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Abstract

Background: In hepatocellular carcinoma (HCC) genes predictive of survival have been found in both adjacent normal (AN)
and tumor (TU) tissues. The relationships between these two sets of predictive genes and the general process of
tumorigenesis and disease progression remains unclear.

Methodology/Principal Findings: Here we have investigated HCC tumorigenesis by comparing gene expression, DNA copy
number variation and survival using ,250 AN and TU samples representing, respectively, the pre-cancer state, and the
result of tumorigenesis. Genes that participate in tumorigenesis were defined using a gene-gene correlation meta-analysis
procedure that compared AN versus TU tissues. Genes predictive of survival in AN (AN-survival genes) were found to be
enriched in the differential gene-gene correlation gene set indicating that they directly participate in the process of
tumorigenesis. Additionally the AN-survival genes were mostly not predictive after tumorigenesis in TU tissue and this
transition was associated with and could largely be explained by the effect of somatic DNA copy number variation (sCNV) in
cis and in trans. The data was consistent with the variance of AN-survival genes being rate-limiting steps in tumorigenesis
and this was confirmed using a treatment that promotes HCC tumorigenesis that selectively altered AN-survival genes and
genes differentially correlated between AN and TU.

Conclusions/Significance: This suggests that the process of tumor evolution involves rate-limiting steps related to the
background from which the tumor evolved where these were frequently predictive of clinical outcome. Additionally
treatments that alter the likelihood of tumorigenesis occurring may act by altering AN-survival genes, suggesting that the
process can be manipulated. Further sCNV explains a substantial fraction of tumor specific expression and may therefore be
a causal driver of tumor evolution in HCC and perhaps many solid tumor types.
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Introduction

A universal feature of cancer cells is genomic instability

[1,2,3,4,5], which is thought to be required to generate sufficient

variability from which advantageous changes for tumor growth

and survival are selected [6]. Following this paradigm, it is now

understood that genomic instability can arise from defects in DNA

synthesis and repair, chromosome segregation, checkpoints,

telomere loss and other biological processes that result in point

mutations, copy number variation and gain/loss of biological

functions [2,3,4,7,8,9,10]. Hepatocellular carcinoma (HCC) is the

second most prevalent cancer of Asian populations and the third
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leading cause of cancer death in the world. Currently the only

effective treatment option is surgery [11]. HCC commonly arises

in patients with viral hepatitis and/or cirrhosis where extensive

inflammation exposes hepatocytes to mitogenic stimuli [11]. The

pre-neoplastic phase is characterized by a number of changes,

including the emergence of telomere shortening and the

appearance of genomic alterations [12]. Structural changes in

the genome progressively accumulate during the transition to

neoplasia and from early to late stage HCC [11]. Genomic

alterations in HCC are heterogeneous in that many loci have been

reported to be altered but generally at a low prevalence [12]. This

leads to the hypothesis that there are alternate perturbations that

promote tumorigenesis in HCC [11,12].

Integrative genomics analysis has been successfully applied to

many non-cancer diseases [13,14] and has described networks of

gene variation by testing all possible associations across diverse

populations segregating the disease of interest. This work has

established that genes are generally part of coherent networks, and

that the most significant associations of genes to disease often

occur in the context of network sub-regions where many or all

members of these sub-networks are associated with each other and

with disease traits [13,15,16]. Such sub-networks have further

been associated with DNA variation and validated as causally

driving disease outcome [13].

Here we have examined gene network structure using a

collection of ,250 matched tumor (TU) and adjacent normal

(AN) samples removed from HCC patients during surgical

resection and have assessed whether these networks are associated

with DNA and disease variation in the HCC cohort. The

approach was in essence to uncover interactions within and

between the data types measured in this population (DNA,

expression, survival) in AN and TU tissues in an open ended,

comprehensive and completely data driven manner. The interac-

tions characteristic of tumors (TU) were compared to normal (AN)

tissue to reveal tumor specific changes. Here we present the results

of that comprehensive analysis and show that sCNV robustly alters

the expression of a large number of genes and also the relationship

of those genes to survival in either AN or TU tissue, and that

tumorigenesis largely involves disruption of normal functions and

the activation of a smaller set of functions that may be critical to

disease progression. The data suggested that genes predictive of

survival in AN tissue may be rate limiting steps for tumorigenesis.

Consistent with this hypothesis a treatment that induces HCC

tumorigenesis in mice, MET oncogene overexpression, was found

to selectively alter the expression of genes predictive of survival in

AN tissue of humans.

Results

To characterize gene networks in human liver tumor and

adjacent normal tissues we compiled a tissue specific cohort

comprised of liver tumor (TU) and adjacent normal (AN) tissues

from 272 Asian subjects (including 151 paired TU and AN

samples, Supplementary Table S1 [17]) undergoing surgical

resection for treatment of HCC. RNA was isolated from all TU

and AN samples and profiled on a custom Affymetrix

microarray comprised of oligonucleotide probes targeting

transcripts representing 37,585 known and predicted genes,

including high-confidence non-coding RNA sequences. DNA

was isolated from all AN and TU tissues and genotyped on the

Illumina 650Y SNP genotyping array. Copy number aberration

markers (sCNV markers) were then imputed for 32,711

locations in the genome from this high-density SNP panel

(Methods).

Gene networks in liver tumor and adjacent normal
samples

Given the large scale genomic changes generally known to

occur in tumor samples, our observation of large-scale expression

differences between the AN and TU samples in the HCC cohort

was not surprising, with 28,233 (.75%) of the 37,585 genes

represented on the microarray used in this study detected as

differentially expressed (p,0.05, FDR 0.07, see Table S2),

consistent with previous reports [18]. The main problem then in

interpreting molecular state changes between AN and TU is

distinguishing between those changes that are relevant to the

progression of the tumor from those changes that are simply

tracking with the genomic changes but not relevant to the tumor

biology. Therefore, we sought to characterize the impact these

large-scale changes had on the connectivity structure of the tissue-

specific gene networks, providing a path to identifying those

changes that lead to changes in the molecular networks that define

the biological processes carried out by the tissue.

To characterize changes between the AN and TU networks we

used a meta-analysis procedure [19,20] to test whether the

magnitude of association between any given pair of genes in one

tissue was significantly different from the association observed for

that same pair in the second tissue (Methods). Significant

correlation differences indicate the presence of connectivity

differences between the AN and TU networks (Figure 1). At a

Bonferroni adjusted, differential connectivity p = 7e-11 (,,1%

family-wise error rate), we identified 1,156,638 differentially

correlated pairs (only 2 would have been expected by chance),

or roughly 12% of the 9,976,814 correlated gene pairs found in

either the AN or TU tissues. We also empirically estimated the

differential connectivity null distribution and observed no

differentially connected pairs with p,7e-11 (Figure 1), suggesting

that this degree of differential connectivity is highly significant.

To increase confidence that gene pairs identified as differen-

tially correlated between the AN and TU networks reflected

biologically relevant changes in network states related to

tumorigenesis and tumor progression, we restricted attention to

those differentially correlated gene pairs that were highly unlikely

to have occurred by chance (p,1e-19, with a mean change in

Spearman correlation coefficient between tissues of 0.73; no gene

pairs observed in the permuted data, FDR,1e-6, see Figure 1).

At this stringent cut-off, we identified 49,300 gene pairs covering

8,736 genes whose relationship differed significantly between the

TU and AN tissues. Of the 49,300 differentially connected pairs

identified, 42,179 (86%) were strongly correlated in the AN

tissues, but significantly less correlated in the TU tissues, while

only 7,121 pairs (14%) had stronger correlations in the TU versus

AN samples, indicating that the network changes occurring in the

tumor were more likely to destroy rather than create strong

associations between expression traits.

To distinguish between the types of genes involved in

differential connections we defined gain of connectivity (GOC)

genes as those in which more than 90% of their differential

interactions reflected correlations that were stronger in TU

compared to AN. Similarly, we defined loss of connectivity

(LOC) genes as those in which more than 90% of their differential

interactions reflected correlations that were weaker in TU

compared to AN (Supplementary Table S2). Although these are

arbitrary cut-offs they serve to highlight the relative distribution of

gain and loss of connectivity associated with tumorigenesis, given

greater than 80% of the differentially connected genes fall in one

of the two categories. Under this categorization there were 6,053

LOC genes and only 1,020 GOC genes. GO enrichment analysis

after Bonferroni correction for the number of categories revealed
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that the GOC genes were enriched in cell cycle (3.93-fold

enriched, p = 1.6e-20) and related processes (e.g., chromosome

segregation, DNA replication, and spindle organization), while the

LOC genes were mostly enriched for metabolic processes (1.11

fold enriched, p = 1.4e-20), especially those associated with

mitochondria (1.56-fold enriched, p = 1.5e-20). These results

suggest that the process of tumorigenesis is to a large degree one

of disruption of normal networks (LOC), and to a lesser degree one

of creation of new networks (GOC). Consistent with this, LOC

events were enriched for normal liver function genes, where as the

GOC events were enriched for genes involved in cancerous

growth of the cell. GOC events, although smaller in number, may

represent tumor specific functions required for disease progression

and as such may be an interesting source of targets for HCC. To

illustrate the nature of the differential connections the top 5 genes

and the genes to which they were differentially connected are

shown in Figure 2. Examples of individual gene pairs that were

differentially connected in TU or AN tissues are shown in Figure 3,

including the inhibitor of the G1 to S phase transition (CDKN2C

with loss of connectivity) and DNA replication licensing factor

(CDT1 showing gain of connectivity).

