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Abstract

Bitter taste stimuli are detected by a diverse family of G protein-coupled receptors (GPCRs) expressed in gustatory cells.
Each bitter taste receptor (TAS2R) responds to an array of compounds, many of which are toxic and can be found in nature.
For example, human TAS2R16 (hTAS2R16) responds to b-glucosides such as salicin, and hTAS2R38 responds to thiourea-
containing molecules such as glucosinolates and phenylthiocarbamide (PTC). While many substances are known to activate
TAS2Rs, only one inhibitor that specifically blocks bitter receptor activation has been described. Here, we describe a new
inhibitor of bitter taste receptors, p-(dipropylsulfamoyl)benzoic acid (probenecid), that acts on a subset of TAS2Rs and
inhibits through a novel, allosteric mechanism of action. Probenecid is an FDA-approved inhibitor of the Multidrug
Resistance Protein 1 (MRP1) transporter and is clinically used to treat gout in humans. Probenecid is also commonly used to
enhance cellular signals in GPCR calcium mobilization assays. We show that probenecid specifically inhibits the cellular
response mediated by the bitter taste receptor hTAS2R16 and provide molecular and pharmacological evidence for direct
interaction with this GPCR using a non-competitive (allosteric) mechanism. Through a comprehensive analysis of hTAS2R16
point mutants, we define amino acid residues involved in the probenecid interaction that result in decreased sensitivity to
probenecid while maintaining normal responses to salicin. Probenecid inhibits hTAS2R16, hTAS2R38, and hTAS2R43, but
does not inhibit the bitter receptor hTAS2R31 or non-TAS2R GPCRs. Additionally, structurally unrelated MRP1 inhibitors,
such as indomethacin, fail to inhibit hTAS2R16 function. Finally, we demonstrate that the inhibitory activity of probenecid in
cellular experiments translates to inhibition of bitter taste perception of salicin in humans. This work identifies probenecid
as a pharmacological tool for understanding the cell biology of bitter taste and as a lead for the development of broad
specificity bitter blockers to improve nutrition and medical compliance.
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Introduction

As the primary mechanism by which animals detect and evaluate

nutrients within foods and avoid ingesting toxins, the sense of taste

has a significant impact on food selection, nutrition, and health. For

example, the sense of taste in individuals is reported to correlate

with a variety of habits including dietary preference [1], alcohol

intake [2], smoking [3], and patient compliance with medical

regimens [4]. It is therefore highly desirable to manipulate bitter

taste perception and bitter taste receptors so that beneficial food

products and medicines may be rendered more palatable. Recently,

bitter taste receptors have been implicated in several aspects of

respiratory and gastrointestinal function, hinting at a broader

biological role for this receptor family [5,6,7,8,9,10,11]. Therefore,

bitter taste receptor modulation may also represent a new approach

for understanding the function of bitter taste receptors in non-

gustatory cells of airway epithelia, smooth muscle, and the intestine.

Bitter substances are recognized by, and bind to, a family of

taste receptors (TAS2Rs) that are expressed in bitter taste cells,

and initiate signaling via activation of intracellular heterotrimeric

G proteins [12,13,14,15,16,17]. TAS2Rs are phylogenetically

distinct from the canonical rhodopsin (class A) receptor family and

more closely related to the frizzled/smoothened family of GPCRs

[18]. There are at least 25 human full-length TAS2Rs, clustered

on 3 human chromosomes, which are highly divergent in

sequence, sharing between 30–70% amino acid homology [18].

Additionally, there are a large number of TAS2R pseudogenes

(over 30% of the human TAS2R repertoire), and there are more

than 80 single nucleotide polymorphisms (SNPs) among individual

TAS2R genes [19,20], several of which result in variation in the

range and intensity of various human bitter taste perceptions

[21,22,23,24]. Unlike most GPCRs, TAS2Rs recognize a diverse

variety of chemical moieties. While many bitter taste receptors

remain poorly characterized, the ligand specificity of several

TAS2Rs has been explored in detail. These include hTAS2R16,

which responds to b-glucosides such as salicin [25], hTAS2R38,

which responds to thiourea-containing molecules such as the drugs

phenylthiocarbamide (PTC) and 6-propyl-2-thiouracil (PROP)
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[21], and hTAS2R43 and hTAS2R31 (formerly known as

hTAS2R44), a closely related pair of receptors that transduce

the signal for the bitter taste of saccharin [23,26]. Despite the

diversity of chemicals recognized by TAS2Rs and the continued

interest in developing bitter blockers to mask the bitter taste of

drugs and certain foods, only a single synthetic inhibitor against

this class of GPCRs has been described to date [27]. The

identification of additional compounds that inhibit TAS2Rs may

help our understanding of the broader biological relevance of this

class of receptors, particularly if they utilize diverse mechanisms of

inhibition.

