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Abstract

Neurexins are a large family of neuronal plasma membrane proteins, which function as trans-synaptic receptors during
synaptic differentiation. The binding of presynaptic neurexins to postsynaptic partners, such as neuroligins, has been
proposed to participate in a signaling pathway that regulates synapse formation/stabilization. The identification of
mutations in neurexin genes associated with autism and mental retardation suggests that dysfunction of neurexins may
underlie synaptic defects associated with brain disorders. However, the mechanisms that regulate neurexin function at
synapses are still unclear. Here, we show that neurexins are proteolytically processed by presenilins (PS), the catalytic
components of the c-secretase complex that mediates the intramembraneous cleavage of several type I membrane
proteins. Inhibition of PS/c-secretase by using pharmacological and genetic approaches induces a drastic accumulation of
neurexin C-terminal fragments (CTFs) in cultured rat hippocampal neurons and mouse brain. Neurexin-CTFs accumulate
mainly at the presynaptic terminals of PS conditional double knockout (PS cDKO) mice lacking both PS genes in
glutamatergic neurons of the forebrain. The fact that loss of PS function enhances neurexin accumulation at glutamatergic
terminals mediated by neuroligin-1 suggests that PS regulate the processing of neurexins at glutamatergic synapses.
Interestingly, presenilin 1 (PS1) is recruited to glutamatergic terminals mediated by neuroligin-1, thus concentrating PS1 at
terminals containing b-neurexins. Furthermore, familial Alzheimer’s disease (FAD)-linked PS1 mutations differentially affect
b-neurexin-1 processing. Expression of PS1 M146L and PS1 H163R mutants in PS2/2 cells rescues the processing of b-
neurexin-1, whereas PS1 C410Y and PS1 DE9 fail to rescue the processing defect. These results suggest that PS regulate the
synaptic function and processing of neurexins at glutamatergic synapses, and that impaired neurexin processing by PS may
play a role in FAD.
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Introduction

Alzheimer’s disease (AD) is an age-related neurological disorder

characterized by progressive memory impairment and neurode-

generation. The majority of familial AD (FAD) cases are caused by

autosomal dominant mutations in the presenilin genes. Presenilins

(PS) are the catalytic components of c-secretase, an aspartyl

protease that cleaves a number of type I membrane proteins

involved in essential cell functions [1,2]. Cleavage of the b-amyloid

precursor protein (APP) by PS/c-secretase generates the b-

amyloid (Ab) peptides, the principal component of cerebral

plaques that accumulate in AD brains [3]. FAD-linked PS

mutations affect differentially the c-secretase-mediated cleavages

of APP or other substrates, altering the c-cleavage that generates

Ab peptides of different lengths and reducing the e-cleavage that

generates the soluble C-terminal intracellular domains [4]. PS

inactivation in glutamatergic neurons in PS1/PS2 conditional

double knockout (PS cDKO) mice results in synaptic plasticity and

memory impairment [5], which indicates that PS are essential for

neuronal function. The synaptic and memory deficits caused by

loss of PS function are independent of Ab accumulation and occur

through a largely uncharacterized synaptic mechanism. It has

been recently reported that PS regulate neurotransmitter release

during synaptic transmission [6]. These observations have led to

the hypothesis that loss of PS function may be a key process in the

physiopathology of FAD [7].

Neurexins are type I neuronal proteins that regulate synapse

assembly and maturation. Neurexins are encoded by three genes

each giving rise to longer a-neurexins and shorter b-neurexins in

hundreds of alternatively spliced isoforms at the extracellular

domains [8]. Neurexins mediate synapse formation by trans-

synaptic binding to several postsynaptic partners including

neuroligins, LRRTMs and GluRd2 [9–15]. In the neurexin-

neuroligin complex, the binding of b-neurexins with neuroligin-1

(+B) isoforms mediates glutamatergic differentiation, whereas

neuroligin-2 interacts with a- and b-neurexins and concentrates

at GABAergic synapses [12,16–19]. Despite the identification of a

number of neurexin partners, the mechanisms by which neurexin
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function and recruitment at synapses is regulated are not

completely known. Interestingly, mutations in the NRXN1 gene

have been associated with autism and other brain disorders [20–

22], which indicates that neurexin dysfunction could underlie the

molecular basis of some mental diseases [23].

