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Abstract

The size distribution of neuronal avalanches in cortical networks has been reported to follow a power law distribution with
exponent close to 21.5, which is a reflection of long-range spatial correlations in spontaneous neuronal activity. However,
identifying power law scaling in empirical data can be difficult and sometimes controversial. In the present study, we tested
the power law hypothesis for neuronal avalanches by using more stringent statistical analyses. In particular, we performed
the following steps: (i) analysis of finite-size scaling to identify scale-free dynamics in neuronal avalanches, (ii) model
parameter estimation to determine the specific exponent of the power law, and (iii) comparison of the power law to
alternative model distributions. Consistent with critical state dynamics, avalanche size distributions exhibited robust scaling
behavior in which the maximum avalanche size was limited only by the spatial extent of sampling (‘‘finite size’’ effect). This
scale-free dynamics suggests the power law as a model for the distribution of avalanche sizes. Using both the Kolmogorov-
Smirnov statistic and a maximum likelihood approach, we found the slope to be close to 21.5, which is in line with previous
reports. Finally, the power law model for neuronal avalanches was compared to the exponential and to various heavy-tail
distributions based on the Kolmogorov-Smirnov distance and by using a log-likelihood ratio test. Both the power law
distribution without and with exponential cut-off provided significantly better fits to the cluster size distributions in
neuronal avalanches than the exponential, the lognormal and the gamma distribution. In summary, our findings strongly
support the power law scaling in neuronal avalanches, providing further evidence for critical state dynamics in superficial
layers of cortex.
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Introduction

Complex systems, when poised at the transition between order

and disorder, exhibit scale-free dynamics [1]. These dynamics are

characterized by a probability distribution of event sizes that

follows a power law with exponent a:

P(s)!sa,

where P(s) denotes the probability of an event of size s. Recently,

the size of neuronal activity cascades in superficial layers of cortex,

measured by the number of negative threshold crossings of the

local field potential (nLFP), has been suggested to be distributed

according to a power law with exponent a close to 21.5 [2–5]

(Figure 1). This activity was termed ‘‘neuronal avalanches.’’ The

exponent of 21.5 indicates that neuronal avalanches reflect long-

range spatial and temporal correlations in the network as expected

from critical dynamics [2,6–8]. Accordingly, pharmacological

manipulations that perturb communication beween neurons

rapidly destroy the power law [2–4]. Similarly, spatial and

temporal shuffling of recorded neuronal activities, which destroy

such correlations and serve as randomized controls, also abolish

the power law and instead result in a size distribution from an

exponential family [4,5,9]. The range of sizes of neuronal

avalanches has consistently spanned 1.5 to 3 orders of magnitude

[2–5], and the cut-off of their distributions was shown to

systematically change with system size, consistent with the

hypothesis that the system is in a critical state [2,5]. Importantly,

the propagation of activity within neuronal avalanches is highly

balanced, that is, one neuronal active site in the network on

average spawns activity at one other site in the near future. Thus,

avalanche dynamics fulfill the theoretical predictions for critical

branching processes that exhibit both a power law in cascade size

distributions with a slope of 21.5 and a critical branching

parameter equal to unity [2,10].

In many cases, deciding whether a given empirical distribution

follows a power law and to determine its slope can be technically

challenging [11–15]. Until recently, whether a given distribution is

appropriately described by a power law was largely determined by

visual inspection of the distribution in a double-logarithmic plot

[2,16,17]. In such a presentation, a power law conveniently takes on

the form of a straight line. For neuronal avalanches, this feature and

the large deviation between the original distribution and shuffled,

exponentially distributed controls were interpreted as evidence in

favor of a power law [4,5]. As pointed out previously [13,14,18,19],

such a visual approach suffers from a lack of statistical rigor in

identifying a significant difference between a power law and an

exponential or other alternative model distributions. This problem
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is worsened when the availability of the data is limited, for example,

for small sample sizes or when the range of values over which the

distribution is analyzed is narrow [13,15].

The reasons described above emphasize the need for more

stringent methods in testing the power law hypothesis for neuronal

avalanches. The present study was aimed to provide such an

analysis. More specifically, we performed the following three steps:

(i) finite-size scaling analysis to motivate the power law model as an

appropriate description for the distribution of avalanche sizes, (ii)

parameter estimation of the statistical models to determine the

slope of the power law and to allow the subsequent model

comparison, and (iii) comparison of the power law and the

exponentially truncated power law to the alternatives of an

exponential, a lognormal and a gamma distribution. We re-

examined multielectrode data on neuronal avalanches in different

systems with various preparations, including organotypic cortex

slice cultures in vitro [2], in vivo under anesthesia [4], and in vivo

in the awake macaque monkey [5] (Figures 1A–C, respectively). In

addition, we analyzed new data on ongoing activity in an awake

macaque monkey recorded with a high-density array (91 channels,

Figure 1. Avalanche size distributions analyzed in the present study. A. Average in vitro cluster size distribution in organotypic cortex slice
cultures (60 electrodes, 7 cultures, n = 53,443 avalanches on average) in double-logarithmic (upper panel) and linear scale (lower panel). The data set
was taken from [2]. Inset: view of a culture on a 8|8 electrode array (scale bar, 1 mm). B. Average in vivo cluster size distribution from rat
somatosensory cortex under urethane anesthesia (27–31 electrodes, 7 recordings, n = 22,321 avalanches on average). Data was taken from [4]. Inset:
view of the insertion sites for an 8|4 array (triangles) in cortical layer 2/3 (vertical scale bar, 1 mm). C. 43-min recording for monkey X (low-density
microelectrode array with 32 electrodes in the left primary motor cortex, n = 45,574 avalanches). Data was taken from [5]. D. 30-min recording for the
second monkey (monkey Y, high-density microelectrode array with 91 electrodes in the left premotor cortex, n = 24,877 avalanches). Insets in C and D
show the location of the multielectrode arrays (scale bar, 10 mm). The size of the arrays (dark squares) is not shown in the actual scale. The number of
electrodes in the individual arrays is indicated by arrows in the log-log plots (A–D).
doi:10.1371/journal.pone.0019779.g001
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Figure 1D). The model comparison was done by a likelihood ratio