Probenecid (p-(dipropylsulfamoyl)benzoic acid) is an FDA-

approved inhibitor of the organic anion transporter Multidrug

Resistance Protein 1 (MRP1) and other organic anion transporters

[28,29]. Clinically, probenecid is used as a treatment for gout in

humans [30], acting as a uricosuric agent, and is also co-

administered with antibiotics and other chemotherapeutic agents

to improve their efficacy by reducing their excretion. Within the

laboratory, probenecid is commonly used to prevent the efflux of

calcium-sensitive fluorescent dyes during studies of cellular

calcium mobilization [31]. As such, many protocols for conducting

GPCR calcium influx assays recommend including probenecid to

facilitate dye loading. During the course of our studies of bitter

taste receptor signaling, we unexpectedly discovered that proben-

ecid inhibited the activation of the bitter taste receptor hTAS2R16

in response to its cognate ligand salicin. This activity occurred

rapidly and was independent of probenecid’s activity as a transport

inhibitor, suggesting that probenecid interacts with the receptor

rather than modulating downstream signaling processes. Consis-

tent with its rapid inhibition, hTAS2R16 point mutations can

suppress probenecid inhibition, suggesting a direct interaction with

hTAS2R16 and an allosteric inhibitory mechanism in which the

salicin and probenecid binding sites are distinct. Inhibition by

probenecid was also observed for additional TAS2R receptors,

including hTAS2R38 and hTAS2R43, but not for hTAS2R31 or

for other non-gustatory GPCRs tested. In human perceptual

studies, probenecid suppressed the bitter taste perception of

salicin, demonstrating a correlation between the in vitro findings of

probenecid inhibition and human bitter taste phenotype. The

discovery of probenecid as an inhibitor of bitter taste receptors and

human bitter perception offers insight into a molecular mechanism

for designing modulators of human taste perception for improved

food selection, nutrition, and health.

Results

Probenecid is an inhibitor of the hTAS2R16, hTAS2R38,
and hTAS2R43 bitter taste receptors

In order to study the cellular and molecular mechanisms of

human bitter taste perception, we used an in vitro calcium flux

assay in HEK-293T cells that monitors human bitter taste

receptor activation and inhibition. The addition of salicin

(3 mM) to HEK-293T cells transiently expressing hTAS2R16

and Ga16gust44 induces an increase in intracellular calcium levels

that is measured using a Ca2+-activated fluorescent dye (Figure 1A).

Probenecid is commonly used to improve the cellular uptake of

various fluorescent dyes into cells and is typically recommended

for improving the sensitivity of GPCR calcium flux assays [31]. It

was therefore surprising that, upon a one hour pre-incubation with

1 mM probenecid (without washout), agonist responses of

hTAS2R16 were attenuated to near baseline levels (Figure 1A).

Using the calcium flux assay, we tested for probenecid inhibition

of other TAS2Rs. Similar to hTAS2R16, pre-incubation with

probenecid resulted in inhibition of hTAS2R38 activation by both

PTC and by PROP (Figure 1B and 1C), two different ligands of

hTAS2R38. hTAS2R43 and hTAS2R31 (formerly known as

hTAS2R44), two de-orphanized TAS2R receptors that share 25%

and 24% amino acid sequence identity with hTAS2R16

respectively, were also tested. Aloin induced an increase in

intracellular calcium in HEK-293T cells expressing hTAS2R43,

and this signal was almost completely inhibited by a 1 hour pre-

incubation with 1 mM probenecid (Figure 1D). In contrast, the

saccharin-induced calcium flux in cells expressing hTAS2R31 was

not inhibited by probenecid pre-treatment (Figure 1E). Because

the ligands used for testing each of these TAS2Rs represent diverse

structures (Figure 2), it is unlikely that probenecid is acting on the

ligands themselves. Addition of 1 mM probenecid or buffer

directly to transfected cells did not by itself result in any change

in intracellular calcium (Figure 1F). Our data suggest that

Figure 1. Inhibition of hTAS2R16, hTAS2R38, and hTAS2R43 by
probenecid. HEK-293T cells were transiently transfected with Ga16-
gust44 and the indicated TAS2R receptors in a 384-well microplate.
22 hours post-transfection, calcium influx was measured in cells
challenged with the indicated ligands in the presence (closed triangles)
or absence (open diamonds) of probenecid (1 mM; 1 hour pre-
incubation). Probenecid treatment completely attenuated (A) salicin-
dependent (3 mM) calcium influx by the hTAS2R16 receptor and (B)
PTC- (100 mM) and (C) PROP-dependent (30 mM) calcium influx by the
hTAS2R38 receptor. (D) Probenecid treatment similarly attenuated
aloin-induced (3 mM) hTAS2R43 signaling. (E) Probenecid treatment did
not inhibit saccharin induced signaling of hTAS2R31. (F) hTAS2R38
transfected cells challenged with probenecid or buffer alone (1 mM) did
not result in calcium influx, but do flux with the PTC control.
doi:10.1371/journal.pone.0020123.g001
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probenecid acts specifically against a subset of TAS2Rs that

include hTAS2R16, hTAS2R38, and hTAS2R43.