To assess whether the differential correlations were randomly

distributed amongst the significant gene-gene correlations or

whether there was some higher level structure, we examined the

distribution of the number of differential correlations for each

gene. We observed that whereas most genes participated in a small

number of differential correlations, there was a subset of genes that

participated in many differential correlations. In fact, the

differential correlations closely followed a power law distribution

that was quite different from what would be expected by chance

(see Figure 3). This indicates that certain genes represent hub

nodes in the differentially connected matrix that arose from

tumorigenesis and as such may be of particular importance.

sCNV explains a large fraction of TU expression variation
Given the large scale changes in expression and correlation

structures arose during the process of tumorigenesis, we sought to

identify the causal drivers of these changes. Somatic copy number

variation is a common feature of many solid tumor types and has

been associated with the aggressiveness of disease. For HCC in

particular sCNV has been observed at the earliest stages of disease

and increases in prevalence with disease progression [11]. We

therefore assessed the prevalence of sCNV in HCC and to what

extent it was associated with gene variation in the TU tissue.

DNA variation was assessed in the AN and TU samples using

Illumina high-density SNP microarrays. sCNV were estimated

using smoothed logR ratio’s of adjacent markers at 32,711 evenly

spaced loci through the genome (Methods). In the TU samples

evidence of frequent amplification or deletion involving large

genomic regions was seen (Figure 4). In contrast very few such

events were observed in the AN samples with this analysis (4 AN

samples were found to have limited evidence of copy number

variation). sCNV variation was compared to gene variation in

both the AN and TU samples.

Consistent with previous studies of other cancer types and

radiation hybrids [4,21,22,23], strong positive correlations be-

tween genes and sCNV markers were identified in cases where the

corresponding genes overlapped or were near the sCNV marker

being tested, referred to here as cis-acting associations (Figure 5A

and Table S2). The most likely explanation for this observation in

TU tissue is that sCNV induce proportional changes in genes that

were proximal to the site of that sCNV. In contrast there were no

cis-acting associations between AN CNV markers and AN genes

beyond what would be expected by chance, indicating that the cis-

correlations between sCNV and expression were tumor specific.

Given this correlations to copy number variation were only

investigated using TU tissue.

Figure 1. Genes differentially connected between AN and TU tissues. A Shown is numbers of the differentially correlated genes discovered
using a meta-analysis procedure (Methods) between AN and TU tissues. For comparison the same analysis was run both in the real data and in a
permutation of the AN and TU assignments. The top panel shows the number of differential gene pairs (Y-axis) for the real data (AN vs TU, in blue) in
comparison to the permutation (red) as a function of the p value (shown as negative log10[P], on the X-axis). The number of differentially connected
genes (middle panel) and false discovery rates (bottom panel) are also shown. B To establish that the differentially correlated gene pairs resulted from
the difference between AN and TU tissue and not for example differences between individuals the same analysis was run using AN vs AN compared
to AN vs TU using the same number of samples (Methods). The top panel shows the number of differential gene pairs (Y-axis) for both AN vs TU
(blue) and AN vs AN (red) as a function of the p value (shown as negative log10[P], on the X-axis). The number of differentially connected genes
(middle panel) and false discovery rates (bottom panel) are also shown.
doi:10.1371/journal.pone.0020090.g001
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More generally, association tests between all TU genes and TU

sCNV markers revealed many highly significant associations,

referred to here as trans-acting associations (see Figure 5C). Several

genomic loci were found to be associated with many more genes

than would be expected by chance, referred to here as hotspot

sCNV loci (see Figure 5C). We identified 7 hotspot sCNV loci on 7

different chromosomes that were each associated with .500 trans

genes (correlation .0.3; FDR ,0.001). The genes associated with

these hotspots were highly overlapping, suggesting that sCNV at

multiple loci coordinately drive networks of genes (Figure 5D and

Table S3). To assess whether these hotspot loci were specific to

HCC, we carried out a similar association analysis between sCNV

markers and genes in a collection of ,130 cancer cell lines (CCL)

from multiple tissue types [24](Methods). Three of the 7 hotspot loci

identified in the HCC data overlap sCNV hotspots in the CCL data.

In all three cases the same genomic locations were involved. These

data suggest that sCNV hotspots are not unique to HCC, but in fact

may occur in many tumor types and can involve similar pairs of

genomic loci and genes, perhaps driving core biological processes

critical to tumor formation and progression. Consistent with this it

has recently been reported that the structure of sCNV is frequently

shared across multiple tumor types [25]. This might suggest that the

cis and trans correlations reported here in HCC and cells in culture

may be relevant to many tumors types with shared sCNV structure.

To establish the percentage of TU gene variation explained by

any combination of sCNV markers, we constructed genetic models

using a stepwise regression procedure for each gene (Methods and

see Table S2). As a control we ran the same analysis using the

permuted data where the connection between the genes and

sCNV markers was randomized. Using the stringent cut-off of

absolute correlation .0.3 (FDR ,0.001), the amount of variance

explained by sCNV was as high as 80%. Strikingly, greater than

40% of the genes represented on the microarrays used in this study

(15,993 out of 37,585) were significantly associated with sCNV

markers, where the average variance explained amongst these

genes by the sCNV markers was 21.8%. For 3,031 of the genes

Figure 2. Differential correlations for the top 5 genes. The top 5 differentially connected genes and their differentially connected partners are
shown. Each gene is represented by a blue oval and the top 5 are indicated by the boxes. For each of the top 5 genes also indicated is the number of
differential correlations between AN and TU in total (DiffConn) and the numbers for gain (GOC) and loss (LOC) of correlation in each case. Lines
connecting genes indicates that that pair was differentially correlated between AN and TU where both LOC (blue lines) and GOC (red lines) are
indicated. Differential connections between the top 5 genes and any other gene are shown, as well as differential correlations between genes
differentially connected to the top 5. The top 5 genes were found to be differentially correlated to a highly overlapping set of partners. Shown in the
insert table (top right) is the Fishers Exact Test p value for overlap between differentially correlated gene partners for each of the top 5 genes (lower
left of table). Also shown (upper right) is the fold enrichment for the overlaps relative to what would be expected by chance. As shown a complex
web of differential correlations resulting from tumorigenesis is revealed.
doi:10.1371/journal.pone.0020090.g002
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(8.1% of the genes represented on the microarray) greater than

30% their variance was explained by sCNV markers (Table 1 & 2).

Also, while cis-acting associations explained most of the sCNV

associations, 6.6% of the genes (n = 2,490) had variance explained

by sCNV markers that were other than cis, and a subset of genes

(7.8%, n = 2,974) were found to have variance explained by more

than one and up to five sCNV markers on different chromosomes.

As shown above (see Figure 5) the majority of trans genes associate

with a limited number of hotspots suggesting that variation at these

limited number of loci was causing a significant proportion of the

TU gene variation. These genetic effects on tumor gene expression

are orders of magnitude larger than effects induced by germline

DNA variation.

Differentially correlated genes preferentially associate
with sCNV markers in TU

To explore whether sCNV was driving coherent changes in

networks that in turn induced phenotypic changes in the tumor, we

tested for relationships between sCNV markers and differentially

correlated genes between the AN and TU tissues. The differentially

correlated genes were significantly enriched for genes associated

with sCNV markers in cis (2.36-fold enriched; p,1e-300) as well as

for the amount of variance explained (2.12-fold enriched, p,

1e-300) and for the number of markers (1.89 fold enriched, p,1e-

300) in the regression model. This enrichment held for GOC genes

(cis 1.49 fold enriched, p = 1.03e-11, variance explained in

regression model 1.55 fold enriched, p = 3.48e-25, number of

markers 1.38 fold enriched, p = 1.04e-18) as well as LOC genes (cis

2.17-fold enriched, p,1e-300, variance explained in regression

model 1.91-fold enriched, p = 1.1e-321, number of markers 1.81

fold enriched, p = 2.5e-287). The appearance of differential

correlations in HCC therefore appeared to be largely explained

by the effect of sCNV in TU tissue.