test [14,18,20] and, additionally, by using a comparison that was

based on the Kolmogorov-Smirnov (KS) statistic. Both tests clearly

favored the power law models over the alternative distributions for

all data sets. Furthermore, good fits were also obtained by the

inverse Gaussian distribution, which describes a power law with

fixed exponent 21.5 and additional cut-off function. Taken

together, these results indicate that cluster size distributions in

neuronal avalanches scale according to a power law with

particular exponent a close to 21.5, which provides strong

support for critical state dynamics in superficial layers of cortex.

Results

In the present study, we analyzed the power law scaling of

neuronal avalanches recorded from organotypic cortex cultures in

vitro [2], in rat cortical layer 2/3 in vivo under urethane anesthesia

[4], in superficial cortical layers in an awake monkey with a low-

density microelectrode array [5] and in another monkey with a

high-density microelectrode array (Figure 1). The results will be

presented in the following order: First, finite-size scaling analysis,

which is required to determine whether the power law model is an

appropriate model for neuronal avalanches. Second, parameter

value estimation, which is an essential step in model selection and

comparison as proper parameter estimates are required for any

further quantitative analysis. We estimated the power law exponent

for neuronal avalanches by two different methods, i.e., likelihood

maximization and estimation based on the KS statistic, and we

compared the results to previous reports that were obtained by least-

square regression. Finally, we compared the power law model to

alternative distributions by performing a log-likelihood ratio test

[14,18,20] and, additionally, by using the KS statistic.

Finite-size scaling in neuronal avalanches
An important feature of systems at a critical transition is the

scale invariance of their dynamics with respect to changes of the

system size [1,6]. In neuronal avalanches, the distribution of

cluster sizes with slope a = 21.5 has been shown to be invariant to

changes in the number of electrodes that was used for the

avalanche detection [2,5,21]. This feature manifests non-trivial

dynamics of the underlying network activity as the systematic

removal of events in the local field potential (LFP) does not lead to

a break-down of the avalanche size distribution (cf. [5]).

We used this property as an indicator of the power law scaling

in neuronal avalanches. To study the invariance of cluster size

distributions, we varied the number of electrodes, N, that were

included for the detection of negative threshold crossings in the

LFP (see Materials and Methods). Event sizes in the resulting size

distributions were expressed in units of N by the basic rescaling

approach s?s/N. A proper renormalization of the probability

mass functions (PMFs) resulted then in a collapse of power law

distributions for different N, as shown in Figure 2A for theoretical

power law distributions (see also Supporting Information, Text S1

and Figure S1). Figure 2B shows the collapse of cluster size

distributions for the empirical data sets from Figure 1, indicating

scale-free dynamics in neuronal avalanches independent of N.

Importantly, the cluster size distributions for varying N showed a

sharp cut-off at the system size (i.e., at s/N = 1) for the rescaled

distributions (Figure 2B). Using a renormalization for time-shuffled

cluster sizes based on either the power law assumption or the

exponential model did not result in a collapse of the corresponding

distributions (Figure S1). In addition, the maximum cluster size in

the time-shuffled data decreased for increasing N (Figure S1),

indicating that shuffling destroyed the scale-free behavior in the

resulting distributions. These results, together with the finite-size

Figure 2. Collapse of rescaled cluster size distributions in neuronal avalanches. A. Depiction of the rescaling approach for synthetic PMFs
for maximum sizes N = 8, 16, 32, 64 (left). The system size, N, corresponds to the number of electrodes included in the analysis. Cluster sizes s were
normalized by the system size N (s?s/N) and the renormalized probability was obtained according to P(s)?P(s)/A(N), resulting in a collapse of the
cluster size distributions (right). Here, the definition of A(N) with upper bound N was used (Eq. 16). The vertical arrow indicates the system size (scaled
to unity). B. Collapse of rescaled cluster size distributions for average in vitro distributions (n = 7), average in vivo distributions under anesthesia (rat,
n = 7), and the two awake monkeys with low- and high-density array, respectively (from left to right). Note that the maximum cluster size for all data
sets increases with N with the distribution showing a clear cut-off beyond the system size (s/N = 1). The exponent a for the empirical distributions was
fitted individually for each system size N (see Materials and Methods).
doi:10.1371/journal.pone.0019779.g002
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scaling and the collapse of the original cluster size distributions in

Figure 2 are consistent with critical state dynamics and the

hypothesis of a power law distribution of neuronal avalanche sizes.

Model parameter estimation
The slope parameter a for neuronal avalanches has been

previously reported to be close to 21.5. This value has been

estimated by least-square (LS) fitting of a linear function on

double-logarithmic plots with logarithmic binning [2,5], an

approach that has also been used for power law distributions in

domains other than neuroscience (see, e.g., refs. [16,17,22]). If not

handled with care, LS fitting on log-log transformed values can

yield strongly biased estimates, originating from noise in the tail of

the distribution or introduced by the bias of zero frequencies [11–

13]. However, both issues did not pose a problem for the

avalanche size distributions considered in the current study; the

number of avalanches per experiment ranged from approximately

12,000 to .150,000, thus, providing numerous samples per size s

up to the system size (Figure 1). With proper binning, this results in

enough samples per bin even at the tail of the distribution. To

assess the performance of the LS fit for the size distribution of

neuronal avalanches, we calculated estimates of a by applying two

different methods, i.e., by minimizing the KS distance (Eq. 12)

between the cumulative distribution of the empirical data set and

the power law model, and, additionally, by using the maximum

likelihood (ML) estimation (Eq. 15, refs. [14,18,20]). Due to the

sharp cut-off in the cluster size distributions at the system size, N,

which was the number of electrodes in the recording array (see

Figure 1 and 2), parameter estimation was performed over the

finite range of cluster sizes from s = 1 to N (total number of

electrodes in the array). For all avalanche size distributions,

average slope parameters a estimated by the three methods (LS,

KS and ML) were close to 21.5 and not significantly different

from each other (Figure 3A).

