered development and function of the social brain

[93], Should one then expect sAPPa to follow different trajectories

in these conditions? What about the gender bias in autism, where

the prevalence in boys is 1 in 70, as opposed to 1 in 110 for all

children? Could this be explained by ‘‘genomic conflict’’ during

brain development [94], or is it due to some unknown

environmental or epigenetic factors? [95]. Future studies will need

to carefully investigate levels of sAPPa, BDNF and other protein

markers in samples from different genders and other psychiatric

conditions to answer some of these questions.

In summary, we have confirmed the finding from our original

report of increased sAPPa in the plasma of severely autistic

patients. We have also found that this elevation is not limited to

only severely autistic patients exhibiting aggressive behaviors.

Further, we demonstrate for the first time that Ab1-40, Ab1-42

and sAPPb levels are reduced in the plasma of severely autistic

patients. These biochemical changes may be characteristic of a

subgroup of patients with a more homogenous phenotype and as

such could be a useful biomarker to track in future studies or

perhaps for inclusion in a future diagnostic panel of biomarkers.

Furthermore, we predict that the peripheral elevation of sAPPa is

indicative of high CNS sAPPa levels and that this contributes to an

anabolic state that underlies macrocephaly, brain overgrowth and

other neurodevelopmental abnormalities in autism. Given that the

highest rate of brain overgrowth in autism appears to occur in the

first few years of life [50], measurement of peripheral sAPPa levels

during this time of development could reveal even greater

differences between severely affected patients and controls, and

serve as a marker of autism severity. It must be stressed that it is

presently unknown if the change in peripheral sAPPa is mirrored

in the brain of severely autistic patients. These samples are difficult

to obtain due to low age of the required control and affected

patients. Nevertheless, future studies are required to address this

caveat. Taken together, this research should have a significant

impact, not only in clarifying the etiology of autism and related

neurodevelopmental disorders, but also in guiding future research

on the sAPP and mGluR pathways at the cellular level and as

putative therapeutic drug targets.

Materials and Methods

Ethics statement
This study was approved by the Indiana University School of

Medicine Institutional Review Board’s Human Subjects Commit-

tee (IUPUI campus, Indianapolis, IN, USA). All parents signed

informed consent for their child’s participation. Additionally, all

research was conducted according to the principles expressed in

the Declaration of Helsinki.

Participants, diagnostic inclusion criteria, and measures
The inclusion criteria for the autism group were a diagnosis of

Autistic Disorder based on the DSM-IV criteria determined by an

experienced neurologist (DKS), which was further corroborated by

the Autism Diagnostic Interview-Revised (ADI-R) [37]. The ADI-

R is a comprehensive, semi-structured parent interview that

assesses a child’s developmental history and relevant behaviors

characteristic of autism and generates a diagnostic algorithm for

Autistic Disorder. Children with genetic causes of autism, e.g.,

Fragile X syndrome, were excluded. Typically developing age-

and gender-matched volunteers comprised the control group.

These children had no major medical problems, were on no

medication, and had met their developmental milestones and/or

were functioning in typically developing classrooms. The Child-

hood Autism Rating Scale (CARS) [38] was obtained for all

participants. This parent questionnaire is a 15-item behavioral

rating scale developed as a screen for autism and to classify

severity. Validity and reliability for the CARS have been

established [38]. Participants were administered age appropriate

cognitive testing (i.e., Mullens Scales of Early Learning [39] or

Wechsler Intelligence Scale for Children-IV [40]).
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Plasma analyses
A. Removal of albumin from human plasma. For some

antibody-dependent assays described below, the levels of highly

abundant proteins present in plasma samples interfered with assay

sensitivity, specificity and/or linearity due to non-specific protein

interactions. To circumvent these issues, aliquots of raw plasma

samples were pre-fractionated by depletion of the majority of

human plasma albumin using ProteomeLab IgY human serum

albumin (HSA) spin column-based proteome partitioning kit

(Phenomenex, Torrance, CA). Briefly, plasma samples were pre-

filtered using Corning Costar Spin-X 0.45 mm cellulose acetate

filters, diluted 25-fold using kit-supplied 1x dilution buffer, and

then incubated with anti-HSA-coated beads for 15 minutes.

Albumin-depleted plasma was collected as flow-through.

Preliminary SDS-PAGE experiments utilizing flow-through,

wash and eluate fractions demonstrated that a large majority of

albumin was successfully removed by this procedure (data not

shown). These diluted, albumin-immunosubtracted samples were

then used directly without further concentration for biochemical

analyses as indicated. Concentration was not performed in order

to avoid variation in the final volume of HSA-immunosubtracted

plasma obtained after concentration.

B. Measurement of total protein content in the

plasma. Two microliters of raw plasma were diluted ten-fold

with freshly prepared Dulbecco’s phosphate buffered saline

(DPBS) and measurement of total protein content in the plasma

was performed using Bradford protein assay method as described

previously [41]. Total protein content of all HSA-

immunosubtracted plasma samples was also determined using

the Bradford method.