We next examined whether probenecid could inhibit the

cellular activation of the non-gustatory GPCRs CXCR4 and

CCR5 when expressed in HEK-293T cells. The human

chemokine receptors CXCR4 and CCR5 are members of the

rhodopsin family of GPCRs, which are unrelated to the TAS2Rs

and are involved in inflammation, autoimmune disease, and viral

infection [32,33]. We observed no effect on RANTES-mediated

calcium mobilization by CCR5 and SDF-1a-mediated calcium

mobilization by CXCR4 upon pre-incubation with probenecid

(Figure 3A and 3B). We also tested the effect of probenecid on the

activity of the b2-adrenergic receptor (bAR), which is endoge-

nously expressed on HEK-293T cells [34]. Stimulation of

endogenous bAR co-expressed with Ga16gust44 resulted in an

increase in intracellular calcium upon stimulation with a cognate

adrenergic ligand (isoproterenol) that was not inhibited by a 1 hr

pre-incubation with probenecid (Figure 3C). Since bAR mobilizes

calcium in HEK-293T cells only in the presence of transfected

Ga16gust44, the inhibitory activity of probenecid is not the result

of action through Ga16gust44, which would have led to inhibition

of calcium influx. Probenecid also inhibited calcium mobilization

of hTAS2R38 in the canine cell line Cf2Th, suggesting that the

observed inhibition is not cell line specific (data not shown). While

probenecid inhibition of the G protein bc subunits cannot be

directly ruled out with the experiments conducted here, it is

unlikely since no effect on calcium mobilization was observed with

other GPCRs tested and since probenecid is commonly used to

enhance the Ca2+ flux of diverse GPCRs signaling through diverse

G protein subunits. Thus, our data suggest that the inhibitory

effect of probenecid is specific to the TAS2R receptors and not to

downstream cellular components of G protein signaling.

Probenecid inhibition of bitter taste receptor activation is
rapid and does not involve MRP1

To determine the kinetics of inhibition by probenecid, we

measured the degree of inhibition of a model bitter taste receptor,

hTAS2R16, following 0, 5, and 30 minute pre-incubations with

probenecid (Figure 4A). Pre-incubation with probenecid for as

little as 5 minutes resulted in complete inhibition of hTAS2R16

signaling. Furthermore, even simultaneous injection of probenecid

with ligand gave measurable (.50%) inhibition (Figure 4A,

‘0 min’). These results demonstrate that the mechanism of action

of probenecid is extremely rapid, consistent with direct inhibition

of the receptors.

Probenecid is an FDA-approved inhibitor of MRP1 and other

organic anion transporters [29]. To determine whether MRP1

inhibition could explain probenecid’s mechanism of action, we

tested the ability of indomethacin, another MRP1 inhibitor that is

structurally unrelated to probenecid [28], to inhibit calcium

mobilization upon hTAS2R16 activation by salicin. We found that

the hTAS2R16 response to salicin was not inhibited by a 1 hr pre-

incubation with 1 mM indomethacin (Figure 4B). A similar lack of

inhibition using indomethacin was observed for the hTAS2R38

response to PTC (data not shown). Consistent with these results,

treatment with 1 mM chloroquine, another inhibitor of MRP1,

also failed to inhibit hTAS2R38 function (data not shown). The

observation that hTAS2R16 and hTAS2R38 are capable of

signaling in the presence of other MRP1 transporter inhibitors

suggests that probenecid’s mechanism of action does not occur

through MRP1 or related channels.

Pharmacology of probenecid
To assess the potency of probenecid, we measured probenecid

dose responses against hTAS2R16 (in the presence of 3 mM

salicin) and hTAS2R38 (in the presence of 300 mM PTC) and

calculated IC50 values of 292 mM and 211 mM respectively

(Figure 5A). To further characterize the mechanism of inhibition

by probenecid, we generated dose-response curves for salicin-

induced activation of hTAS2R16 in the presence of increasing

concentrations of probenecid. In the absence of probenecid, the

Figure 2. Structures of TAS2R agonists, probenecid, MRP1
inhibitors, and probenecid analogs used.
doi:10.1371/journal.pone.0020123.g002
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EC50 value of salicin was approximately 1.2 mM (Figure 5B),

close to its reported value [25]. Upon the addition of increasing

concentrations of probenecid, we observe a dose-dependent

decrease in the maximum signal with little change in salicin

EC50 values (Figure 5B), a profile typical of non-competitive

allosteric inhibitors, which bind to a receptor site distinct from the

orthosteric ligand binding site [35]. A similar inhibition profile was

also observed for dose response curves of PTC-induced activation

of hTAS2R38 (Figure 5C).