We explored the possibility that neurexins could be a substrate

for PS/c-secretase. Here we describe that neurexins are

sequentially processed by metalloprotease and PS/c-secretase

activities. Genetic inactivation of PS/c-secretase leads to accumu-

lation of neurexin C-terminal fragments (CTFs), the substrate of c-

secretase, mainly at presynaptic compartments and enhances

neurexin accumulation at glutamatergic synapses mediated by

neuroligin-1 (+B). Moreover, FAD-linked PS1 mutants differen-

tially affect the processing of b-neurexin-1. These results indicate

an important role for PS in regulating the synaptic function of

neurexins, and suggest that defects in neurexin signaling may be

involved in synaptic deficits associated with loss of PS function.

Materials and Methods

Ethics Statement
Animal procedures were performed in accordance with

institutional andnational guidelines following approval by the

Animal Care and Ethical Committee of the Universitat Autònoma

de Barcelona (protocol # CEEA601) and the Ethics Committee of

the University of Seville (protocol #113).

Antibodies and reagents
The following commercially available primary antibodies were

used in this study: rat anti-HA (Roche); mouse anti-synaptobre-

vin2/VAMP2 (Synaptic Systems); rabbit anti-Presenilin 1 N-

terminal (1–65), rabbit anti-mouse/rat Presenilin 1 (Ab-2; 303–

316) and rabbit anti PS1 loop (263–407) (Merck) [24]; mouse anti-

CASK, mouse anti-N-Cadherin (clone 32), mouse anti-Nicastrin

(clone 35) and mouse anti-PSD95 (BD Biosciences); rabbit anti-a-

actin and mouse anti-b-actin (AC-15) (Sigma-Aldrich) and mouse

anti-synaptophysin (SVP-38; Sigma-Aldrich). Chicken anti-cyto-

neurexin antibodies have been previously described [11]. Cross-

absorbed secondary antibodies conjugated with Cy2, Cy3 and Cy5

were used in immunofluorescence experiments (Jackson Immu-

noResearch). In experiments with chemical inhibitors cells were

treated with 2.5 mM GM6001, 20 mM TAPI-1 and 5 mM GL189

(Calbiochem) and 1 mM N-[N-(3,5-difluorophenacetyl-L-alanyl]-

S-phenylglycine t-butyl ester (DAPT; Sigma-Aldrich) for 14 hours.

DNA and lentiviral constructs
For expression experiments in HEK293 cells, cDNAs were

cloned in a pCAGGS vector under control of the chicken b-actin

promoter. Transfected rat a- and b-neurexin isoforms contained a

HA-tag after the signal sequence. The neuroligin-1 splice isoform

used in this study contained A and B insertions and a HA-tag after

the signal sequence (named in the text as to HA-Nlg1), as

previously described [25]. In b-neurexin-1 DC mutant, amino

acids 413–468 corresponding to the cytoplasmic tail were deleted.

Expression plasmids encoding human PS1 and FAD-linked

variants PS1 M146L, PS1 H163R, PS1 C410Y and PS1 DE9

were subcloned in KpnI/BamHI sites of the pAG3Zeo vector under

the control of the b-actin promoter [26]. PS1 D385A subcloned in

EcoRI sites in pCDNA3.1 was kindly provided by Dr. P. Fraering

(École Polytechnique Fédérale de Lausanne, Switzerland) [27]. For

infection of cultured hippocampal neurons, cDNAs were inserted

in a previously described lentiviral vector under the control of the

synapsin promoter (Syn) and upstream of a WPRE element [28].

Lentiviral vectors used in this study were: Syn-GFP-WPRE; Syn-

HA-bNrx1-WPRE; Syn-HA-bNrx1 DC-WPRE; Syn-PS1-WPRE

and Syn-PS1 D385A-WPRE.

Lentiviral particles were generated as previously described [29].