Since the ML estimation used here (Eqs. 13 to 15) assumes

independently distributed cluster sizes, we verified that the

temporal correlation structure in neuronal avalanches [21] did

not have a significant influence on the parameter estimates of a.

This was done by estimating a for decorrelated sub-sets of the data

and comparing it to estimates that were obtained from sample-size

matched sequences from the original cluster sizes. Figure 3B shows

the autocorrelation for the sequence of neuronal avalanche sizes in

monkey X and Y. Both correlation functions showed a quick drop

within the first 10 avalanches (Figure 3B, arrow), followed by a

slower, subsequent decay. Here, ‘‘decorrelation’’ refers to the

strong reduction of the autocorrelation, which was achieved by

considering a minimum lag between avalanches that eliminated

the initial peak in the autocorrelation. Importantly, estimates of a
for the decorrelated avalanche sizes were not significantly different

from estimates in sample-size matched controls (gray lines in

Figure 3C) over a wide range of avalanche lags. Therefore, the ML

estimation shown in Figure 3 gave reliable estimates for size

distributions in neuronal avalanches, and ML estimation on

decorrelated sub-sets of the data was used for the log-likelihood

ratio test for the model comparison (see below). For all other tests,

and if not stated otherwise, we used an estimation obtained by the

KS method, which does not assume independently distributed

data.

We also note that, when the empirical distribution was not well

described by the model distribution, for example, when time-

shuffled, exponentially distributed cluster sizes were fitted by a

power law, a significant difference arose between the estimation

methods (Figure S2). This implies that the similarity between the

differently estimated power law exponents for neuronal avalanches

was not due to a general property of the estimation methods.

Rather, it suggests that the power law is an appropriate model for

the data. Next, we compared the power law model to various

alternative distributions by using the ML estimation in combina-

tion with a log-likelihood ratio test and the KS estimation for a

comparison based on the KS statistic.

Comparison of the power law model to alternative
distributions

The collapse of cluster size distributions in Figure 2 suggests

scale-free dynamics in neuronal avalanche sizes, which is a unique

feature of the power law. Such a power law scaling indicates long-

range correlations in the avalanche dynamics as opposed to

random activity, which results in an exponential class distribution

of cluster sizes. We therefore compared the power law with the

exponential model for neuronal avalanches by a log-likelihood

ratio (LLR) test (Eq. 17) using decorrelated data as described

above. The LLR takes positive values if the likelihood of the power

law model for a given empirical data set is larger than the

likelihood of the exponential model, and it is negative if the

likelihood of the exponential model is greater. The sign of the LLR

can be used to determine which model should be favored if the

LLR is significantly different from zero [14,23]. We calculated the

LLRs for decorrelated sub-sets of the data from Figure 1 and

included the entire range of cluster sizes (i.e., from s = 1 to s = total

number of electrodes in the array). All LLR values for the in vitro

and the in vivo size distributions were positive and significantly

greater than zero (range, 377–8269, p,0.0001), indicating that the

power law was favored over the exponential distribution for all

data sets tested (Table 1).

It has been previously shown that the dynamics of neuronal

avalanches exhibit scale-invariance with respect to changes of the

threshold, z, of the nLFP detection [5]. Therefore, we compared

the power law and the exponential model for decorrelated cluster

sizes that were obtained for different nLFP thresholds in monkey

X (cf. ref. [5]). The ML fits for the power law and the exponential

distribution for z = 21.5 are shown in Figure 4A. Figure 4B shows

the LLR values for z = 21.5 to 25 SD. All LLR values were

positive and the difference from zero was highly significant

(p,0.0001), indicating that the power law provided the better fit to

the data. The drop of the LLR for more negative z was mainly due

to the reduction of the number of avalanches per size distribution

(see ref. [5]).

As evident from Figure 4A and Table 1, the exponential

distribution cannot account for the distribution of neuronal

avalanche sizes. The power law was therefore compared to the

alternative of a lognormal distribution. Both the power law and the

lognormal distribution are heavy-tailed, which can make them

difficult to distinguish [15,24–26]. In fact, the tail of the lognormal

distribution can follow a linear relationship in double-logarithmic

coordinates over a few decades when the dispersion parameter s
(Eq. 3) is large [15,26]. Importantly, the single-parameter power

law yielded significantly better fits for the majority of avalanche

size distributions (Table S1). However, negative LLR values in

those comparisons are difficult to interpret since the lognormal

model has an additional degree of freedom (but see, e.g., ref. [23]).

Therefore, to perform the LLR test between the power law and

the lognormal distribution, we used the power law model with

exponential cut-off (truncated power law), which also has two

parameters (Eq. 4). The choice of the truncated power law is

motivated by the fact that finite-size systems often show an

exponential cut-off below the system size [6]. As evident from

Table 1, the LLR values clearly favored the truncated power law

over the lognormal model, i.e., all LLR values were positive and

Power Law Scaling in Neuronal Avalanches
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for the majority (12/16) of data sets this result was statistically

significant. The model fits for the size distribution in monkey X

are shown in Figure 4C (z = 21.5). Importantly, the distribution of

cluster sizes according to a power law was maintained for more

negative nLFP thresholds z (Figure 4D, monkey X).