To identify structural elements of the probenecid molecule that

contribute to TAS2R inhibition, we tested two probenecid

analogs: 4-sulfamoylbenzoic acid, comprising the core scaffold of

probenecid, and ethebenecid, containing ethyl groups rather than

propyl groups on the sulfamoyl group (Figure 2). Treatment with

1 mM 4-sulfamoylbenzoic acid demonstrated no inhibitory effect

on either hTAS2R16 or hTAS2R38 function (Figure 6). However,

treatment with 1 mM ethebenecid showed very small, but

consistent, inhibition of both hTAS2R16 and hTAS2R38,

suggesting that the inhibition of TAS2R function is due to specific

structural moieties of probenecid. The inability of 4-sulfamoyl-

benzoic acid and the reduced ability of ethebenecid to inhibit

TAS2R function suggests that the lengths of the acyl chains on the

sulfamoyl moiety are critical for the inhibitory action of

probenecid. This observation is consistent with hydrophobicity

playing an important role in the inhibitory function of probenecid.

Identification of hTAS2R16 residues required for
probenecid inhibition

To determine whether probenecid directly interacts with

hTAS2R16, we screened a random mutation library of

hTAS2R16 for mutations that caused a loss of inhibition by

probenecid. We identified two clones containing a total of three

mutations, N96T, P44T, and H113R, which were significantly

insensitive to probenecid inhibition while maintaining wild-type

levels of responsiveness to salicin (Fig. 7, p,0.001). Since one of

the probenecid insensitive clones contained two point mutations

(P44T and H113R), we also analyzed an additional clone

containing only the single point mutation H113R (Figure S1).

The H113R mutant demonstrates wild type calcium flux in the

presence of salicin and complete inhibition in the presence of

probenecid, strongly suggesting that P44T is the mutation that

confers probenecid insensitivity. These data thus define two amino

acid residues required for probenecid interaction and suggest a

direct interaction between probenecid and hTAS2R16 that is

consistent with probenecid’s rapid activity. Interestingly, both P44

and N96 are predicted to be located in or near the intracellular

regions of hTAS2R16 [36,37], consistent with our dose-response

profile of probenecid’s mechanism of action, which suggests

allosteric inhibition. Taken together, the presence of mutations in

hTAS2R16 that desensitize the receptor to probenecid but not the

ligand, the rapid mechanism of action of probenecid, and the

dose-response profiles of hTAS2R16 to salicin in the presence of

increasing amounts of probenecid suggest that probenecid

interacts directly with hTAS2R16 and behaves as a negative

allosteric modulator of hTAS2R16 function.

Probenecid can modulate human bitter taste perception
of the hTAS2R16 ligand salicin

Because multiple taste receptors, receptor alleles, and signaling

pathways are involved in human taste perception, taste receptor

function in cellular assays and taste perception in humans often do

not correlate [38]. To determine whether hTAS2R16 receptor

inhibition would translate into inhibition of bitter taste perception

in humans, we assessed whether probenecid could attenuate the

perceived bitterness intensity of the hTAS2R16 ligand salicin in

vivo. Salicin is an appropriate stimulus to confirm perceptual

efficacy because it interacts principally with the receptor

hTAS2R16, which has relatively few receptor polymorphisms

across subjects [24,25]. Fifteen tasters were asked to rate the

bitterness of a solution of 10 mM salicin on a 96 point general

labeled magnitude scale (gLMS) that ranges from ‘‘Barely

Detectable’’ to ‘‘Strongest Imaginable’’ [39,40]. Tasters were then

asked to rate the bitterness of salicin after rinsing with either

10 mM probenecid or, as a control bitter taste treatment, 8.1 mM

quinine HCl (matched to approximate the weak bitter taste of the

probenecid treatment to control for taste cross-adaptation effects).