Briefly, HEK293T cells were transfected using the calcium

phosphate method with the lentiviral expression vector and two

packaging vectors: pCAG-VSVg, a plasmid expressing the VSV-G

envelope gene, and pCMVDR8.91, a plasmid expressing the gag/

pol genes. The supernatants containing the viral particles were

collected 48–60 hours after transfection and concentrated by

ultracentrifugation. For infection of hippocampal neurons, cultures

were transduced at the indicated day in vitro (DIV) by adding

concentrated lentivirus into the growing media.

Cell culture and transfection
Hippocampal tissues dissected from embryonic day 18–19 rat

brains were incubated with trypsin (Gibco) in Dulbecco’s modified

Eagle’s medium with high glucose (DMEM; Invitrogen) for 15

minutes at 37uC and mechanically dissociated with a Pasteur

pipette in DMEM medium supplemented with 10% fetal bovine

serum (HyClone), 44.4 mM D2(+)2glucose (Sigma), 2 mM

Glutamax (Gibco), and Penicillin/Streptomycin (100 units/ml

and 100 mg/ml, respectively; Gibco). Dissociated cells were plated

at a density of 32,000 cells/cm2 in 24-well plate. The medium was

replaced 2 hours after plating with neurobasal medium (Gibco)

supplemented with B27 (Invitrogen), 2 mM Glutamax and

Penicillin/Streptomycin. Hippocampal neurons were transfected

using Lipofectamine 2000 (Invitrogen) at 10–14 DIV and fixed 2

days after transfection.

HEK293 cells were obtained from the American Type Culture

Collection and grown in DMEM supplemented with 10% fetal

bovine serum, 2 mM Glutamax and Penicillin/Streptomycin.

HEK293 cells were transfected using Lipofectamine (Invitrogen).

The mixed culture assays were performed essentially as described

previously [13]. Briefly, HEK293 cells were transfected with HA-

Nlg1 or GFP. Twenty-four hours after transfection, the cells were

trypsinized and resuspended in neurobasal medium supplemented

with 2 mM Glutamax, and cells were added into 14 DIV

hippocampal cultures at a density of 25,000 cells/cm2 and

maintained in culture for 24 hours. Mouse embryonic fibroblasts

(MEF) derived from PS1/PS2 (+/+; control) or PS2/2 embryos

have been previously described [30]. Cells were transiently

transfected for 24–48 h with empty vector or pCAGGS-HA-

bNrx1 and pAG3Zeo-PS1 variants (PS1, PS1 M146L, PS1

H163R, PS1 C410Y and PS1 DE9) by using Lipofectamine 2000.

Mice and brain fractionation
Generation and characterization of PS12/2 and PS cDKO mice

have been previously described [5,31]. Control (fPS1/fPS1; PS2+/+)

and PS cDKO (fPS1/fPS1; PS22/2; a-CaMKII-Cre) mice were

generated by crossing PS1 cKO; PS2+/2 (fPS1/fPS1; PS2+/2;

a-CaMKII-Cre) with floxed PS1; PS2+/2 (fPS1/fPS1; PS2+/2) mice.

Age-matched littermate mice in a C57BL6/129 hybrid background

were used for this study.

Synaptic fractionations from mouse forebrains were prepared at

4uC essentially as described [32,33]. Adult mice (three individuals

per group) were rapidly decapitated, and cortices were dissected

and homogenized in ice-cold Buffer A (5 mM HEPES, pH 7.4,

0.32 M sucrose, 1 mM NaHCO3, 1 mM MgCl2, 0.5 mM CaCl2,

1 mM NaF and phosphatase and protease inhibitors (Roche) by

using a Teflon-glass homogenizer (12 strokes). The homogenate

corresponding to the total lysate was centrifuged (1,400 x g for

10 min) and the pellet (P1) was re-extracted with Buffer A,

homogenized (three strokes) and centrifuged (710 x g for 10 min).

The supernatants (S1 + S19) were combined and centrifuged
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(13,800 x g for 10 min) to collect the pellet (P2). P2 was

resuspended in 3 ml ice-cold Buffer B (6 mM Tris, pH 8.0,

0.32 M sucrose, 1 mM NaHCO3, 1 mM NaF and phosphatase

and protease inhibitors) with a Teflon homogenizer (six strokes)

and loaded onto the top of a discontinuous sucrose gradient

(0.85 M, 1 M and 1.2 M sucrose solution) and centrifuged at

82,500 x g for 2 h. The synaptosome fraction was collected from

the interface of the 1 M–1.2 M sucrose layers, diluted in equal

volume of Buffer C (12 mM Tris HCl, pH 8.0, 1% Triton X-100)

and incubated on ice for 15 min. The suspension was spin at

32,800 x g for 1 h to obtain the supernatant (presynaptic fraction).