In addition to the lognormal model, we tested two other heavy-

tail distributions, i.e., the gamma and the inverse Gaussian

distribution. The inverse Gaussian distribution describes a power

law with fixed slope 21.5, and, compared to the truncated power

law, it has a cut-off function with two parameters (Eq. 6). While

the LLR test clearly favored the truncated power law over the

gamma distribution for all cluster size distributions, the difference

between the truncated power law and the inverse Gaussian

distribution was statistically not significant for the majority of data

sets (Table 1). For all size distributions tested here, we observed

that the shape parameter, k, of the gamma distribution (Eq. 5) was

close to zero, which means that the slope of the power law term in

Eq. 5 was close to 21. Therefore, the model fits obtained for the

gamma distribution were influenced by the constraint k.0 (Eq. 5),

which explains the superiority of the truncated power law model.

In contrast, the inverse Gaussian with fixed slope 21.5 provided

fits that were comparable to the truncated power law (Table 1),

indicating that neuronal avalanche size distributions were well

described by a truncated power law with slope 21.5.

In addition, we performed the comparison of the power law

with and without exponential cut-off with the alternative

distributions from Table 1 by using the KS statistic, D (Eq. 11).

The KS fits for all two-parameter models for monkey X are shown

in Figure 5A and B. The PMFs (Figure 5A) and the corresponding

cumulative distribution functions (CDFs, Figure 5B) give a clear

impression of the goodness-of-fit of the respective models, i.e., the

truncated power law provided better fits to the data than the

lognormal and the gamma distribution, whereas it was visually

indistinguishable from the inverse Gaussian distribution. Further-

more, the average KS statistic, D, gave results that were in line

with the LLR test (Table 1), that is, both the single-parameter and

the truncated power law yielded significantly better fits compared

to the gamma, the lognormal, and the exponential distribution

(Figure 5C, n = 16, Kruskal-Wallis test and Tukey-Kramer

multiple comparison, p,0.0001). In summary, these results

indicate that the power law without and with exponential cut-off

provide an excellent description of the size distribution in neuronal

avalanches.

Discussion

In the present study we showed that neuronal avalanches are

consistent with the power law hypothesis of a scale-free

distribution of avalanche sizes. We analyzed in vitro and in vivo

recordings from various cortical areas, including somatosensory,

primary motor and premotor cortex and for different species (rat

and monkey). All cluster size distributions exhibited finite-size

scaling, consistent with the scale-free property of a power law and

with critical state dynamics [6]. Using both a maximum likelihood

approach and minimization of the KS statistic to estimate the

exponent of the power law, we found a to be close to 21.5, which

Figure 3. Estimation of slope parameter a for the in vitro data
(n = 7 cultures), the in vivo data under anesthesia (n = 7), and
the in vivo recordings in awake monkeys (n = 2). A. Shown are the
average slope parameters a and the standard deviations (error bars).
The three different estimation methods are: LS least-square estimation
with logarithmic binning, KS Kolmogorov-Smirnov statistic, and ML
maximum likelihood estimation (see Materials and Methods). Estimated
values of a were not statistically different: in vitro, F(2,18) = 0.19,
p = 0.827; in vivo (anesthesia), F(2,18) = 0.124, p = 0.884; in vivo (awake),
F(2,3) = 0.21, p = 0.821 (one-way ANOVA). Values of a were estimated for
the entire range of cluster sizes, i.e., from avalanches that included only
one electrode to clusters that spanned the entire multielectrode array.
B. Autocorrelation of the avalanche sizes for monkey X and Y as a
function of the avalanche lag. The autocorrelation showed a fast decay

within 10 avalanches (arrow). The shaded areas indicate the autocor-
relation (+3 SD) for randomly permuted cluster sizes for both monkeys.
C. Average a values obtained by ML estimation as a function of
avalanche lag for monkey X and Y (red and green line, respectively).
Error bars denote the standard deviation across the decorrelated sub-
sets. The gray lines show mean+SD of ML parameter estimates for
sample-size matched data from the original sequence of cluster sizes.
doi:10.1371/journal.pone.0019779.g003
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is in excellent agreement with earlier reports that were obtained by

a linear regression on double-logarithmic coordinates. The power

law scaling of neuronal avalanches was finally analyzed by a log-

likelihood ratio test and a comparison based on the KS statistic,

both of which favored the power law without and with exponential

cut-off over the exponential, the lognormal and the gamma

distribution.

Parameter estimation
Simple parameter fitting approaches such as linear regression

on logarithmic scales can lead to biased, and thus wrong,

estimates [11,12,14]. Discrepancies between LS and ML

estimates, which have been reported previously [12,14], will be

exacerbated by improper data binning. However, sufficient data

together with proper data binning can provide relatively accurate

parameter estimates by LS fitting. Accordingly, for neuronal

avalanches, we found that average parameter values (a close to

21.5) were not significantly different between LS and ML

estimation. It is important to note, however, that the bias in the

LS estimation becomes evident when the assumed model is not

consistent with the underlying empirical data, e.g., if time-

shuffled, exponentially distributed data is fitted by a power law

distribution (Figure S2).

Therefore, although we showed that the LS estimation can

give accurate estimates, the KS and ML approach should

be used when possible due to their more preferable properties

[11–14].