Pre-treatment with probenecid led to a significant reduction in the

ability of subjects to perceive the bitter taste of salicin (Figure 8A,

p,0.05), which mirrored the effect of probenecid in our cellular

assay. Pre-treatment with the control solution, quinine, which is

not known to interact with hTAS2R16 [41], did not inhibit the

bitter taste of salicin. Importantly, 10 mM salicin evokes a

moderate level of bitterness as measured by the gLMS and is a

10-fold greater concentration than the EC50 seen in human

Figure 3. Non-Gustatory GPCRs are not inhibited by probenecid. HEK-293T cells were transiently transfected with Ga16gust44 and the
indicated GPCR receptors. In the case of the endogenously expressed bAR receptor, only Ga16gust44 was transfected. 22 hours post-transfection,
calcium influx was measured for cells that were challenged with the indicated ligands in the presence (closed triangles) or absence (open diamonds)
of probenecid (1 mM; 1 hour pre-incubation). Probenecid treatment did not attenuate calcium influx upon challenge of (A) CCR5 with 10 nM
RANTES, (B) CXCR4 with 10 nM SDF-1a, or (C) bAR with 10 mM isoproterenol.
doi:10.1371/journal.pone.0020123.g003
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perceptual studies [25]. Thus, the reduction of salicin bitterness by

probenecid is both statistically significant and perceptually robust.

We next tested for the ability of probenecid to inhibit the

perceived bitterness of saccharin, a well-characterized hTAS2R31

ligand [23,26]. Nine tasters were asked to rate the bitterness of a

250 mM saccharin solution (approximating moderate bitterness

intensity levels) before and after treatment with probenecid.

Because saccharin is a sweetener, we included the sweet taste

inhibitor lactisole in the solutions (to enable our subjects to focus

exclusively on the bitterness of saccharin). Probenecid treatment

did not inhibit the perceived bitterness of saccharin, consistent

with the results of our cellular assays, and the inhibitory effect of

probenecid on salicin was observed again both with and without

the addition of lactisole (Figure 8B). Taken together, our results

demonstrate that probenecid significantly inhibits human bitter

taste perception of a hTAS2R16 ligand, consistent with its

mechanism of action on the hTAS2R16 receptor in vitro.

Discussion

The human family of TAS2Rs is comprised of at least 25

GPCRs that are highly divergent in sequence, sharing about 30–

70% amino acid homology [18], which is reflected in the ability of

TAS2Rs to recognize a diverse variety of chemical moieties.

Despite this diversity, only a single inhibitor of these GPCRs has

been described to date [27]. Here we present evidence that an

FDA-approved therapeutic is an allosteric inhibitor of a subset of

human TAS2R receptors. The inhibitory properties of probenecid

were unexpected since probenecid is commonly used to improve

the cellular uptake of fluorescent dyes into cells to increase the

sensitivity of GPCR calcium flux assays [31]. Our results show that

probenecid can selectively inhibit the function of the bitter taste

receptors hTAS2R16, hTAS2R38, and hTAS2R43 in vitro, while

leaving intact the function of other bitter taste receptors and

GPCRs, including hTAS2R31, CXCR4, CCR5, and bAR.

Interestingly, the inhibition of multiple bitter taste receptors was

also observed for GIV3727, a recently described hTAS2R

antagonist [27]. Both probenecid and GIV3727 inhibit

hTAS2R43 but only weakly inhibit hTAS2R31 (if at all), while

each inhibitor has additional activity on a non-overlapping subset

of receptors. The ability of both compounds to inhibit subsets of

hTAS2Rs suggests that at least two different structural motifs may

exist within each of these subsets of hTAS2R receptors. A better

understanding of the structures of the TAS2Rs may reveal some of

these common structural motifs.

Although the interaction of probenecid with a TAS2R receptor

cannot be directly measured by binding or competition assays

because bitter taste ligands bind too weakly (high mM to mM

EC50s), our work provides several lines of evidence that the

mechanism of action for probenecid inhibition occurs by direct

binding to the hTAS2R16 receptor. First, analysis of hTAS2R16

point mutations define amino acid residues involved in probenecid

binding or signaling that result in decreased sensitivity to

probenecid while maintaining normal responses to the ligand

salicin. Second, mechanism of action studies for probenecid

against the hTAS2R16 receptor demonstrate rapid kinetics for

complete inhibition (within 5 minutes of probenecid treatment)

and near-instantaneous action for partial (.50%) inhibition,

consistent with an effect on an upstream signaling component,

such as the receptor itself. The effect of probenecid is also observed

in the presence of inhibitors against MRP transporters (reported

IC50, 100–150 mM) [42], which are responsible for probenecid’s

ability to increase fluorescent dye uptake. Probenecid is also

known to inhibit other proteins such as the pannexin1 hemi-

channels in taste bud cells (IC50, 150 mM) [43,44], but it is

unlikely that inhibition of such proteins would effect GPCR

signaling or explain the structural (point mutation) and mechanism

of action (rapid inhibition) studies here.