Prediction of survival in AN and TU tissues
We next characterized the relevance of the massive changes

in gene networks to the clinical course of the disease by

comparing the network changes to the subset of genes that

Figure 3. Differential correlations and connectivity structure between AN and TU tissues. To illustrate both loss and gain of correlation
two cell cycle genes were chosen that have many differential connections: the cyclin dependent kinase inhibitor CDKN2C (A, 149 loss and 11 gains of
connectivity) and the chromatin licensing and DNA replication factor CDT1 (B, 0 loss and 38 gains of connectivity). The expression intensity values for
CDNK2C (X-axis) and DCN (Y-axis) are shown (A) in AN (blue, cc 0.548, p = 2e-20) and TU tissues (red, cc -0.358, p = 7.14e-10). The intensity values for
CDT1 (X-axis) and MCM3 (Y-axis) are shown (B) in AN (blue, cc-0.153, p = 0.0166) and TU tissues (red, cc 0.673, p = 3.05e-38). Shown in C is the degree
distribution for the 8,736 differentially connected genes as described in the text. The numbers of differential connections for each gene (log10, X-axis)
was compared to the count (log10, Y-axis). As shown the distribution was scale-free, indicating that the identified genes tend to preferentially attach
to a small number of hub genes in either tumor or adjacent normal tissues, but not in both.
doi:10.1371/journal.pone.0020090.g003
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predict survival. Genes predictive of survival were identified in

AN and TU tissues using a Cox regression model (Methods, see

Table S2). Approximately three times as many prognostic genes

were found in AN (p,0.0112, n = 5,387; FDR ,0.1) versus TU

(p,0.002, n = 1,836; FDR ,0.1). Although the predictive genes

in AN and TU overlap more than would be expected by chance

(1.52 fold enrichment, p = 6.8e-19, representing 7.4% and

21.8%, respectively, of the AN and TU predictive genes), there

were many cases of genes highly predictive in one tissue but not

in the other. For example, of the 5,387 genes predictive in AN,

4,987 (92.6%) were not predictive in TU, and of the 1,836 TU

predictive genes, 1,436 (78.2%) were not predictive in AN, using

the above cut-off criteria (see Figure 6A). In both cases our

statistical power was 45% to detect genes predictive in one tissue

that were identified as predictive in the other tissue (Methods),

indicating that the minimal overlap was not a consequence of

low statistical power.

Genes predictive of outcome in AN and TU were
enriched for differential correlations and association to
sCNV markers

Using the AN genes predictive of survival (henceforth referred

to as AN-survival genes), almost half (2,646 of 5,387, 49%) were

found to be differentially correlated in the transition to tumor,

which is 2.11-fold greater than would be expected by chance

(p,1e-300). The AN-survival genes were also more likely to be

correlated to sCNV in cis (1.36-fold enrichment, p = 1.38e-47),

and to have a higher proportion of their variance explained by

sCNV (1.32-fold enrichment, p = 3.94e-50) and by a larger

number of sCNV markers (1.33-fold enrichment, p = 1.09e-53)

in the regression model. Similarly genes predictive of survival in

TU tissue (henceforth TU-survival genes) were enriched for the

differentially correlated genes (1.33-fold enrichment, p = 3.5e-15),

and for correlating to sCNV markers in cis (1.22 fold enrichment,

p = 5.66e-8). TU-survival genes were not found to be significantly

enriched for the total variance explained or the number of markers

in the regression model.

The AN-survival genes reported here significantly overlap those

previously reported for AN-tissue in HCC [26]. and this

independent set was also enriched for differentially connected

genes (1.79-fold enrichment, p = 1.7e-14), GOC genes (2.23-fold

enrichment, p = 2.14e-9), and LOC genes (1.77-fold enrichment,

p = 1.2e-11), demonstrating a degree of consistency among the

observations in the two studies. Given the above analyses, it is

clear that the large scale rearrangements associated with

tumorigenesis in HCC were connected to clinical outcome.

If the transformation in predictive values was mediated by

sCNV then, for example, AN-survival genes should be excluded

from correlation to sCNV markers that were themselves

predictive of survival (Table S4). This was in fact found to be

the case after adjustment for the non-random distribution of

gene:sCNV associations (fold enrichment 0.88, p,1e-300,

Methods). In contrast genes that were predictive of survival in

TU were enriched for associating with sCNV markers that were

also predictive of survival (3.37 fold enrichment, p,1e-300).

Therefore, this leads to a model (see Figure 6B) where sCNV in

TU alters the expression of genes resulting in both differential

correlations between genes as well as gain (TU-survival

genes) or loss (AN-survival genes) of prediction of disease

outcome.

Figure 4. Copy number aberrations in HCC tumor samples on chromosome 1. Shown is a heat map of copy number aberrations (sCNV) for
tumor derived samples (Y axis) clustered by K means into 10 groups, versus the linear positions through chromosome 1 (X axis). sCNV was estimated
as described in methods and is indicated as a continuum of color from red (amplification) to black (no change) to green (deletion). A scale for the
sCNV data is indicated on the right hand side of the heat-map (logR ratio from 1 to 21). As can be seen the majority of aberrations appeared to
involve large chromosomal sections on the scale of whole chromosome arms.
doi:10.1371/journal.pone.0020090.g004

Reconstruction of Tumorigenesis in HCC
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The probability of network transformation in HCC
tumorigenesis was related to the pre-cancer state

Conceptually it is easy to understand genes predictive of survival in

TU – these genes represent gene networks and associated functions in

the tumor that were rate limiting for the future (from the time of

surgery onwards) progression of the disease, where that progression

involved continued evolution of the gene networks. In this scenario

the probability of future evolution of the gene networks was predicted

by the current state of the gene networks in TU tissue across the

individuals at the time of surgery. In other words, the probability of

future elimination of detrimental functions and assembly of beneficial

functions for the tumor is predicted by certain genes in the current

state and that is why they were predictive of survival.

Why genes in the AN tissue were predictive of survival and after

the process of tumorigenesis were no longer predictive, is less clear.

It has been proposed that AN-survival genes represent a so called

‘‘field-effect’’ and predict the likelihood of additional tumors arising

and therefore survival [26]. If this were the case presumably the

same field effect might have played a role in the appearance of the

current tumors as well (see Figure 6C lower box). This modified

hypothesis appears more parsimonious since invoking future tumors

is not required (see Figure 6C). Consistent with this idea, our finding

that the AN-survival genes were significantly enriched for genes that

participate in the process of tumorigenesis (genes differentially

correlated between AN and TU tissues), suggests that indeed a

direct connection to the tumorigenesis that occurred in the tumors

in the HCC cohort was present. The direct connection is further

strengthened by the finding that the change in prediction of survival

for genes from AN to TU tissue can be explained by association to

sCNV markers as described above.

Figure 5. sCNV and expression correlations in cis and in trans. Distribution of correlations (X-axes) between genes (Y-axes) and the closest
sCNV marker (in cis) in TU (A) and AN (B) tissues. The distribution of the real data (blue solid lines) was compared to permutation of the gene to
marker connection (green dashed lines). No significant associations were seen in AN above what would be expected by chance. In TU there was a
pronounced bias to positive correlations. C. Distribution of correlations between all genes (Y-axis) and all sCNV markers, shown linearly by
chromosome location through the genome (X-axis). Chromosome boundaries are indicated by the vertical green lines and are numbered. Using a
correlation cut-off of .0.3 (p,4.7e-4, FDR ,0.02), the count of all genes (not including cis genes, green), positively correlated trans genes (red), or
negatively correlated trans genes (blue) is indicated for each marker (trans here was defined as genes and sCNV markers falling on separate
chromosomes). Several hotspots were apparent in which many genes were associated with sCNV at a particular locus, especially for regions on
chromosomes 1, 2, 6, 7, 12, 14 and 20 (see text for additional discussion). D. Genes associated with sCNV hotspots in HCC and cell lines significantly
overlap. Hotspot sCNV markers were selected by identifying regions associated with .500 genes (Pearson correlation coefficient.0.3) and then
selecting the single top marker per chromosome. The genes associated with each hotspot marker were compared (blue circles, size equivalent to
number of genes) and significant overlaps (Fishers Exact Test p,1e-6) are shown as edges connecting pairs of nodes. A similar analysis was
performed on a collection of cancer cell lines (CCL, green circles). In this case a smaller number of total genes were measured (23,404 vs 37,585), so an
equivalent fraction of the total genes (.370) significantly associated with a sCNV marker was required. The thickness of the edges connecting the
nodes represents the enrichment of the overlapping genes in comparison to that expected by chance (observed overlap divided by expected;
enrichment ,5 fold – thin line, .5 – thick lines). As shown the genes associated with hotspots were shared within datasets. For example, the genes
in HCC linked to the hotspots of chromosomes 2, 6, 12, 14 and 20 significantly overlap each other. Hotspot overlaps between CLL and HCC involving
the same genomic regions are highlighted in red (chromosomes 1, 14 and 20).
doi:10.1371/journal.pone.0020090.g005
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Despite the distance between the AN and TU tissues (at least

2 cm), the above direct connection between AN and TU tissues

may indicate that either the tumor is influencing the AN tissue or

vice versa, and it is this effect that explains the presence of AN-

survival genes. If this were in fact the case then correlations

between AN and TU derived gene variation should be present

(variation of gene(s) in the tumor directly alters gene(s) in AN).