The pellet containing the postsynaptic fraction was resuspended in

cold-ice Buffer D (40 mM Tris, pH 8.0, 1% NP40). The protein

concentration was determined with the BCA protein assay kit

(Pierce).

Biochemical analysis
HEK293 cells and hippocampal neurons growing on 24-well

plates were lysed in lysis buffer (50 mM Tris HCl, pH 7.4, 1%

Triton X-100, 100 mM NaCl, 5 mM MgCl2, 0.1% SDS)

containing protease inhibitor mixture (Roche). Embryonic brain

(E17.5) or cortices from 2 month-old mice were homogenized in

RIPA-DOC buffer (50 mM Tris HCl, pH 7.4, 150 mM NaCl,

2.5 mM EDTA, 1% NP40, 0.5% sodium deoxycholate, 0.1%

SDS, 1 mM, Na3VO4, 50 mM NaF, 1 mM phenylmethylsulfonyl

fluoride) supplemented with protease and phosphatase inhibitors.

When indicated, cell culture media were used as starting material

in immunoprecipitation experiments performed with the HA

antibody. The immune complexes were precipitated with the

Protein G Sepharose (GE Healthcare) and washed with pre-cooled

lysis buffer. Equivalent amounts of protein lysates were resolved on

8–14% SDS-PAGE gels and transferred to PDVF membranes

(Millipore). Immunoblotting was performed with the following

antibody concentrations: HA (1:1,000), Presenilin 1 N-terminal

(1:5,000), Presenilin 1 Ab-2 (1:500), CASK (1:200), N-Cadherin

(1:1,000), PS1 loop (1:5,000), Nicastrin (1:1,000), synaptophysin

(1:120,000), PSD-95 (1:2,000), cyto-neurexin (1:250–1:1,200), b-

actin (1:60,000) and a-actin (1:2,000). Immunoreactivity was

detected with secondary antibodies conjugated to horseradish

peroxidase (1:5,000; Jackson ImmunoResearch) and developed

with ECL Plus (GE Healthcare) or ECL kit (Perkin Elmer) using a

ChemiDoc XRS System (Bio-Rad). Protein images were captured

and quantified with the ImageJ software within a linear range of

detection for the ECL reagent.

Immunofluorescence and image analysis
Cell cultures were fixed with a 4% paraformaldehyde in

phosphate buffer containing 4% sucrose for 20 min. After fixation,

the cultures were permeabilized and blocked with 5% fetal bovine

serum in PBS containing 0.05% TritonX-100. Cells were

incubated with primary and secondary antibodies for 1–2 hours

in the same blocking solution. The following antibody concentra-

tions were used: HA (1:1,000), VAMP2 (1:3,000), Presenilin 1 N-

Terminal (1:500), Presenilin 1 Ab-2 (1:25) and Cyto-neurexin

(1:250). Cells were mounted using Fluoromount-G (SouthernBio-

tech).

The images were acquired on an Olympus Fluoview FV1000

confocal laser scanning microscope (objective: PLAPON 60X;

numerical aperture 1,42) using the same settings for photomulti-

plier voltage, gain and offset of all images. Maximal projections of

Z-stacked images were obtained and analyzed with ImageJ

software. The recruitment of neurexins and PS1 was quantified

as the relative number of pixels per cell area above a threshold

value. Thresholds were set such that most of the specific signal was

selected. Thresholding was applied to create a binary image

containing the positive pixels per each marker. The GFP or HA-

Nlg1 channels were used to create a mask covering the cell area by

drawing an outline around the transfected cells. The number of

positive pixels were normalized to the cell area and averaged in

each experimental condition. Data were plotted as mean 6 SEM.

Statistical significance was determined by ANOVA with depen-

dent post hoc Fisher’s multiple comparison test.