The identification of point mutations at residues 44 (P44T) and

96 (N96T) of hTAS2R16 that significantly suppress the ability of

probenecid to inhibit salicin activity help to define probenecid’s

mechanism of action on the receptor. Both mutations affect

probenecid activity without affecting salicin activity, suggesting an

allosteric mechanism with distinct sites on the receptor for salicin

and probenecid. This is in contrast to GIV3727, where mutations

in hTAS2R43 and hTAS2R46 that confer resistance to inhibition

alter both the specificity and activity of agonist compounds,

suggesting an overlapping binding site [27,45]. Nevertheless, P44

Figure 4. Probenecid inhibition of hTAS2R16 occurs rapidly
and is not dependent on the MRP1 transporter. (A) HEK-293T
cells were transiently transfected with hTAS2R16 and Ga16gust44.
22 hours post-transfection, calcium influx was measured for cells that
were challenged with 3 mM salicin in the presence of 1 mM probenecid
pretreatment for the indicated amount of time (0 min indicates co-
injection of salicin with probenecid). hTAS2R16 was completely
inactivated by 5 minutes of probenecid pretreatment. (B) HEK-293T
cells were transiently transfected with hTAS2R16 and Ga16gust44
followed by challenge with 3 mM salicin in the presence or absence of
the indicated compounds (1 mM, pretreatment for 60 minutes). The
MRP1 transporter inhibitor indomethacin did not inhibit hTAS2R16
function. Error bars represent standard errors (n = 3).
doi:10.1371/journal.pone.0020123.g004
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and N96 are likely to constitute only part of the probenecid

interaction site, as these residues are not completely conserved

between the hTAS2Rs that are sensitive to probenecid (i.e.

hTAS2R16, hTAS2R38, and hTAS2R43 do not all contain P44

and N96 equivalents).

As suggested by structural studies of class A GPCRs [46] and

computational studies of TAS2Rs [27,47,48,49,50], the binding

site for bitter receptor ligands would be expected to be in the

transmembrane region of the receptor, with the site open to the

extracellular portion of the receptor. Based on structure

predictions, P44 and N96 are located in the first intracellular

loop and the C-terminal half of the third transmembrane domain,

respectively [36,37]. Previous studies have implicated N172,

located in the second extracellular loop of hTAS2R16, in the

activity of diverse agonists [24]. More recently, salicin ligand

docking studies and mutational analysis of hTAS2R16 demon-

strate the presence of at least 7 residues in TM3, TM5, and TM6

(distinct from P44 and N96) involved in ligand recognition for

hTAS2R16, with all residues located towards the extracellular face

of the receptor [47]. The disparate locations of these residues and

P44/N96, as well as the equivalence of the salicin response

between WT and P44T/N96T, is suggestive of distinct binding

sites for salicin and probenecid and point to an allosteric

mechanism of action for probenecid.

The intracellular location of the probenecid binding site

suggests that probenecid may potentially act by uncoupling G

proteins from the receptor. If so, probenecid may be a useful

reagent for understanding signal transduction for TAS2R

receptors. Additional mutational analysis to further define the

binding sites for probenecid and salicin on hTAS2R16 will be

important for a complete understanding of the molecular

mechanism of probenecid inhibition and may provide insight for

the rational design of effective bitter blockers.

It is interesting to note that well-known polymorphisms in

several TAS2Rs are found in the first intracellular loop, near the

location of the P44 mutation in hTAS2R16 that confers

probenecid resistance. For example, P49 of hTAS2R38 is located

in the first intracellular loop and is part of the well-known PAV

(taster) haplotype that confers sensitivity of individuals to PTC

[21]. Polymorphisms of a comparable residue, W35, in the

receptors hTAS2R43 and hTAS2R31 significantly modulate the

activity of the receptors with their respective ligands [23]. The

effect of mutations in the first intracellular loop of hTAS2R38,

hTAS2R43, and hTAS2R31 highlight the role of this domain as a

conserved modulator of TAS2R function.

Our studies using probenecid analogs suggest that inhibitor

hydrophobicity is important for the pharmacological activity of

probenecid. In particular, the propyl groups of probenecid may

Figure 5. Pharmacological mechanism of action of probenecid inhibition. (A) HEK-293T cells were transiently transfected with Ga16gust44
and hTAS2R16 or hTAS2R38. 22 hours post-transfection, cells were pre-treated with increasing amounts of probenecid for 1 hour followed by
challenge with 3 mM salicin or 300 mM PTC. (B) HEK-293T cells were transiently transfected with Ga16gust44 and hTAS2R16, pre-treated with
increasing amounts of probenecid for 1 hour, and then challenged with different concentrations of salicin. Error bars represent standard errors (n = 4).
(C) HEK-293T cells were transiently transfected with Ga16gust44 and hTAS2R38, pre-treated with increasing amounts of probenecid for 1 hour, and
then challenged with different concentrations of PTC. Error bars represent standard errors (n = 4).
doi:10.1371/journal.pone.0020123.g005