Direct correlations between AN and TU genes is problematic

because inter-individual variation would be expected to dominate.

That is, a tumor may be most similar to the normal cells from

which it was derived, but this does not represent AN to TU

communication per se. Therefore, to focus on tumor specific gene

variation we tested for the association of AN gene variation with

TU derived sCNV markers, where the sCNV represents tumor

specific gene variation. Although we cannot exclude more subtle

effects, the number of associations found in the regression model

was not different than those found with permuted data (FDR ,1,

see Table S5).

The absence of evidence indicating direct communication

between AN and TU tissues leaves the possibility that the AN

tissue retains to a significant degree the characteristics of the pre-

tumor cells from which the tumor evolved. In this case, the

variance of genes prior to tumorigenesis (as represented by non-

cancer AN tissue) predicted the probability of tumorigenesis

occurring, but after that process had occurred (in TU tissue) the

same genes were no longer predictive (see Figure 6C lower box).

Consistent with this, once the AN network was transformed by

changes in gene-gene correlations driven by sCNV, the formerly

predictive genes would no longer be predictive (see Figure 6B).

Since the process of tumorigenesis is linked and perhaps driven by

network transformation, genes predictive of that process were also

predictive of survival.

We can derive from this hypothesis a testable prediction. If the

starting state of the gene networks is a determinant of the

likelihood of tumorigenesis occurring, then treatments that

promote tumorigenesis should selectively alter genes that partic-

ipate in the network transformation that characterizes that process.

To this end we took advantage of a genetic model of HCC

where the oncogene MET was over-expressed in the livers of mice,

resulting in a large increase in the numbers of HCC tumors for

that strain [27]. The hypothesis above predicts that a treatment

that promotes HCC tumorigenesis (MET overexpression), should,

prior to the onset of tumorigenesis, selectively alter genes that

participate in the network transformations associated with

tumorigenesis. The microarray profiles of liver tissues derived

from strains of mice that differed only in the presence (TRE-MET)

or absence (LAP-tTA) of overexpression of the human MET

oncogene at a time point prior to the appearance of tumors were

generated and analyzed (Methods). The resulting pre-cancer liver

MET signature (n = 3,873, ANOVA p,0.01, FDR,0.01, listed in

Table S2) was found to be enriched for genes differentially

connected in human HCC (1.27 fold enrichment, p = 2.9e-34).

The MET signature was also enriched for the LOC genes (1.33

fold enrichment, p = 2e-31) and for genes associated with sCNV

markers in cis (1.46 fold enrichment, p = 2.48e-70), variation

explained by sCNV in the regression model (1.26 fold enriched,

p = 3.62e-37), and the number of markers in that model (1.23 fold

enriched, p = 1.03e-31). Further, the MET signature was enriched

for genes predictive of survival in AN (1.24 fold enrichment,

p = 1.5e-13) and to a lesser degree in TU (1.17 fold enrichment,

p = 4.1e-3). Therefore, an alteration known to cause an increased

probability of mouse HCC tumorigenesis (MET overexpression)

altered genes that were enriched in genes that participate in the

network rearrangements characteristic of human HCC tumori-

genesis, enriched for genes associated with sCNV in the tumors

and for genes predictive of survival in AN. This is consistent with

the model that the starting state of AN-survival genes predicts the

likelihood of tumorigenesis occurring.

Enrichment of differentially correlated genes and GO
terms in co-expression networks

We next constructed co-expression networks for the AN and

TU tissues, using a method successfully applied to other large

population based studies [13,16,28] (Methods), in order to place

the core set of highly significantly differentially correlated genes

between AN and TU in a more broadly defined biological context

from which they came (AN) and to where they ended up (TU). Co-

expression analysis in HCC AN and TU samples resulted in the

identification of 25 subnetworks (modules) in AN tissue and 20

subnetworks (modules) in TU. For purposes of identification, the

modules were named as colors in order of their size, where the

prefix AN- and TU- indicated whether the module was specific to

the normal or tumor tissue network, respectively (module

membership listed in Table S2).

A high level view of network rearrangements can be seen by

comparing modules in AN and TU (see Figure 7 and Table S6).

Many significant overlaps were seen indicating that the two tissues

were far from randomly organized with respect to each other.

Closer examination revealed support for the disruption and

Table 1. Summary of regression analysis for all genes onto
sCNV markers.

R2.cut-off trans+cis cis pm trans+cis pm cis

0.1225 14845 5427 1998 0

0.2 7169 2340 352 0

0.3 3031 759 100 0

0.4 878 205 31 0

0.5 195 40 5 0

0.6 28 1 1 0

Shown are the results of the regression analyses for each gene onto selected
sCNV markers as decribed in Methods. A. Distribution of variance explained by
sCNV across all genes. Counts for number of genes with various cut-offs for
variance explained(‘‘R2.cutoff’’ column 1) for all genes and all sCNV markers
(‘‘trans+cis’’, column 2) and for cis markers only (‘‘cis’’, column 3) using the real
data was compared to a similar analysis where the connection between the
expression and sCNV markers was permuted (‘‘pm_trans+cis’’ and ‘‘pm_cis’’,
columns 4 and 5).
doi:10.1371/journal.pone.0020090.t001

Table 2. Distribution of number of genes by number of
markers in model.

No markers genes pm

1 12592 2278

2 2974 202

3 395 25

.3 32 3

In addition the distribution of genes as a function of the number of markers
included in the regression model is shown. The number of markers (‘‘no
markers’’, column 1), was compared to the number of genes with that number
of markers (‘‘genes’’, column 2) for the real data and identically processed
permuted data (‘‘pm’’, column 3).
doi:10.1371/journal.pone.0020090.t002
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creation of co-expression networks found with gene-gene differ-

ential correlation data. For example, the genes in the largest

module in AN (AN-turquoise) significantly overlapped the genes in

eight different TU modules as well as genes that could not be

placed in the TU network (referred to here as the TU-grey

module), consistent with disruption of the AN-turquoise module.

Similarly, genes in the largest module in TU (TU-turquoise),

overlapped genes in 10 AN modules as well as genes in AN-grey,

consistent with the creation of TU-turquoise as part of HCC

tumorigenesis.

Consistent with the above interpretation of the AN and TU

module overlaps was the finding that the differentially correlated

genes were enriched in many of the modules. For example, 22 of

the 25 AN modules and 13 of the 20 TU modules were enriched

for genes containing differentially correlated genes, indicating that

a majority of the subnetworks in the AN tissue representing many

different biological functions (see below and Table S8) were

disrupted as a result of the formation and progression of the

tumor, resulting in a higher level re-organization (Table S7 A&B).

To assess possible biological functions represented by the

networks, each module was tested for over-representation of genes

from individual gene ontology categories. Given the large scale re-

organizations between AN and TU, GO terms that were most

significantly enriched for each module compared to all other

modules were defined (Table S8). The purpose of this was to begin

to define biological pathways that were uniquely disrupted in AN

tissue and uniquely created in TU tissue (uniquely meaning that

the enrichment was specific to a given module). Examples of this

Figure 6. Relationship between genes in AN and TU and prediction of survival. A. Shown is the significance of association (as negative
log10 of the Cox regression p value) found between all 37,585 genes in AN (X axis) and TU (Y axis) and survival. Genes found to be significantly
associated with survival (FDR,0.1, Methods) are indicated in AN (green dots), TU (red dots) or both AN and TU (purple dots). As described in the text
most genes predictive in one tissue were not predictive in the other. B. Shown is a representation of the network transformations associated with
HCC tumorigenesis (transition from pre-tumor state, upper box, to the tumor state, lower box), where predictive genes in AN (green) largely lose their
association to survival in TU following association to non-predictive sCNV. In contrast genes predictive of survival in TU (red) are largely not predictive
in AN, and were preferentially associated with sCNV markers that were also predictive. Not shown are genes predictive in both AN and TU, and genes
not predictive in either tissue. C. Shown diagrammatically is the ‘‘Field-effect’’ hypothesis as proposed [26] (upper box), where adjacent normal genes
predict patient survival because they reflect a milieu (field-effect) in which future tumors are more or less likely to arise. In this model the current
tumors do not have a large impact on outcome whereas future tumors do. A modification of this hypothesis is proposed here (lower box), where the
adjacent normal genes represent a state that directly affected the probability of the current tumors arising and progressing. In this modified
hypothesis survival or death is mediated by the current tumors. See text for additional discussion
doi:10.1371/journal.pone.0020090.g006
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are the findings that components of the ribosome were uniquely

enriched in the TU-grey60 module (‘‘cytosolic ribosome’’, 113.95

fold enrichment), and aspects of macrophage function were

uniquely enriched in the AN-coral module (‘‘regulation of

macrophage differentiation’’, 83.62 fold enrichment; see Table

S8). In both cases these terms were not enriched in any other

module of either tissue. Many unique or relative enrichments of

GO terms were found for 14 of the 25 AN modules and 12 of the

21 TU modules representing a broad array of biological functions

coherently represented in the networks and altered between tissues

in HCC tumorigenesis.