C. Levels of total sAPP by Western immunoblot

assay. To avoid non-specific binding of antibody with

abundant HSA in raw plasma, we used HSA-immunosubtracted

plasma when assaying levels of total sAPP by Western

immunoblotting. Briefly, equal volume of denatured HSA-

immunosubtracted plasma was loaded on two 26-lane Bis-Tris

Criterion XT gels (BioRad) and electrophoresis was carried out for

1 hour at 180 V and the proteins from the gels were

electrophoretically transferred onto a PVDF membrane and

blocked in 5% non-fat milk as previously described [42]. After

blocking, the membrane was probed with monoclonal anti-APP

antibody (Clone 22C11, Millipore, MA, USA), which recognizes

the 66-81 amino acid sequence of APP (N-terminus). This epitope

is present in all sAPP forms (such as sAPPa, sAPPb and sAPP c)

and their post-translational modifications and, thus, allows

detection of the total sAPP pool. After incubation with HRP-

conjugated anti-mouse secondary IgG, blot signals were obtained

using the ECL method. Band densities were quantified using

Image J software [43] and densities were normalized to total

protein content of HSA-immunosubtracted plasma.

D. Levels of sAPPa by ELISA. For all ELISAs, we

performed initial experiments with different volumes of plasma

samples to establish linearity of the assays. Equal volumes of HSA-

immunosubtracted plasma were used to assay the levels of sAPPa
by the sandwich ELISA method (Immuno-Biological Laboratories,

Gumma, Japan or IBL). Briefly, an equal volume (50 ml) of HSA-

immunosubtracted plasma was added onto wells pre-coated with

capture monoclonal anti-human sAPPa antibody (clone 2B3) and

incubated overnight at 4uC. After washing several times, the wells

were incubated with HRP-conjugated monoclonal anti-APP

detection antibody (clone 10D1). Colorimetric signals were

obtained after addition of chromogen substrate followed by

application of 1N sulfuric acid. A standard curve was prepared

by using known amounts of recombinant human sAPPa protein.

sAPPa values (ng/ml) in all HSA-immunosubtracted plasma

samples were normalized to total protein content of HSA-

immunosubtracted plasma.

E. Levels of sAPPb by ELISA. We have measured the levels

of sAPPb by a commercially available ELISA kit (IBL) as per the

manufacturer’s protocol. Briefly, 50 ml of HSA-immunosubtracted

plasma from each control and autism subject was separately

loaded onto a prelabeled well of a 96-well ELISA plate and

allowed to incubate overnight at 4uC with pre-coated anti-human

sAPPb wild type antibody, which recognizes C-terminus of human

sAPPb. After several washes, the wells were incubated with HRP-

conjugated anti-APP detection antibody (10D1). Colorimetric

signals were obtained in the same way as mentioned in the section

of sAPPa ELISA. A series of known amounts of human

recombinant sAPPb samples were likewise incubated and

processed to prepare a standard curve. Similar to other ELISAs

used in this report, sAPPb values were normalized by the total

protein content of HSA-immunosubtracted plasma.

F. Levels of Ab1-40 peptide by specific ELISA. Ab1-40

levels were measured using an Ab-40-specific sandwich ELISA kit

(Biosource, MN, USA) as described previously [44]. Wells were

pre-coated with monoclonal antibody specific for the N-terminal

amino acid sequence of human Ab peptide. Equal volumes of raw

plasma samples mixed with detection antibody (rabbit polyclonal

antibody specific for C-terminus of human Ab1-40) were

incubated at room temperature for three hours. Colorimetric

signals were obtained in a similar fashion to other ELISAs [44]. A

standard curve using known amounts of Ab1-40 was also

performed and plasma Ab1-40 values (pg/ml) were normalized

to total protein content of raw plasma samples.

G. Levels of Ab 1–42 peptide by specific ELISA. Ab1-42

levels were measured using an Ab-42-specific ELISA kit

(Biosource, MN, USA). Wells were pre-coated with monoclonal

anti-Ab antibody which is specific to the N-terminal sequence of

human Ab peptide. The detection antibody was specific for the C-

terminal sequence of human Ab1-42 peptide. The assay was

performed as per the manufacturer’s guideline. Levels of Ab1-42

in the plasma were calculated from a standard curve prepared

using known amounts of human Ab1-42 peptide and normalized

to the total protein content of raw plasma samples. Ratios of Ab1-

40 and Ab1-42 were calculated from total protein content-

normalized values.

H. Measurement of BDNF in plasma by ELISA. For

BDNF assay, equal volume of platelet-free raw plasma was loaded

into a plate pre-coated with mouse monoclonal anti-BDNF

antibody (R & D Systems, MN, USA) and incubated at room

temperature for two hours. HRP-conjugated monoclonal anti-

BDNF detection antibody was added to the wells and further

incubated for one hour. After brief wash, substrate solution was

applied to the wells and incubated for 30 minutes. The reaction

was stopped by application of Stop Solution (2N sulfuric acid). The

colorimetric signals were measured using a microplate reader

(BioRad, CA, USA). A standard curve with known amounts of

recombinant human BDNF was also performed to calculate

absolute quantities of BDNF present in each plasma sample. This

BDNF value was normalized to the total protein content of each

plasma sample, as measured by the Bradford method.

Data Analysis
All statistical analyses were performed using SPSS Statistics 17.0

software and all plots were constructed using GraphPad Prism 4.0

software. Unless otherwise stated, all data are presented as mean

6 SEM. Further, ANOVA or ANCOVA analyses were performed

where indicated under the framework of the general linear model.
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Post-hoc multiple comparisons were assessed using either Dun-

nett’s t-test or Sidak’s multiple comparison test, as indicated. The

a threshold was set to 0.05 for determining statistical significance

in all cases.
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