Figure 6. Differential effect of probenecid analogs on the activation of hTAS2R16 and hTAS2R38 receptors. HEK-293T cells were
transiently transfected with Ga16gust44 and the indicated TAS2R receptor. 22 hours post-transfection, calcium influx was measured after challenge
with (A) 3 mM salicin or (B) 100 mM PTC in the presence or absence of the indicated compounds (1 mM, pretreatment for 60 minutes). Error bars
represent standard deviations (n = 6 for hTAS2R16; n = 12 for hTAS2R38).
doi:10.1371/journal.pone.0020123.g006
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provide a better fit for the size and/or hydrophobicity of the

putative probenecid-binding site on hTAS2R16. The ability of

probenecid to cross the plasma membrane [51] due to its negative

charge at physiological pH and the hydrophobic character of

probenecid’s di-n-propyl groups, is consistent with the binding of

probenecid to a site on the intracellular face of the receptor, such

as one that blocks binding of a G protein to the receptor.

Finally, the ability of probenecid to completely inhibit the

cellular response to salicin in vitro provides a mechanistic

explanation for its ability to inhibit human bitter taste perception

of salicin in vivo. Future perceptual testing with a variety of diverse

bitter compounds will help to determine whether the inhibitory

effect of probenecid in vivo includes additional TAS2Rs.

Methods

Reagents
Salicin, probenecid, 6-n-propylthiouracil (PROP), 4-sulfamoyl-

benzoic acid, N,N-diethyl-4-sulfamoylbenzoic acid (ethebenecid),

chloroquine diphosphate, saccharin sodium salt hydrate, aloin,

quinine HCl, indomethacin, and isoproterenol were purchased

from Sigma (St. Louis, MO). Probenecid (Sigma P-8761) was

dissolved at 500 mM in 1 N NaOH and titrated to pH 7.0.

Phenyl-b-D-glucoside was purchased from TCI (Boston, MA).

SDF-1a and RANTES were purchased from Peprotech (Rocky

Hill, NJ), and phenylthiourea (PTC) was purchased from Alfa

Aesar (Ward Hill, MA).

Figure 7. Identification of hTAS2R16 residues required for probenecid inhibition. (A) HEK-293T cells were transiently transfected with wild
type hTAS2R16 and Ga16gust44. 22 hours post-transfection, calcium flux was measured for cells that were challenged with 3 mM salicin in the
presence (closed triangles) or absence (open diamonds) of probenecid (1 mM; 1 hour pre-incubation). Salicin response to mock transfected (vector
alone) HEK-293T cells is shown for comparison. (B, C) HEK-293T cells were similarly transfected with hTAS2R16 variants containing the mutations N96T
or P44T/H113R, and challenged with 3 mM salicin in the presence or absence of probenecid (1 mM; 1 hour pre-incubation). N96T and P44T/H113R
mutants showed decreased sensitivity to probenecid. A separate clone containing the single point mutant H113R was also tested to rule out this
residue (Figure S1). Error bars represent standard deviations (n = 4).
doi:10.1371/journal.pone.0020123.g007

Figure 8. Suppression of human bitterness perception of salicin by probenecid. (A) 15 human subjects were asked to rate the bitterness
intensity of 10 mM salicin before (pre) and after (post) treatment with 10 mM probenecid or control treatment with 8.1 mM quinine HCl (QHCl) on a
general labeled magnitude scale (gLMS). Treatment with probenecid (black bars) significantly inhibited the perceived bitterness of salicin (p,0.05),
whereas a bitter taste control treatment with QHCl had no affect (white bars). (B) 9 human subjects were asked to rate the bitterness intensity of
10 mM salicin or 250 mM saccharin before (pre) and after (post) treatment with 10 mM probenecid or control treatment with 8.1 mM quinine HCl
(QHCl). Treatment with probenecid (black bars) significantly inhibited the perceived bitterness of salicin (p,0.05), whereas a control treatment with
QHCl had no affect (white bars). Probenecid failed to inhibit the bitterness of saccharin (in the presence of the sweet taste inhibitor lactisole (lac) to
enable subjects to focus exclusively on the bitterness of saccharin). The inhibitory effect of probenecid on salicin was also observed in the presence of
lactisole, demonstrating that lactisole did not interfere with probenecid’s inhibition of perceived bitterness. At the concentrations used, salicin and
saccharin did not differ in their overall perceived bitterness. Error bars represent standard errors (SE).
doi:10.1371/journal.pone.0020123.g008
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Plasmids
hTAS2R16 (N172/H222 variant) [24], hTAS2R38 (PAV) [21],