Results

Shedding of neurexins by metalloprotease- and c-
secretase-dependent cleavages

The proteolytic processing of neurexin proteins was investigated

in HEK293 cells, a mammalian cell line that expresses a functional

active c-secretase complex [34]. We transfected HEK293 cells

with a b-neurexin-1 isoform containing a HA-tag at the N-

terminal domain (HA-bNrx1). The expression of HA-bNrx1 was

studied by Western blotting in cell lysates using two different

antibodies: a HA antibody that recognizes the extracellular

domain, and a cyto-neurexin antibody raised against the common

cytoplasmic tail of neurexins [11]. The cyto-neurexin antibody

detected two bands of ,80 kDa and ,50 kDa, corresponding to

the glycosylated full-length b-neurexin-1 (bNrx-FL) and the

unglycosylated core protein, respectively (Fig. 1A). Interestingly,

the cyto-neurexin antibody detected two additional faint bands of

,12–15 kDa in the same cell lysates, which were not observed

with the HA antibody (Fig. 1A and data not shown). We

speculated that the lower molecular weight bands could represent

cleaved C-terminal fragments (neurexin-CTFs) generated by

proteolytic shedding of the extracellular domain of HA-bNrx1.

If so, such an activity might release the N-terminal extracellular

domain (bNrx-NTF) to the media. Accordingly, immunoprecip-

itation experiments followed by Western blotting with the anti-HA

antibody revealed the presence of bNrx-NTF in the media of

HEK293 cells transfected with HA-bNrx1 (Fig. 1A). Interestingly,

the apparent molecular weight of bNrx-NTF was ,15 kDa lower

than the bNrx-FL found in cell lysates (Fig. 1A), consistent with the

generation of neurexin-CTFs by a proteolytic shedding of the

mature protein.

Metalloproteases can proteolize the extracellular domain of a

number of transmembrane proteins resulting in shedding of the

soluble extracellular domain and the generation of membrane-

bound CTF, which subsequently becomes a substrate for the PS/

c-secretase complex [35]. To analyze whether the processing of

HA-bNrx1 required the activity of metalloproteases and PS/c-

secretase, we performed biochemical analysis in transfected

cultures treated with GM6001, a broad metalloprotease inhibitor,

or DAPT, a specific c-secretase inhibitor. We found that

GM6001 reduced both the levels of bNrx-NTF released to the

media and neurexin-CTF found in cell lysates (Fig. 1A).

Moreover, incubation with the PS/c-secretase inhibitor DAPT

increased basal accumulation of neurexin-CTFs in cell lysates,

whereas it did not affect the generation of bNrx-NTF (Fig. 1A).

To analyze whether other neurexin isoforms are processed by

PS/c-secretase, we transfected HEK293 cells with HA-aNrx1 or

HA-bNrx2 and their processing was analyzed by Western

blotting with the cyto-neurexin antibody. Similar to HA-bNrx1,

expression of HA-aNrx1 or HA-bNrx2 induced the basal

accumulation of neurexin-CTFs, which was further increased in

cultures incubated with DAPT (Fig. 1B). Recently, it has been

shown that the shedding of b-neurexin-3 ectodomain was

inhibited by the TACE/ADAM17 inhibitor TAPI-1 [36]. We

similarly found that TAPI-1, but not the BACE inhibitor GL189,
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inhibits the DAPT-induced accumulation of neurexin-CTF in

HA-bNrx1- or HA-bNrx2-transfected cells (Fig. 1C). Together,

these results suggest a sequential shedding of neurexin isoforms

by metalloprotease- and c-secretase-dependent activities and that

inhibition of the PS/c-secretase results in the accumulation of

neurexin-CTFs.