Towards the identification of TU specific functions, rate
limiting for progression

Although there were many cases of GO terms uniquely

enriched in TU modules, the functional significance of this

remains to be determined. To this end enrichments of the AN-

survival and TU-survival genes in all AN and TU modules was

assessed (see Table S7 and Figure 7). The AN-survival genes were

enriched in 9 of the 25 AN modules. Given the apparent

independence of modules with respect to each other this suggests

that multiple parallel networks must be altered in the tumor and as

argued above, this is intimately linked to disease progression.

In the TU case 4 modules (TU-grey60: 9 fold enrichment, TU-

lightgreen: 6.9 fold enrichment, TU-lightyellow: 5.6 fold enrich-

ment and TU-red: 5.8 fold enrichment) were markedly enriched

for TU-survival genes (see Table S7), suggesting they were

important factors in disease progression. As judged by GO term

enrichments these modules represent distinct biological functions

including the ribosome (TU-grey60), aminoacyl-tRNA biosynthe-

sis, ribosome biogenesis and the nucleolus (TU-lightyellow) and

xenobiotic, amino acid and fatty acid metabolism, gluconeogenesis

and mitochondrial proteins (TU-red).

Ribosome components have been clearly implicated in tumor

initiation and progression in numerous cancer types [29]. In

particular it has been argued that altered translation facilitates

expression of many proliferation associated genes and may also

regulate the endothelial to mesenchymal transition which is

thought to be important in invasion and metastasis. The

enrichment of TU-survival genes in TU-grey60 and TU-light-

yellow suggests that translation and ribosome biogenesis were

selected for alteration during tumorigenesis (both modules were

enriched for genes correlated to sCNV hotspots, see Table S9), but

remained rate limiting factors in progression. Particularly

interesting is the finding of a protein complex involving DHX9,

HNRPM, LSM2, HNRNPU and SNRPD1, 2 members of which

(DHX9, HNRNPU) stabilize Myc mRNA [30] which was also a

member of the TU-lightyellow module. Myc has also been shown

to regulate ribosome biogenesis and translation and directly

interacts with multiple ribosome components suggesting a

feedback loop that may be important in cancer [31] and perhaps

captured in the TU-grey60 and TU-lightyellow modules. Targeted

interference in translation or ribosome biogenesis has been

suggested as an efficacious therapy in other tumor types and

should be explored as a therapy for HCC.

The TU-red module contains genes involved in a variety of

metabolic functions many of which occur in the mitochondrion.

Consistent with this a set of nuclear encoded mitochondrial genes

Figure 7. Overlaps between AN and TU derived co-expression modules. Co-expression modules were derived from both the AN and TU
tissues (see Results and Methods) and are represented here as circles. Green (top) and red (bottom) circles are modules derived from AN and TU
tissues respectively. The size of the circles indicates the number of genes in each including less than 100 (small), 100–500 (medium) and greater than
500 (large). Genes which were variant within the tissues but did not fall within a co-expression module are collectively represented by diamonds (one
for each tissue). The largest modules from each tissue (AN-turquoise and TU-turquoise) are indicated by the boxes. Co-expression modules in AN
(top) or TU (bottom) that were enriched for AN-survival genes (green arrows) or TU-survival genes (red arrows) are indicated. Additionally the
concentration of cell cycle genes in the TU-salmon module is indicated.
doi:10.1371/journal.pone.0020090.g007
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[32] were enriched in the TU-red module (4.5 fold enrichment,

p = 4.3e-41). Mitochondrial genes as a whole were enriched for

becoming differentially correlated in TU (1.48 fold enrichment,

p = 2.7e-30) and for becoming correlated to sCNV in cis (1.72 fold

enrichment, p = 5.3e-62). Mitochondrial genes were also enriched

in AN-survival genes (1.66 fold enrichment, p = 9.1e-24) likely

indicating that network transformation involving this set was

linked to disease progression. The mitochondrial set as a whole

were not enriched for TU-survival genes, but perhaps significantly

those present in the TU-red module were unusual in that they

were predictive both in AN and TU tissues (16.89 fold enrichment

of genes predictive of survival in both AN and TU, p = 3.5e-87).

This suggests that formation of the TU-red module was important

at both early and later stages of tumor development, and that this

is centered on a subset of mitochondrial genes.

It has been reported that a high fat diet in a genetically

susceptible background induces HCC in mouse [33], and that

obesity and metabolic disorders are risk factors for HCC

susceptibility and prognosis [12,34]. Interestingly the signature of

a high fat diet in mouse liver was enriched in the TU-red module

(2.88 fold enrichment, p = 5.84e-12) linking environmental risk

factors with a molecular network predictive of survival and

biologically relevant to metabolic disease.

Discussion

Copy number aberrations are widely observed in solid tumors

and are likely the result of altered fidelity of DNA replication,

repair, checkpoints and/or chromosome segregation. These

processes leading to sCNV are by their nature intrinsic features

of cancer cells and occur in an undirected manner in terms of

chromosome location and direction of change (amplification

versus deletion). Since generation of sCNV is ongoing and will

lead to neutral, increased, or decreased fitness of the correspond-

ing cell in its environment, different derivatives will have

consequently different abilities to grow and survive, therefore

leading to evolution of the tumor over time [6]. Clinically relevant

tumor samples are therefore likely to represent the cumulative

result of undirected generation of variance (random) followed by

selection (non-random).

Using HCC and adjacent normal liver samples we investigated

the gene and sCNV changes associated with tumorigenesis by

comprehensively discovering the significant relationships within

and between DNA copy number variation, global gene expression

in TU and AN tissue and patient survival (See Figure 8 for global

summary). Analysis of these data revealed the appearance of

highly significant network changes as shown by gene pairs

differentially correlated between AN and TU tissue. Interestingly

this process largely consisted of loss of correlation in the TU

samples consistent with disruption of normal networks. A subset of

the changes observed involved gain of correlation in TU indicating

the formation of new networks in some cases. Consistent with the

view that loss of connectivity may represent loss of functionality

and gain of connectivity may be gain of functionality, the LOC

subset of genes was enriched for genes involved in normal liver

function that might be expected to be largely extraneous to the

needs of the tumor, whereas the GOC subset of genes is enriched

in the essential tumor function of cell cycle. This appearance of

loss and gain of connectivity during tumorigenesis may therefore

be analogous to the long established concepts of tumor suppressers

and oncogenes. Given the relative abundance of LOC versus

GOC events this implies that tumorigenesis in HCC at least is to a

large degree one of disruption of tumor suppressing normal

networks. Although smaller in number the GOC genes likely

represent functions selected as important for disease progression

and as such may be important points of intervention (see also

below).

Genes in TU were found to be strongly associated in cis and in

trans with sCNV frequently involving large chromosomal regions.

Within the architecture of sCNV-to-gene associations a number of

hotspots were found where many more genes were associated with

a particular marker than would be expected by chance.

Additionally the genes associated with the hotspots were highly

overlapping suggesting that multiple different loci may coordi-

nately regulate a core subset of genes. The finding of hotspots in

cancer data may not be unique to HCC in that similar

associations, even involving the same genes and sCNV loci were

found in an independent collection of cancer cell lines. Given the

common architecture of sCNV across many tumor types [25], the

cis and trans correlations documented here may therefore be

relevant to a broad range of diseases. The differentially connected

genes between AN and TU tissue were also significantly enriched

for association to sCNV markers in TU suggesting that the

network transitions and associated functional changes may be

mediated by somatic sCNV.

A surprising finding in this study was that at the same FDR,

three times as many genes predictive of survival were found in AN

than in TU tissue. Furthermore, although the AN-survival and

TU-survival genes overlapped more than would be expected by

chance, the majority of genes in each case were not predictive in

the other tissue. A direct connection between the altered predictive

value of the genes in AN and TU was found by association to

sCNV markers where AN-survival genes were preferentially

associated with sCNV markers in TU that were not predictive,

and TU-survival genes were enriched for association to predictive

sCNV markers. It therefore seems that the sCNV in tumors may

be sufficient to explain the transformation of the predictive value

of genes in AN versus TU.