Identifying power law scaling in neuronal avalanches
The result of the parameter estimation yields values that specify

the best fit of the proposed model to the empirical data, yet

the estimated values do not give any information about the validity

or the goodness-of-fit of the underlying model. Visual inspection

and a subsequent model comparison are therefore essential

steps during the process of model validation. However, a direct

Figure 4. Model comparison using the LLR test. A. Model fits
obtained by ML estimation for the power law (red) and the exponential
model (green) for the cluster size distribution in monkey X. B. LLR values
for increasing threshold, z. Error bars denote the SD across the
decorrelated sub-sets of the data. All LLRs were positive and statistically
different from zero (p,0.0001). The avalanche lags ranged from 10
(z = 21.5) to 2 (z = 25). C and D. The same for the comparison between
the exponentially truncated power law (red) and the lognormal
distribution as the alternative model (green). The insets show detailed
views of the distributions, corresponding to the respective gray
rectangles. The square symbols in (D) indicate the LLR values that
were statistically different from zero (p,0.01).
doi:10.1371/journal.pone.0019779.g004

Figure 5. Model comparison based on the KS statistic. A. PMFs of
the two-parameter models for the avalanche size distribution in
monkey X. The inset shows a detailed view that corresponds to the
gray rectangle. B. Corresponding CDF fits for the same size distribution
(i.e., monkey X). The insets show detailed views of the distributions,
corresponding to the respective gray rectangles. C. Average KS distance
of the model distributions for all data sets (n = 16, which includes 7 data
sets recorded in vitro, 7 in vivo under anesthesia, and 2 in vivo awake).
Error bars denote the standard deviation. The single-parameter power
law and the power law with exponential cut-off yielded significantly
better fits to the data than the gamma, the lognormal, or the
exponential distribution (Kruskal-Wallis test and Tukey-Kramer multiple
comparison, p,0.0001).
doi:10.1371/journal.pone.0019779.g005
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comparison of the hypothesized and an alternative model can be

misleading if the alternative distribution only poorly fits the data.

In such a case, a better fit of the data by the hypothesized

distribution than by the alternative one does not mean that the

hypothesized distribution is a good model [14]. Therefore, the

hypothesized model has to be justified. Clauset et al. [14] proposed

a solution to this conceptual problem and suggested a test that uses

synthetic power law data to derive a distribution of KS values

which is then compared to the KS statistic of the empirical

distribution. A significant fraction, p, of synthetic data that has a

larger deviation from the power law than the empirical

distribution is interpreted as evidence that the empirical data set

is consistent with the power law hypothesis (in ref. [14], the

criterion was p.0.1). However, the failure to reject the null-

hypothesis that an empirical distribution follows a power law, i.e.,

p.0.1 as suggested in ref. [14], does not necessarily mean that the

null-hypothesis of a power law distribution is verified. It is possible

that the sample size was not sufficiently large to detect possible

deviations from a power law distribution (see Supporting

Information, Text S2 and Figure S3). In fact, as any empirical,

complex system does rarely follow an idealized, mathematical

relation, it is reasonable to expect that with large enough sample

size, the deviation from a power law – no matter how small and

practically negligible – will eventually result in the rejection of the

power law hypothesis for most empirical systems. Therefore, the

result of such a ‘‘goodness-of-fit’’ test is less informative in the large

sample size regime. We also note that, while the KS distance

reflects the closeness between the empirical and the model

distribution, i.e., the goodness-of-fit, the p-value from the test by

Clauset et al. [14] does not. In other words, while a smaller KS

distance indicates that the model yields a better fit to the data, a

smaller p-value is not equivalent with a better fit by the model

because the p-value depends on the sample size of the empirical

distribution (Figure S3). Therefore, to determine whether the

power law can be considered an adequate model for the avalanche

size distributions, we analyzed the KS statistic (along with visual

inspection) and used the finite-size scaling as an indicator of the

scale-free dynamics in neuronal avalanches [6,21]. Excluding

electrodes for the avalanche detection results in a sharp cut-off at

the system size (number of electrodes) but preserves the power law

scaling in the resulting cluster size distributions [2,5]. This scale-

invariance was evident from the collapse of the renormalized

cluster size distributions (Figure 2), and, together with theoretical

predictions [2,6,8], it suggests the power law as a candidate model

for these distributions. In line with this, the power law with and

without exponential cut-off resulted in small values of the KS

statistic for the cluster size distributions in neuronal avalanches.

The power law model for neuronal avalanches is favored
over the exponential and the lognormal and gamma
distribution

Verifying the power law hypothesis for empirical data has been

generally difficult and in some cases controversial [14,18]. Some of

the controversies were caused by methodological differences, e.g.,

by the use of a test that is dominated by the center of a distribution

versus the tail [15,24,25,27]. Other discrepancies might stem from

the properties of the data sets; for example, the lack of power law

scaling of activity bursts in cortical networks [19] can be a result of

the recording depth and/or the limited number of electrodes

(given possible finite-size effects in the system).

The comparison between two models becomes more challeng-

ing when the goal is to compare two distributions that share some

characteristics. This is for example the case for the power law and

the lognormal distribution, both of which are heavy-tailed [15,26].

Under such circumstances sufficient data is required in order to

reach statistically significant conclusions. For neuronal avalanches

with tens of thousands of samples, the LLR values strongly

supported the exponentially truncated power law when compared

to the lognormal and the gamma distribution. In addition, despite

the fact that the single-parameter power law had only one degree

of freedom, it provided better fits to most cluster size distributions

than the lognormal or the gamma distribution (Table S1 and

Figure 5C).

In the present study, we confirmed the power law scaling in

neuronal avalanches with slope parameter 21.5 for previously

published data sets and in a new high-density recording in an

awake monkey. The finite-size scaling together with the results

from the model comparison provide further support for critical

state dynamics in cortical networks. That neuronal avalanches

reflect critical dynamics in cortical networks is further supported

by the critical branching parameter that captures the evolution of

an avalanche [2] as well as the optimal properties networks with

neuronal avalanches attain [10,28] that are in line with theoretical

predictions from criticality [29]. Importantly, neuronal avalanches

reflect critical dynamics actively regulated by cortical networks

that break down when network parameters are changed, for

example, by acute pharmacological manipulations of synaptic

transmission [2–4,10]. In this context, the question is to a lesser

extent whether or not a given distribution follows exactly a power

law, but how strong the deviation from a power law is. In fact,

recent experimental evidence allows the quantitative deviation of

ongoing activity from neuronal avalanche dynamics to be used as a

predictor of its dynamic range [10] and information capacity [28].