hTAS2R43 (W35/H212) and hTAS2R31 (W35/M162/V227/

I240) [23] were cloned by PCR directly from genomic DNA isolated

from HEK-293T cells (DNeasy blood and tissue kit, Qiagen) and

TOPO cloned into pcDNA3.1D-V5His (Invitrogen) and pCAGGS

vectors. The first 45 amino acids of the rat somatostatin type 3

receptor, used for cell-surface targeting [25], were generated by

assembly PCR, and fusion proteins with bitter taste receptors were

generated by overlap-extension PCR. Point mutations of hTAS2R16

were generated by PCR and selected from a larger mutation library

of hTAS2R16 (Diversify Mutagenesis kit, Clontech) [52]. Rat

gustducin DNA was a kind gift of Liquan Huang (Monell Chemical

Senses Center). A Ga16 chimera containing the last 44 amino acids

of rat gustducin (Ga16gust44) was generated by overlap PCR. All

constructs were sequence verified.

Calcium flux assay
HEK-293T cells were transfected with hTAS2R expression

constructs using Lipofectamine 2000 (Invitrogen) in poly-lysine

coated, black 384-well plates with clear bottoms (Costar) and

incubated for 22 hours at 37uC. Growth media was removed and

cells were washed twice with HBSS containing 20 mM HEPES,

then loaded with a calcium indicator dye in HBSS containing

20 mM HEPES (Calcium 4 Assay kit, Molecular Devices) with or

without 1 mM probenecid. Cells were incubated at 37uC for 1 hour

in the presence of both dye and probenecid, then moved to a

Flexstation II-384 (Molecular Devices) set for 32uC. After a 15-

minute temperature equilibration (without washout), indicated

compounds were injected (at t = ,25 seconds) and fluorescence

was measured for 100 to 180 seconds, reading every 3 seconds.

Data sets were analyzed and represented as % over baseline signal

using Prism 5.0 software (GraphPad Software, Inc). For Schild plots,

replicates of raw calcium flux values were expressed as % over

baseline signal. The mean value at 36 seconds (corresponding to the

maximum flux signal) for each concentration of TAS2R ligand in

the presence of the indicated concentration of probenecid was

plotted against the log of ligand concentration. Data points were fit

using non-linear regression in GraphPad Prism.

Human perceptual testing
Subjects for perceptual studies were recruited and tested with a

protocol approved by the Office of Regulatory Affairs at the

University of Pennsylvania. Written consent was obtained on a

Regulatory Affairs-approved consent form. For the saccharin

stimulus and a parallel salicin stimulus, subjects were given

2.3 mM lactisole in mixture with the stimuli, to inhibit the sweet

taste of saccharin. Subjects were presented with the stimuli, either

30 ml of 10 mM salicin, 250 mM saccharin plus 2.3 mM lactisole,

or 10 mM salicin plus 2.3 mM lactisole in 40 ml medicine cups

(Baxter), and were asked to rate the bitterness intensity on a

general labeled magnitude scale (gLMS) that ranged from ‘‘Barely

Detectable’’ to ‘‘Strongest Imaginable’’ along a computerized

vertical 96 mm scale with magnitude labels spaced semi-

logarithmically. Subjects immersed the tongue (anterior 2 cm)

into the stimulus solution for five seconds while sealing their lips

around their tongue to control the area of stimulation. They were

then given a series of five cups containing 10 ml of either 10 mM

probenecid (dissolved in 1 N NaOH and pH adjusted to 7.4 using

1 M HCl) or a control stimulus (8.1 mM quinine HCl) and asked to

rinse with each cup for two minutes and expectorate after each

rinse. After rinsing, subjects were again presented with the same

stimulus tasted before treatment and asked to rate the bitterness

intensity from the anterior tongue. All stimuli were tested blindly

with both rinses in a 262 design. 8.1 mM quinine HCl was selected

as the control rinse to match the bitterness intensity of 10 mM

probenecid based on pilot testing with ten subjects to control for

bitter taste cross adaptation effects of the inhibitor.

Supporting Information

Figure S1 Analysis of hTAS2R16 H113R single mutant
for probenecid sensitivity. HEK-293T cells were transfected

with hTAS2R16 variant H113R followed by challenge with 3 mM

salicin in the presence or absence of probenecid (1 mM; 1 hour

pre-incubation). The H113R mutant demonstrated wild type

levels of sensitivity to probenecid and salicin. The light gray trace

represents inhibition of wild type hTAS2R16 in this experiment

and is shown for comparison.
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