To directly address the hypothesis of whether the pre-existing

state of genes that participate in network rearrangements are a

determinant of the probability of that transformation occurring,

we measured the transcriptional signature of a treatment that

promotes HCC tumorigenesis. Human MET overexpression in

mouse liver produced a gene signature, prior to the appearance of

tumors, that was significantly enriched in the human AN-survival

genes, in genes that participate in human HCC network changes,

and in genes associated in human HCC with sCNV. This is

directly supports the hypothesis that the pre-tumor state, as

measured by the AN tissue, was a significant determinant of the

large scale network transformations required to produce HCC

tumorigenesis.

There are a number of interesting ideas that derive from this

hypothesis. One is that MET overexpression causes increased

tumorigenesis by altering the genes (networks) that participate in

that transition, or in other words the starting state of these genes is

causally related to the probability of the future transformation

occurring. Similarly then, the starting state of the AN-survival

genes may be causal for the probability of network transformations

involving them in human HCC. The TU-survival genes in an

analogous manner may also be causally related to the probability

of future network evolutions relevant to disease progression. This

further suggests, that as in the MET case, manipulation of the

relevant genes will alter the probability of HCC network changes

and tumor evolution occurring.

The finding that AN-survival genes for the most part lose their

predictive value in tumor is interesting. By implication once the

network transformation has occurred those genes and their

associated functions were generally no longer rate limiting. This
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is apparently largely true for both disruption of normal networks

(LOC genes) and creation of new networks (GOC genes). From a

perspective of targeting tumors, disruption of normal networks

may be hard to reverse in practice. However the creation of new

networks may represent functions that the tumor has gained or

emphasized relative to the tissue from which it was derived. As

such these functions may make desirable targets in that the tumors

have selected for them and the selection process may relate to

Figure 8. Global distribution of survival associated genes and sCNV, differentially connected genes and gene-sCNV correlations.
Shown is a high level summary of various relationships described in this work. The graph was assembled using the Circos software (http://mkweb.
bcgsc.ca/circos/) and data in Tables S2 and S4. Genomic positions are indicated on the outer circle with both chromosome (large numbers) and
nucleotide position (smaller numbers, x1,000,000 nt) as indicated. The bars on the outer circle indicate the positions of cytobands. The 2nd (green
background) and 3rd (red background) circles indicate the genes (by chromosomal location) that predict survival in AN or TU tissues respectively
where a longer line indicates greater significance (see Table S2 and text). The 4th circle (yellow background) indicates genes found to be differentially
correlated between AN and TU tissue where the length of the line is proportional to the log10 of the number of differential correlations for that gene
(see Table S2 and text). The 5th circle (dark blue background) shows sCNV markers that predict patient survival where a longer bar is more significant
(see Table S4 and text). The 6th and innermost circle (light blue background) shows the number of genes correlated to each sCNV marker (cis and
trans correlations, see Table S4 and text).
doi:10.1371/journal.pone.0020090.g008
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survival. Targeting these new networks may therefore disrupt

essential tumor specific functions.

Finally, TU-survival genes may also represent an opportunity

for intervention in that as described above they may causally relate

to the probability of future disease progression. Investigation of co-

expression networks highlighted 4 co-expression modules that

were enriched for TU-survival genes. Two of the 4 modules were

strongly linked to ribosomes and ribosome biogenesis, which have

been linked to aggressive disease in other tumor types and

individual components when either over or under expressed

promote tumorigenesis. Myc has been shown to alter a number of

ribosome components and in turn can be regulated by them and

was found here to be in the same co-expression network. This

suggests that altered translation maybe a significant factor in HCC

disease progression. A third co-expression module was unusually

found to be enriched for both AN and TU-survival genes and

centered around metabolism and the mitochondrion. Although it

is speculation it is tempting to suggest that this group of genes may

represent the molecular equivalent of the epidemiological

observation that obesity is a risk factor for susceptibility to HCC

and survival after diagnosis. Interestingly it was recently suggested

that switching to a low fat diet alters the course of disease in mouse

models.

Materials and Methods

Patient demographic and clinical parameters
Demographic and pathologic parameters for the 272 ethnic

Chinese HCC patients who received curative surgery and used in

this study are shown (see Table S1, see also [17]). Half of the

patients (51.1%) suffered from tumor recurrence during the follow-

up period. The primary endpoints measured were overall survival,

disease-free survival (DFS), and tumor stage (pTNM [35]). In a

simple Cox model, the endpoints were found to be significantly

associated with tumor size, serum alpha fetoprotein (AFP) levels,

total albumin concentration (ALBU), venous infiltration (veninv),

AJCC stage [35], and the number of tumor nodules (NOTN).

Patient and ethics approval for this study was obtained from

Institutional Review Board of the University of Hong Kong/

Hospital Authority Hong Kong West Cluster (HKU/HA HKW

IRB).

Sample processing to isolate DNA and RNA
Tissue milling and division was accomplished as follows. Flash

frozen tissue was placed in a chilled milling tube along with a

stainless steel bead, dipped in a liquid nitrogen bath and loaded

onto the QIAGEN TissueLyser for milling (30 Hz in 30 second

intervals). Multiple cycles of milling were sometimes required to

achieve complete pulverization of the tissue to a fine powder. After

milling, the tissue powder was recovered and rapidly manually

split for extraction of DNA and RNA. At all times sub-zero

temperatures were maintained.

Homogenous tissue aliquots resulting from the milling process

were digested overnight with proteinase K. A portion of the digest

was then dedicated to DNA extraction using an automated

protocol based on the Agencourt (Beverly, MA) Genfind SPRIH
(Solid Phase Reversible Immobilization) paramagnetic bead-based

technology for the selective immobilization of nucleic acids onto

magnetic microparticles. Following the precipitation of the eluted

DNA, samples were quantitated using PicoGreen (Invitrogen) and

qualified by agarose gel electrophoresis.

Isolation of RNA was achieved using the following procedures.

The milled tissue samples were homogenized in cryopreservation

tubes with a vortex mixer after addition of 750 to 1000 uL of

100% TRIzol. 100% Chloroform was added to the TRIzol/

GITC lysate (1:5 ratio) to facilitate separation of the organic and

aqueous components using the phaselock (Eppendorf) system.

The aqueous supernatant was further purified using the Promega

SV-96 total RNA kit, incorporating a DNase treatment during

the procedure. Isolated total RNA samples were then assayed for

quality (Agilent Bioanalyzer) and yield (Ribogreen) metrics prior

to amplification.

RNA amplification and hybridization
Samples were amplified and labeled using a custom automated

version of the RT/IVT protocol and reagents provided by

Affymetrix. Hybridization, labeling and scanning were completed

following the manufacturer’s recommendations (Affymetrix).

Sample amplification, labeling, and microarray processing were

performed by the Rosetta Inpharmatics Gene Expression

Laboratory in Seattle, WA.

Gene expression data processing
The intensity of all gene array experiments were normalized

together using the RMA method [36]. Afterwards, the intensity

was adjusted for gender and age of the patients. To avoid the

influence of outliers, we fitted the robust linear model (rlm, M-

estimation with Tukey’s bisquare weights, implemented in R

statistical package), and used the residuals as the gene trait in all

subsequent analyses. In brief, for every gene (for example, genej)

we fitted a linear model:

Expressionij~ b0 z b1Agei z b2Genderiz rij,

where Expressionij is the expression level for genej in the ith

patient; and Agei and Genderi are age and gender of the ith

patient. Each patient contributes to the model differently

according to his/her Tukey’s bisquare weights derived from rij.

The expression data has been deposited in GEO (GSE25142,

http://www.ncbi.nlm.nih.gov/geo/).

DNA genotyping
Whole genome genotyping was performed using the Illumina

Infinium Assay, following all manufacturer specifications. Approx-

imately 750 ng of high molecular weight genomic DNA was used

for each sample to produce genotyping calls across 650,000 SNPs

distributed throughout the human genome. The technology used

was reported [37], and current protocols are available from www.

illumina.com. To identify copy number variation, we obtained the

log R ratios and smoothed the data using a 40-SNP window with a

20-SNP step to minimise noise and maximise signal. The

genotyping data has been deposited in GEO (GSE28127,

http://www.ncbi.nlm.nih.gov/geo/).

Enrichments tests for gene sets versus Gene Ontology
(GO) and other terms

The gene sets as defined in the text were compared to

independently derived collections of genes representing biological

functions in various public and other databases using the Fisher

Exact Test. The p values in all cases represent the significance of

the Fisher Exact Test statistic under the null hypothesis that the

frequency of the indicated gene set is the same between the

network module and the reference set of genes taken to be the set

of genes comprising the network of interest. Given many such tests

were performed over many gene sets, a conservative Bonferroni

adjustment for multiple testing was employed by multiplying the

resultant p values by the number of tests performed.
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For the identification of GO terms uniquely or relatively over-

represented in co-expression modules the following procedure was

used. As above enrichments of GO term for each co-expression

module was assessed using Fishers Exact test and corrected for

multiple testing by multiplying the p values by the number of tests.