We suggest that the identification of power law scaling in neuronal

avalanches as shown in the present study and the proper

quantification of the deviation from the power law [10,28] might

be a useful diagnostic tool for normal and abnormal cortical

dynamics.

Materials and Methods

Multielectrode recordings
All animal procedures were in accordance with National

Institutes of Health guidelines. Animal procedures were approved

by the Animal Care and Use Committee at Duke University for

monkey X (see below) and by the National Institute of Mental

Health Animal Care and Use Committee for all other data sets.

The avalanche size distributions for the in vitro data was taken

from [2]. In short, organotypic cortex slice cultures were grown on

60-channel planar multielectrode arrays (interelectrode distance,

200 mm; electrode diameter, 30 mm; Multichannelsystems, Re-

utlingen, Germany). Extracellular signals were sampled at 1 kHz

and the local field potential (LFP) was low-pass filtered at 50 Hz.

Negative LFP (nLFP) peaks were extracted by applying a

threshold, z, that was calculated based on the standard deviation

(SD) of the LFP signals (z = 23 SD).

Spontaneous in vivo data under urethane-anesthesia was taken

from [4]. Neuronal activity was measured in rat cortical layer 2/3

at the end of the second week postnatal (P13+2, n = 7). An 8|4

microelectrode array (interelectrode distance, 200 mm; Neuro-

nexus Technologies, Ann Arbor, MI, USA) was inserted 1 mm

deep into the somatosensory cortex to record spontaneous LFP

activity (1–200 Hz band pass filter; 4 kHz sampling frequency;

threshold for nLFP detection, z = 23 SD).

For the avalanche size distribution in awake monkey (monkey

X), we used the data published in [5]. In short, 43 min of ongoing

LFP activity (band-pass filtered at 1–100 Hz) was recorded from a

customized 64-channel array implanted in the left motor cortex of

Power Law Scaling in Neuronal Avalanches
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an adult, male rhesus monkey (Macaca mulatta). The array consisted

of tungsten electrodes with 30 mm diameter, 1 MV impedance,

and 1-mm spacing between the electrodes. LFP activity was

recorded from every other electrode. For the precise layout of the

array see [5]. If not stated otherwise, the threshold for nLFP

detection was z = 21.5 SD.

The data for monkey Y was recorded by a 96-channel high-

density microelectrode array (91 working channels; interelectrode

distance, 400 mm; electrode length, 1 mm; electrode impedance,

200–600 kV; Blackrock Microsystems, Salt Lake City, UT, USA)

that was chronically implanted in the left premotor cortex (Macaca

mulatta, adult female). For a detailed description of the surgical and

behavioral procedure see Supporting Information (Text S3) and

ref. [28]. Ongoing activity was recorded for 30 min while the

animal was sitting in a primate chair, alert but not engaged in any

behavioral task. LFP signals were band-pass filtered at 1–100 Hz

(nLFPs threshold, z = 22.5 SD).

Detection of neuronal avalanches
Rasters of nLFP events that crossed a predefined threshold, z,

were created by binning the nLFP times with bin size Dt. From the

nLFP rasters, neuronal avalanches were extracted by finding

clusters of nLFP events that were separated by at least one bin

width. The size of a neuronal avalanche was defined as the

number of active electrodes during a cluster. Multiple electrode

activations were counted if an electrode was activated more than

once during a cluster. Therefore, the size of a neuronal avalanche

is equivalent to the number of nLFPs during the avalanche. The

threshold for the nLFP detection, z, and the bin size, Dt, were: 23

SD and the average event interval for individual recordings (in

vitro and in vivo under anesthesia, refs. [2] and [4], respectively),

21.5 SD and 4 ms (monkey X, ref. [5]), and 22.5 SD and 2 ms

(monkey Y), respectively. The neuronal avalanche size distribu-

tions are invariant with respect to z (see ref. [5] and Figure 4). For

the choice of Dt, see refs. [2,4,5].

Time-shuffled data
Time-shuffled versions of nLFP rasters were obtained by

random permutation of bins for individual channels, while keeping

the total number of nLFPs per electrode unchanged (i.e., rate-

matched schuffling).

Model distributions
For the cluster size distributions in neuronal avalanches, we

tested the power law model – indicative of long-range spatiotem-

poral correlations – against the alternative of an exponential

distribution, which would be expected from uncorrelated, random

activity (for an identical rate between channels it would be the

binomial distribution). We also compared the power law to the

lognormal distribution as both are heavy-tailed, a property that

can make them difficult to distinguish [15,24–26]. In addition, we

performed a comparison for the power law with exponential cut-

off (‘‘truncated’’ power law), the gamma and the inverse Gaussian

distribution.

Power law distribution. The probability mass function

(PMF) for the discrete power law (Pareto distribution) is

Pa(s)~
csa for sminƒsƒsmax,

0 otherwise,

�
ð1Þ

with exponent, i.e., slope parameter, av{1. For the probability

functions, we use the parameter symbols as index to denote the

corresponding model, which for the power law is the symbol a.

The constant c~1=
Xsmax

s~smin
sa normalizes the PMF, such thatXsmax

s~smin
Pa(s)~1. The definition of the theoretical PMF in Eq. 1

requires a lower bound sminw0, since Pa(s) diverges for s~0, but

can be written with an upper bound smax~?. For empirical data,

however, an upper bound is always given by the largest sample in

the distribution. The expected size of the largest sample for a scale-

free distribution depends on the exponent a and the number of

samples [13,18]. Adjusting smax to the largest sample in the

distribution is required for a proper normalization of the PMF

[18]. However, for the neuronal avalanche size distributions in this

study, smax will be determined by the finite system size, i.e., the

finite number of electrodes in the recording array (in the cases

considered here, 27 to 91 channels).