Accumulation of neurexin-CTFs in presenilin-deficient
primary neurons

PS are the catalytic components of the c-secretase, an enzymatic

complex that cleaves the intramembrane domain of a number of

signaling proteins [4]. The proteolytic activity of c-secretase

depends on two aspartate residues in PS1, D257 and D385, which

Figure 1. Processing of neurexins by metalloprotease- and c-secretase-dependent cleavages. A) HEK293 cells were transfected with
vector or HA-bNrx1 and treated with DMSO (control), GM6001 or DAPT, as indicated. Left panels: Western blot experiments of cell lysates analyzed
with the cyto-neurexin antibody. Right panel: Western blot with an anti-HA antibody of HA-immunoprecipitates of conditioned media of transfected
cells. A cell lysate of HEK293 cells transfected with HA-bNrx1 was included in the same blot to show bNrx-FL. Arrow points at IgG heavy chains in
immunoprecipitates. B) HEK293 cells transfected with vector, HA-bNrx1, HA-bNrx2 or HA-aNrx1 were incubated with vehicle or DAPT, as indicated.
The presence of neurexin-CTFs was analyzed by Western blotting with the cyto-neurexin antibody. C) COS cells transfected with HA-bNrx1 (upper
panels) or HA-bNrx2 (lower panels) were incubated with DMSO (control) or with DAPT alone or in combination with TAPI-1, GL189, TAPI-1 and GL189,
or GM6001 inhibitors, as indicated. Neurexin-CTFs levels were studied by Western blotting with the cyto-neurexin antibody. a-Actin levels were used
as loading control.
doi:10.1371/journal.pone.0019430.g001
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form the catalytic site [27]. Thus, lack of PS1 or mutation of these

residues result in the accumulation of c-secretase substrates in

neurons [27,37,38]. In order to study whether endogenous

neurexins are processed by a PS/c-secretase-dependent activity,

we first analyzed the processing of neurexins in cultured

hippocampal neurons treated with vehicle or DAPT. Biochemical

analysis of hippocampal neurons with the cyto-neurexin antibody

revealed a weak double band corresponding to endogenous

neurexin-CTFs that were robustly increased by treatment with

DAPT (Fig. 2A). Glycosylated full-length a- and b-neurexins were

detected as bands of ,150 and ,100 kDa, respectively (Fig. 2A).

As previously reported [39], N-cadherin-CTF was increased in

DAPT-treated hippocampal neurons (Fig. 2A).

We next generated lentiviral vectors (LV) expressing human

PS1 or PS1 D385A and performed a dominant-negative

approach to block PS1 activity in hippocampal neurons. These

lentiviral vectors contain the neuronal synapsin promoter, which

directs the expression of the exogenous proteins to .90% of

cultured neurons [28]. Infection of cultured hippocampal neurons

with LV-PS1 D385A robustly and similarly increased the levels of

neurexin-CTFs to the levels of control cultures treated with

DAPT (Fig. 2A). In contrast, expression of LV-PS1 did not result

in an increase of neurexin-CTFs. The expression of the

exogenous PS1 was confirmed by Western blot experiments with

an antibody that recognizes the N-terminal fragment of PS1.

D385A mutation inhibits PS1 endoproteolysis resulting in an

accumulation of the ,50 kDa holoprotein [27]. As expected,

expression of full-length PS1 concomitantly to a reduction in

PS1-NTF was observed in PS1 D385A-infected neurons indicat-

ing an effective competition of the PS1 D385A mutant (Fig. 2A).

As a control for the inhibitory effect on PS, we observed an

accumulation of N-cadherin-CTF in cultures infected with LV-

PS1 D385A (Fig. 2A).

In the above experiments, the proteolysis of specific neurexin

isoforms could not be assessed since both a- and b-neurexins share

common cytoplasmic tails, which are recognized by the cyto-

neurexin antibody [11]. In an attempt to investigate whether b-

neurexin proteins are processed by a PS/c-secretase activity in

neurons, we infected hippocampal neurons with recombinant LV

expressing HA-bNrx1. As compared to non-infected cells or cells

infected with GFP, overexpression of HA-bNrx1 increased the

levels of neurexin-CTFs in both non-treated and DAPT-treated

cultures (Fig. 2B). To confirm that the increase in neurexin-CTFs

levels results from the processing of HA-bNrx1, rather than from

the proteolysis of other neurexin isoforms, we expressed HA-

bNrx1 DC, a mutant b-neurexin-1 protein that lacks the

cytoplasmic tail and cannot be recognized by the cyto-neurexin

antibody (Fig. 2B). Lentiviral overexpression of HA-bNrx1 DC did

not result in an increase of neurexin-CTFs levels, as compared to

HA-bNrx1 (Fig. 2B). Overexpression of HA-bNrx1 and HA-

bNrx1 DC was confirmed by Western blot with the HA antibody

(Fig. 2B). Altogether, these results indicate that b-neurexin

isoforms are processed by a PS/c-secretase–dependent cleavage,

and that inhibition of PS/c-secretase activity using pharmacolog-

ical or genetic approaches results in the accumulation of neurexin-

CTFs in neurons.