An adjusted p,0.05 was used as a cut-off. Fold enrichments

(observed overlap divided by expected), were then used to

compare enrichments of individual GO terms between modules.

What is shown in Table S8 are cases where a GO term was more

highly enriched (fold enrichment) in comparison to all other

modules.

Meta-analysis of gene-gene correlation
For each gene pair (i,j) and their Spearman correlation

coefficients, rtij, where t = {tumor,normal} is measured in tumor

and adjacent normal tissues, respectively, we first transformed the

correlation coefficients into Fisher’s Z-statistics:

ztij~
1

2
log

1zrtij

1{rtij

� �

which follows a normal distribution with mean zero and standard

deviation of 1
� ffiffiffiffiffiffiffiffiffiffiffiffiffi

nt{30
p

, where nt is sample size. A heterogeneity

statistics, Q, is then computed as follows

Q~
X

t

wt(zt{�zz)2

where wt = nt23 and �zz is the average z between tumor and

adjacent normal tissues. Under the homogeneity assumption, the

Q statistics should follow a x2 distribution with one degree of

freedom under the homogeneity assumption. The larger the Q

statistic is, the less similar the two gene’s relationship is between

the two tissues. We chose Q0 = 80, corresponding to a p-value of

p0 = 1|10220, as the cutoff to determine the statistical significance

of the heterogeneity Q statistic. Gene pairs with Q.Q0 were

considered as significantly differentially connected and were

retained for subsequent analysis. We further estimated that the

false discovery rate at our selected cutoff was FDR ,1|1026 by

repeating the same meta-analysis procedure on a permuted

version of the original data in which the sample labels were

randomly assigned.

DNA/gene associations and permutations
For DNA/mRNA associations, smoothed logR ratio’s were

derived by taking the average intensity for 40 adjacent markers

sequentially through the genome with a step size of 20 markers.

This procedure results in 32,711 sCNV markers evenly distributed

through the genome. The degree of DNA association to mRNA

was measured by using Pearson correlation coefficient on the

smoothed log R ratio data in a pair-wise fashion, using gene

expression, adjusted by gender and age as described above. Cis

effects were defined as the closest DNA marker within 5 Mb of the

gene encoding each mRNA. The significance of DNA/mRNA

correlations, was assessed by permuting the sample assignments

such that the connection between the two data types is destroyed

but the connections with each type (DNA/DNA and gene/gene)

are maintained.

The smoothed logR ratio procedure was compared to a

published segmentation method [38] which is reported to be

comparable to other published methods [39], by assessing the

number of significant associations between copy number variation

(as defined by each method) and expression variation in cis for a

given FDR. In a head to head comparison the smoothed logR

ratio method discovered larger numbers of cis associations at all

FDR cut-off’s in comparison to the published method (see Table

S10). In light of this the smoothed logR ratio method was used for

all estimations of copy number variation.

As described in the text certain loci are associated with

hundreds of genes. Using an arbitrary cut-off for markers

associated with .500 genes (correlation .0.3), 7 loci were

identified as described in the text. To assess if these ‘‘hotspots’’

could have occurred by chance the connection between the gene

expression and sCNV data was permuted while maintaining the

internal structures of expression and DNA variation. After 10 such

permutations no hotspots were discovered using the criteria above,

therefore we concluded that the observed hotspots were not likely

to have occurred by chance.

Stepwise regression to quantify sCNV contribution to
mRNA variation

A forward stepwise multi-linear regression model was used to

derive the adjusted squared regression coefficient (r2) for the

proportion of mRNA variance accounted for by sCNV at multiple

loci. For a given mRNA, we first fitted the initial model with the

most correlated sCNV marker (p value cut-off = 5.1e-6, 0:35j j),
and then added another predictor from a different chromosome

and compared the RMSE (mean squared error) of the new model

to the previous one. If the new model had a smaller RMSE (mean

squared error), then it was added to the model. This was repeated

until no further improvement for the model was seen.

Identifying expression traits and sCNV markers
significantly associated with clinical endpoints

To explore the connections between sCNV markers, expression

variation and disease endpoints, we identified those traits detected

as most highly associated with survival in AN or TU tissue using a

simple Cox regression model. In all cases a false discovery rate of

0.1 was derived from 100 permutations of the data. This resulted

in 1,836 genes (p,0.002) and 3,223 sCNV markers (p,0.0089) in

TU and 5,387 genes (p,0.0112) in AN tissue associated with

survival.

Enrichment of AN and TU-survival genes for association
to sCNV markers

To adjust for the non-random distribution of significant

associations between genes and sCNV markers through the

genome, the following adjustment was made. For each sCNV

marker the expected number of associations was derived by

multiplying the test gene set (AN or TU-survival genes) by the total

number of genes associated with that marker for a given cut-off

and then dividing by the total number of genes measured

(n = 37,585). This expected value was then used to divide the

observed number of genes for the test gene set for the sCNV

marker in question (i.e.observed divided by expected). The

resulting ratio’s were then used to assess the relative enrichment

of AN and TU-survival genes for association to sCNV markers

that were or were not predictive of survival as defined above.

Description and analysis of cancer cell line (CCL) data
CCL cohort description. 131 cancer cell lines from Caucasian

donors were used in this study which has been more fully described

elsewhere [24]. These cell lines were derived from various tumor

tissues (31 colon, 26 leukemia/lymphoma, 20 lung, 15 skin, 6 breast,

6 bladder, 5 pancreas, and 22 from other tissues like stomach, brain,

prostate, cervix, bone, liver, tongue, and uterus).

Reconstruction of Tumorigenesis in HCC

PLoS ONE | www.plosone.org 14 July 2011 | Volume 6 | Issue 7 | e20090



CCL Array CGH data. The Parallele MIP (Molecular

Inversion Probe) platform [40] was selected to identify copy

number variations in these cell lines. Approximately 8 ug of

genomic DNA from each of the human tumor cell lines was

extracted from cultured cell lines. A total of 17,000 SNP markers

were genotyped using the MIP platform. Derivation and

normalization of copy number for each markers was performed

exactly as described [40]. To reduce the noise, copy number data

for each marker was smoothed using adjacent markers (markers

located 300 kb up or down-stream) [40].

CCL mRNA Expression data. Labeled cRNAs from mRNA

samples obtained from the cell lines were fragmented to an

average size of approximately 50 to 100 nucleotides then

hybridized to Agilent Human 3.0 A1 arrays. Fluorescence

intensities of the scanned images were quantified, normalized,

and balanced and then gene expression (mlratio) was measured

relative to a common reference RNA pool (Human Universal

Reference RNA, Stratagene, La Jolla, CA), by using Rosetta

Resolver Agilent Error Model. This data has been loaded into

NCBI GEO database, with accession number GSE13598: (http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE13598).

CCL Tissue/cancer type effect on sCNV. To assess the

presence of tissue/cancer type effect on sCNV, we first assigned

each cell line to one of the eight tissue types of origin based on

available annotations, then ran a one-way ANOVA analysis on

every marker. Permutations were done by randomizing the tissue

assignment. Finally the original sCNV markers were adjusted by

tissue means to normalize the tissue effect. The same process was

used to adjust mRNA expression data.

CCL DNA/mRNA associations and permutations. The

degree of DNA/mRNA association was measured by using

Pearson Correlation Coefficient on log2 transformed, tissue-

adjusted copy number data in a pair-wise fashion. For cis-acting

effect, we matched mRNA’s probes on the expression arrays with

the closest DNA copy number marker within 5 Mb. To assess the

significance of DNA/mRNA correlations, we did the same

analysis on permuted datasets, in which the links between sCNV

and their original cell lines were randomly shuffled. Since this

study focused on relationship among unlinked sCNV, when

permuting the DNA copy number data, we preserved intra-

chromosomal marker correlations.

MET mouse liver signatures
The mice used in this study have been described [27]. All mice

were in the FVB genetic background. The mice overexpressing

human MET carried one copy of the LAP-tTa transgene (the

liver-specific LAP promoter driving the Tet-VP16 transactivator)

and one copy of the Tre-Met transgene (Tet-operator regulated

human MET gene). The presence of both transgenes in these mice

results in expression of the human MET gene specifically in and

throughout the liver (referred to henceforth as the TRE-MET

strain). A strain carrying two copies of the LAP-tTa transgene only

was used as a control (referred to henceforth as the LAP-tTA

strain). Seven mice of each of the two strains were sacrificed at 6 or

7 weeks of age prior to the appearance of tumors and the livers

collected and processed for gene expression profiling (as described

above) at the Rosetta Gene Expression Laboratory. As a control

for the ability of the MET transgene to produce tumors, a parallel

set of 7 mice for each of the two strains was sacrificed after 14

weeks, where 2 or more tumors per liver were found in each of the

MET overexpressing mice and none in the control strain. MET

specific signatures were defined as genes with an ANOVA p,0.01

between the LAP-tTA and TRE-MET derived samples at 6-7

weeks of age.