For many real systems, the data will not follow the hypothetical

distribution – such as a power law – over the entire range of

sampled values [6,13,14]. Therefore, only a given range of sizes s
can be considered, that is, for sminƒsƒsmax. For a discussion on

how to determine the lower bound, see [14]. In this study,

parameter estimates and log-likelihood ratios (see below) are

reported for the range of sizes from smin = 1 to smax = total number

of electrodes in the array. In any case, the probability function in

the range smin to smax has to be normalized to unity for both the

empirical and theoretical PMF.

Exponential distribution. The PMF for the exponential

distribution with parameter lw0 is

Pl(s)~
ce{ls for sminƒsƒsmax,

0 otherwise,

(
ð2Þ

with normalization constant c~1=
Xsmax

s~smin
e{ls.

Lognormal distribution. The PMF of the lognormal distri-

bution is given by

Pm,s(s)~

cffiffiffiffiffiffi
2p
p

ss
exp {

1

2

ln s{m

s

� �2
" #

for sminƒsƒsmax,

0 otherwise,

8><
>: ð3Þ

with dispersion parameter s, location parameter m§0 and proper

normalization c.

Power law distribution with exponential cut-off. The

power law distribution with exponential cut-off (‘‘truncated’’

power law) is given by

Pa,l(s)~
csae{ls for sminƒsƒsmax,

0 otherwise,

(
ð4Þ

with l§0 and proper normalization constant c.

Gamma distribution. The PMF of the gamma distribution

is given by

Pk,h(s)~csk{1 exp {s=h½ �
hkC(k)

, ð5Þ

with shape parameter kw0, scale parameter hw0, and proper

normalization constant c. The gamma function is defined as

C(k)~
Ð?

0
tk{1e{tdt.

Inverse Gaussian distribution. The PMF of the inverse

Gaussian distribution is given by

Power Law Scaling in Neuronal Avalanches
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Pm,l(s)~c
l

2ps3

� �1=2

exp {
l(s{m)2

2m2s

" #
, ð6Þ

with mean mw0, shape parameter lw0, and proper

normalization constant c. Note that the inverse Gaussian

distribution is essentially a power law (slope exponent 21.5) with

a cut-off that is given by the exponential term in Eq. 6. Therefore,

the comparison between the truncated power law (Eq. 4) and the

inverse Gaussian distribution (Eq. 6) is not a test whether or not a

distribution follows a power law, but mainly which of the

exponential cut-off terms yields a better fit to the data. The

difference between the cut-off terms in both models is that the cut-

off in Eq. 4 is monotonically decreasing, whereas this is not

generally the case for the inverse Gaussian distribution.

Empirical distribution. The empirical PMF for an obser-

vation, x, with n discrete samples, x~(x1, . . . ,xn), is given by

Pemp(s)~
number of xi equal to s

n
: ð7Þ

Cumulative distribution. The Kolmogorov-Smirnov esti-

mation (see below) is based on the cumulative distribution function

(CDF) rather than the PMF. For a given probability density, P(s),
the corresponding CDF is

C(s)~
Xs

x~smin

P(x): ð8Þ

Parameter estimation
Least square (LS) fit. For a vector of discrete cluster sizes,

x~(x1, . . . ,xn), data was logarithmically binned between smin and

smax (10 bins), i.e., the binned probability function, ~PP(i),i~
1, . . . ,10, was normalized by the width of the i-th bin. The

logarithms of ~PP(i) were then used for a linear least-square fit. The

resulting objective function for the power law model with slope

parameter a is

E(x; a)~
X10

i~1

log10
~PP(i)

emp

� 	
{ log10

~PP(i)
a


 �h i2

: ð9Þ

We write the objective function E~E(x; a) as a function of the

data x since the PMF, which is used in Eq. 9 depends on x.

However, to calculate E for parameter a, it is sufficient if only the

PMF and not the original vector of cluster sizes is available. An

estimate for a that best fits data x was obtained by minimizing

E(x; a) in Eq. 9:

âa~ arg min
a

E(x; a): ð10Þ

Parameter estimates for the other models were obtained

analogously (Eqs. 9 and 10).

Kolmogorov-Smirnov (KS) estimation. The KS-statistic is

based on cumulative distribution functions. For the empirical CDF

of data x~(x1, . . . ,xn), Cemp(s), and a power law distribution,

Ca(s), the KS-statistic is defined as

D(x; a)~ max
s
jCemp(s){Ca(s)j: ð11Þ

Again, minimizing the objective function in Eq. 11 yields an

estimate for the slope parameter a of the power law model

(estimates for other model distributions can be obtained

analogously):

âa~ arg min
a

D(x; a): ð12Þ

Maximum likelihood (ML) estimation. The likelihood of

the power law model with parameter a, given the sample of cluster

sizes, x~(x1, . . . ,xn), is

L(ajx)~ P
n

i~1
Pa(xi): ð13Þ

For numerical convenience, maximum likelihood and likelihood

ratios are calculated with logarithmically transformed values of

L(ajx). The log-likelihood is given by

‘(ajx)~
Xn

i~1

ln Pa(xi): ð14Þ

An estimate, âa, of the power law exponent for data x can then

be obtained by maximizing the log-likelihood function in Eq. 14

(see, e.g., refs. [30] and [31]):

âa~ arg max
a
‘(ajx): ð15Þ

Maximum likelihood estimates for all other models can be

obtained analogously (Eqs. 13 to 15).

If not stated otherwise, parameter values were estimated for the

entire range of cluster sizes, i.e., from avalanches that included only

one electrode to clusters that spanned the entire multielectrode

array (smin = 1, smax = total number of electrodes in the array).

For the minimization of Eqs. 10 and 12 and the maximization

of Eq. 15, we applied the Nelder-Mead method [32]. Here, the

fminsearch implementation in Matlab was used. For all models,

different initial values were tested and the algorithm was tested for

convergence. For the power law, e.g., initial conditions between

21 and 22 were found to give the same optimal solution. To

assure the validity of the optimization results, objective functions

were also studied by a grid search method for a wide range of

parameter values.