Differential effect of FAD-linked PS1 mutations in b-
neurexin processing

Autosomal dominant mutations in PS1 and PS2 genes cause the

majority of FAD cases, although the mechanism by which these

mutations cause memory deficits are largely unclear. To analyze

the effect of FAD-linked PS1 mutations in b-neurexin processing

we used PS2/2 MEF cells, which lack PS/c-secretase activity

[30]. HA-bNrx1 was transiently expressed in WT or PS2/2

Figure 2. Accumulation of neurexin-CTFs in PS/b-secretase-deficient hippocampal neurons. A) Cultured hippocampal neurons (3–5 DIV)
were non-infected (control) or infected with recombinant lentivirus (LV) expressing: GFP, PS1 or PS1 D385A. The levels of neurexins (Nrx), PS1, N-
cadherin (N-cadh) and CASK were analyzed by Western blotting 9–10 days after infection. Non-infected cultures and cultures infected with GFP were
treated with vehicle or DAPT for the last 14 hours. FLa: full-length a-neurexins; FLb: full-length b-neurexins. B) Hippocampal neurons were non-
infected or infected with LV-GFP, LV-HA-bNrx1 or LV-HA-bNrx1 DC and treated with vehicle or DAPT, as above. The expression of HA-tagged b-
neurexin proteins and neurexin-CTFs was analyzed by Western blotting with an anti-HA and cyto-neurexin antibodies, respectively. a-Actin levels
were used as loading control.
doi:10.1371/journal.pone.0019430.g002

Processing of Neurexins by Presenilins at Synapses

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e19430



MEF cells together with wild-type PS1 or several FAD-linked PS1

variants. The ability of FAD-linked PS1 mutants to rescue the

accumulation of neurexin-CTFs in PS2/2 cells was analyzed by

Western blotting. In agreement with the above data, expression of

HA-bNrx1 led to a robust increase in neurexin-CTFs in PS2/2

MEF cells (Fig. 3). Furthermore, co-expression of PS1 in PS2/2

MEF cells efficiently reduced the accumulation of neurexin-CTFs

to basal levels, confirming that PS1/c-secretase activity is required

for normal b-neurexin processing (Fig. 3). Interestingly, the PS1

M146L and PS1 H163R mutants efficiently rescued the normal

processing of HA-bNrx1 to the levels of PS1 (Fig. 3). By contrast,

expression of PS1 C410Y and PS1 DE9 mutants failed to rescue the

normal processing of HA-bNrx1, despite they were expressed at

similar levels than PS1 (Fig. 3). Similarly, expression of PS1 WT and

the FAD-linked PS1 mutants M146L and H163R decreased the

accumulation of endogenous N-Cadherin-CTF in MEF PS2/2

cells, while the expression of PS1 C410Y and PS1 DE9 did not alter

N-Cadherin-CTF levels (Fig. 3). It is important to note that transient

Figure 3. The processing of b-neurexin-1 is differentially affected by FAD-linked PS1 mutants. A) PS+/+ or PS2/2 MEF cells were
transfected with vector or co-transfected with HA-bNrx1 and the following plasmids: empty vector, PS1 WT or the FAD-linked mutants PS1 M146L,
PS1 H163R, PS1 C410Y or PS1 DE9. Cell lysates were subjected to Western blotting analysis with the cyto-neurexin (Nrx), N-cadherin (N-cadh), PS1 and
Nicastrin (NCT) antibodies. To study PS1 expression, two different PS1 antibodies recognizing both mouse (m) and human PS1 (PS1 loop antibody) or
mouse PS1 (Ab-2 antibody) were used. The endoproteolysis of PS1 (,45 kDa) generates 18–20 kDa CTFs. The expression of PS1 WT and FAD-
associated PS1 mutants increased the mature form of Nicastrin recognized as a slower migrating band in Western blot experiments. The FAD-linked
PS1 mutants C410Y and DE9 show deficient PS1 endoproteolysis and fail to rescue neurexin- and N-Cadherin-CTFs processing. b-Actin levels were
used as loading control. B) Quantitative analysis of HA-bNrx1 CTFs relative levels. Data represents mean 6 SD of three independent experiments.
Statistical significant differences are shown (***P,0.001).
doi:10.1371/journal.pone.0019430.g003
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expression of PS1 WT and all FAD-linked PS1 mutants increased to