Reconstruction of tumor and adjacent normal
coexpression networks

A previously described weighted gene coexpression network

reconstruction algorithm was employed to reconstruct the

coexpression networks [13,16,28]. The weighted network recon-

struction algorithm involved first constructing a matrix of Pearson

correlations between all gene expression pairs. The correlation

matrix was then transformed into an adjacency matrix using the

power function f (x) = xb. The adjacency matrix defines the

weighted coexpression network. The parameter b of the power

function was determined such that the resulting adjacency matrix

was approximately scale-free. To measure how well a network

satisfies the scale-free topology property, we used the model fitting

index proposed by Zhang & Horvath. This index is defined as the

coefficient of determination (i.e., R2) of the linear model

constructed by regressing Log(p(k)) onto log(k), where k represents

the degree of a given node (i.e., the number of edges connecting to

the given node), and p(k) is the frequency distribution of the degree

k in the coexpression network. The model fitting index of a perfect

scale-free network is 1. The exponent of the power function, b, was

chosen to be the smallest value such that the coexpression network

exhibited the scale free property (b = 3.5 in this case). The degree

distribution of the coexpression network approximates a power

law (p(k),k-1.36 p(k),k-1.93), with a model fitting index .0.7.

Supporting Information

Table S1 Demographic and clinical characteristics of
HCC patients.

(XLS)

Table S2 Summary by gene. Shown are a number of

measures (columns) derived from this analysis for each gene (rows).

The columns are as follows ‘‘idx’’ is a unique row identifier,

‘‘Reporter Id’’ indicates the probe on the array; ‘‘chr’’, ‘‘pos’’ and

‘‘cytoband’’ refer to the gene location by chromosome nucleotide

position and cytoband respectively; ‘‘Symbol’’ indicates the gene

name; ‘‘Entrez’’ indicates the Entrez Id; ‘‘transcript’’ lists

commonly used transcript identifiers for each probe; ‘‘AN-

module’’ and ‘‘TU-module’’ indicate membership in co-expression

modules in the AN and TU tissue respectively; ‘‘Pval_TUvsAN’’ is

the paired t-test p value for the difference in expression between

AN and TU tissues; ‘‘Connectivity’’ indicates the total number of

differential connections (gain plus loss) as defined in the text, and

the number of gain ("#GOC") or loss ("#LOC") of correlations in

tumor; ‘‘cis_CC’’ indicates the Pearson correlation coefficient

between each gene and the closest CNV marker (in cis);

‘‘adjusted_r2’’ indicates the variance explained for each probe

using the linear regression model as described in the text and

methods; ‘‘N_Markers_in_Model’’ is the number of CNV markers

used in the linear regression model where each marker is from a

different chromosome (see text and Methods); ‘‘Pval-AN-survival’’

and ‘‘Pval-TU-survival’’ indicates the Cox-regression p value for

prediction of survival using either AN or TU expression values

respectively; ‘‘Sig-AN-survival’’ and ‘‘Sig-TU-survival’’ indicate

genes significantly predictive of survival (FDR,0.1), where ‘‘1’’ =

predictive and ‘‘0’’ = not predictive for AN and TU tissue; ‘‘MET-

Sig’’ indicates genes significantly altered by MET expression in

mouse liver (‘‘1’’) or not significantly altered (‘‘0’’). Please refer to

the text and Methods for fuller descriptions of the various

measures.

(XLS)

Table S3 Overlaps between genes correlated to sCNV
hotspots. Overlaps between genes correlated to the top 7 sCNV

Reconstruction of Tumorigenesis in HCC

PLoS ONE | www.plosone.org 15 July 2011 | Volume 6 | Issue 7 | e20090



hotspots (see Results and Methods) were tested. Hotspots are

identified by the chromosome on which they resided (top row and

first column). The Fisher Exact test p value for the overlap is

shown for each comparison below and to the left of the grey boxes.

The fold enrichment over chance (observed divided by expected) is

shown above and to the right of the grey boxes. Fold enrichments

are not shown for non-significant overlaps.

(XLS)

Table S4 Relationship of sCNV markers to survival.
Listed are the relationships found between sCNV markers genome

wide and survival using Cox regression (Methods). ‘‘Idx’’ indicates

a unique identifier for each sCNV marker, ‘‘SNPid’’ is the SNP

identifier for the SNP at the center of the smoothed window of

adjacent sCNV markers (see Methods for derivation of smoothed

sCNV markers), ‘‘chr’’ indicates the chromosome, ‘‘pos’’ is the

nucleotide position of the middle of the smoothed with of markers,

‘‘CNV2GE_correlation’’ indicates the number of genes signifi-

cantly correlated to each sCNV marker, ‘‘NeglogP-CNV-Surviv-

al’’ shows the negative log10 of the p value for prediction of

survival using Cox regression, and ‘‘Sig-CNV-Survival’’ indicates

markers considered to significantly predict survival where ‘‘1’’ is

significant and ‘‘0’’ is not significant.

(XLS)

Table S5 Summary of linear regression analysis for AN
expression versus TU sCNV markers. The distribution of

variance explained by sCNV markers in the regression models for

all genes is shown (Methods) using AN expression and TU derived

sCNV markers. Counts for number of genes with various cut-offs for

variance explained (‘‘R2.cutoff’’ column 1) for all AN genes and all

TU sCNV markers (‘‘trans+cis’’, column 2) and for cis markers only

(‘‘cis’’, column 3) using the real data was compared to a similar

analysis where the connection between the expression and sCNV

markers was permuted (‘‘pm_trans+cis’’ and ‘‘pm_cis’’, columns 4

and 5). As shown the real data was not significantly different that the

permuted data indicating a lack of detectable signal.

(XLS)

Table S6 Co-expression module to module overlaps
between tissues. Shown are the overlaps found between co-

expression modules derived from AN and TU tissues. ‘‘Set1’’ and

‘‘Set2’’ indicates the AN and TU modules tested respectively.

‘‘Pval’’ and ‘‘Fold’’ indicate the Fishers Exact test p value for

enrichment of overlap and the fold increase in the overlap versus

what would be expected by chance respectively. Results with a p

value ,1e-3 are shown.

(XLS)

Table S7 Enrichments of predictive and differentially
correlated genes in the AN and TU co-expression
modules. A Co-expression modules tissue, name and number

of genes in each module (columns 1–3) are indicated. The number

of GO terms enriched, and the top GO terms enriched for each

module with enrichment p value and fold enrichment are also

shown (columns 4–7) and the total number of GO terms enriched.

Enrichments of genes predictive of survival in AN and TU tissue

(columns 8–10 and 11–13, respectively), and for genes differen-

tially correlated (columns 14–16), and the gain (columns 17–19)

and loss (columns 20–22) are also shown. All p values were from

the Fishers Exact test and fold enrichment were calculated by

dividing the observed overlap by the expected overlap. B is as for

A but with modules derived from TU tissue.

(XLS)

Table S8 GO term enrichments for AN and TU co-
expression modules. Shown are the top GO term enrichments

as judged by the relative fold enrichment for each AN and TU co-

expression module. ‘‘Similar Set’’ indicates the GO term,

‘‘Module’’ indicates the co-expression module. ‘‘Fold’’ indicates

the fold enrichment of the overlap versus expected, and ‘‘Diff’’

indicates the difference in fold enrichment between the indicated

module and the next most enriched module from either AN or TU

tissue. In cases where ‘‘Fold’’ and ‘‘Diff’’ are the same, there were

no other significant enrichments for that term in any other

module. That table is ranked in descending order by the fold

enrichment.

(XLS)

Table S9 Overlaps between sCNV hotspot correlated
genes and co-expression modules. Shown are the overlaps

found between genes correlated to the top sCNV hotspots

(‘‘Hotspot’’) and co-expression modules from AN and TU tissue

(‘‘Module’’). Also indicated is the fold enrichment of the overlap

versus the random expectation in each case (Fold). Only

enrichments with a Fishers Exact test p,1e-3 are shown.

(XLS)

Table S10 Comparison of CGHseq and smoothed logR
ratio methods of estimating sCNV. Shown is a comparison

of methods for estimating copy number aberrations as described in

the Methods. The ability of each method to detect associations

between DNA variation and gene variation in cis for a given FDR

was assessed. Shown are the FDR cut-offs applied (‘‘FDR’’,

column 1), and the number of significant associations between

genes and copy number aberration in cis using the CGHseg

method (columns 2 and 3) and the smoothed logR ratio method

(column4 and 5) for the real data (columns 2 and 4) and permuted

data (used to calculate the FDR’s, columns 3 and 5). As shown the

smoothed log R ratio method appear to detect many more cis

associations for a given FDR than the CGHseg method.

(XLS)
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