Finite-size scaling analysis
In scale-free systems, the maximum event size is not limited by

the dynamics of the system but only by the system’s finite size

[1,6]. We systematically varied the number of channels for the

avalanche detection and studied the probability distribution of

normalized cluster sizes, z~s=N, where N denotes the finite

number of channels in the (sub-) array. Rescaled sizes z are

expressed in units of system size N and are no longer integers.

Here, we write the PMF for z as Pz(z)~A(N)za, where A(N) is

the normalization factor that depends on N . With s~1,2, . . . ,N

Power Law Scaling in Neuronal Avalanches
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and the property

XN

s~1

Pz(s=N)~1,

one obtains

A(N)~
Na

1z2az . . . zNa
: ð16Þ

Dividing Pz(z) by A(N) gives za, which is independent of N.

Thus, the transformation Pz(z)=A(N)~P(s)=A(N) results in a

collapse for power law distributions with slope parameter a, where

P(s)~sa=(1z2az . . . zNa) denotes the normalized PMF for

cluster sizes s~1,2, . . . ,N. For a derivation of this result and of

Eq. 16, see the Supporting Information (Text S1). For the

empirical distributions, we fitted the slope parameter a in Eq. 16

individually for each system size N (KS estimation).

Log-likelihood ratio test
The log-likelihood ratio for the power law and exponential

distribution was defined as

LLR(x)~‘(ajx){‘(ljx), ð17Þ

where x~(x1, . . . ,xn) is the sample of cluster sizes, and the a and

l are ML estimates of the power law and exponential distribution,

respectively (cf. Eq. 15). If LLR(x) is significantly larger than zero

then the power law is considered to be the better model for data x
when compared to the exponential distribution. Conversely, if

LLR(x) is significantly smaller than zero, the exponential

distribution is the better fit. The p-value for the LLR test is given

by

p~erfc
jLLRjffiffiffiffiffiffiffiffiffiffi

2ns2
p
� �

, ð18Þ

where

s2~
1

n

Xn

i~1

‘(ajxi){�‘‘a


 �
{ ‘(ljxi){�‘‘l


 �� 
2
,

with �‘‘a~‘(ajx)=n and �‘‘l~‘(ljx)=n [14]. Here, we used a

significance level of 0.01. The LLR for the comparison of the

truncated power law with the other model distributions can be

calculated analogously (Eqs. 17 and 18).

Autocorrelation function
The autocorrelation, R(l), of the sequence of avalanche sizes as

a function of the avalanche lag, l, was measured as follows:

R(l)~

1

n

Xn

i~1

xixizl

s1s2
, ð19Þ

where xi, i~1,2, . . . ,nzl, denotes the mean-subtracted avalanche

sizes, and s1 and s2 the standard deviations of the sequences

x1,x2, . . . ,xn and xlz1, . . . ,xlzn, respectively. n is the number of

avalanches in the entire sequence minus the lag l.

Supporting Information

Text S1 Finite-size scaling analysis.

(PDF)

Text S2 Goodness-of-fit evaluation as suggested by Clauset et al.

[14].

(PDF)

Text S3 Surgical and behavioral procedure for monkey Y.

(PDF)

Figure S1 Rescaled cluster size distributions for time-shuffled

data do not collapse. A. Unscaled PMFs of time-shuffled cluster

sizes for different system sizes in the high-density array of monkey

Y (N = 11, 22, 45, 91). B. Renormalized PMFs assuming a power

law distribution, i.e., P(s)?P(s)/A(N) with A(N)~Na=(1z2az
. . . zNa) (Eq. 16). C. Renormalized PMFs assuming the

exponential distribution with A(N)~1=(e{l=Nze{2l=Nz . . . z
e{l) (see Supporting Information, Text S1). Cluster sizes in B and

C were normalized by the system size N (indicated by the gray

arrows at unity).

(TIF)

Figure S2 Parameter estimation for the original and the time-

shuffled data in two data sets (monkey X and Y). A. Power law

model with slope parameter a. B. Exponential model with

parameter l. Three different estimation methods were compared:

LS least-square estimation, KS Kolmogorov-Smirnov statistic, and

ML maximum likelihood estimation. Note that all estimation

methods yield similar estimates for the power law fit of the original

distributions and the exponential fit of the time-shuffled distribu-

tions. However, LS estimation gave largely different values

compared with KS and ML estimation when the original

distribution was fitted by an exponential model, or when the power

law was assumed for the time-shuffled data. The error bars denote

the standard deviation for parameter estimates that were obtained

by bootstrapping (200 synthetic data sets were drawn from the

empirical distribution and their corresponding parameters were

estimated). In some cases, the error bar is too small to distinguish.

(TIF)

Figure S3 Sample size dependency of the Clauset et al. [14]

goodness-of-fit evaluation. A and B. Avalanche size distribution in

monkey X for a sub-set with n = 1000 and for the whole data set

with n = 45,548 avalanches, respectively. Shown are the empirical

PMFs, Pemp(s) (gray), and the best-fit power law distributions, Pa(s)
(red). C. Average p-value for different sample sizes in the empirical

data (gray line). The gray area indicates the p-values between the 5th

and 95th percentile. The p-value for a synthetic power law is

uniformly distributed on the interval (0,1) with an average value

close to 0.5 (blue line). D–F. The same for the time-shuffled data set

and the exponential distribution as the model distribution (green).

Note that both empirical distributions (i.e., original and rate-

matched, time-shuffled data) will eventually fail against synthetic

data sets given the perfect convergence of the synthetic distributions

towards the model distribution for increasing n.

(TIF)

Table S1 Comparison of the single-parameter power law with

the lognormal and the gamma distribution using the LLR test for

decorrelated data.

(PDF)
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