some extent the maturation of nicastrin, which indicates incorpo-

ration of the PS proteins into the c-secretase complex. Notably, PS1

C410Y and PS1 DE9 FAD-linked mutants showed a significant

reduction of autoproteolytic cleavage [40], as indicated by the

presence of the unprocessed PS1 form of ,50 kDa (Fig. 3),

suggesting that the proteolytic processing of PS1 is required for the

efficient cleavage of neurexin-CTFs. Together, these results indicate

that some FAD-linked PS1 mutations cause a loss of function effect

in processing b-neurexins and suggest that the abnormal processing

of b-neurexins might contribute to the synaptic defects associated

with loss of PS function.

Accumulation of neurexin-CTFs in synaptic fractions of
PS cDKO mice

The above results point at a role of PS/c-secretase-dependent

processing of neurexins at synapses. To study the relevance of

neurexin processing in vivo we examined endogenous neurexin

processing in brains from PS12/2 embryos and adult PS cDKO

mice. PS12/2 mice die shortly after birth, while PS expression in

PS cDKO is selectively abolished in postnatal excitatory forebrain

neurons allowing the study of PS in mature synapses [5,31].

Consistent with a role of PS in the proteolysis of neurexins, we

found a significant accumulation of neurexin-CTFs in brain lysates

from PS12/2 embryos and PS cDKO adult mice compared with

control littermate animals (Fig. 4A). Associated with decreased PS1

levels, N-cadherin CTF was also increased in PS12/2 and PS

cDKO brains (Fig. 4A).

Previous results have demonstrated that PS localize at

presynaptic terminals and that substrates of PS/c-secretase

complex, such as APP-CTF, accumulate in presynaptic terminals

of PS knockout mice [6,38]. To determine the subcellular

localization of the accumulated neurexin-CTFs, we purified

cortical synaptosomal fractions from control and PS cDKO brains

and analyzed neurexin-CTFs and PS1 expression by Western blot

analysis. Biochemical analyses revealed a specific accumulation of

neurexin-CTFs coinciding with reduced PS1 levels in cortical

synaptosomes of PS cDKO mice. The residual levels of PS1 in the

cortex of PS cDKO mice are likely due to PS1 normal expression

in glia and interneurons [5,6]. Further subcellular fractionation

showed that PS1 was localized mainly in the synaptophysin-

enriched presynaptic fractions of control mice. Interestingly,

neurexin-CTFs were mostly accumulated in the presynaptic

fraction of PS cDKO mouse brains, although lower levels of

neurexin-CTFs were also detected in the postsynaptic fraction

(Fig. 4B). These results, which agree with our previous

Figure 4. Accumulation of neurexin-CTFs in synaptic fractions of PS cDKO mice. A) Brain lysates from PS1+/+, PS1+/2 and PS12/2 mouse
embryos (E 17.5) or 2 month-old control wild-type (WT) and PS cDKO mice were analyzed by Western blotting with the cyto-neurexin (Nrx), PS1 and
N-cadherin (N-cadh) antibodies, as indicated. Neurexin-CTFs and N-cadherin-CTF levels increased coinciding with decreased PS1 expression in animals
lacking PS. The results were replicated in at least two independent mice per condition, as shown. B) Accumulation of neurexin-CTFs in purified
synaptosomal and synaptic fractions from PS cDKO mice. Cortical brain lysates and pre- and post-synaptic fractions obtained from synaptosomal
preparations from control wild-type (WT) and PS cDKO mice were analyzed by Western blotting with the cyto-neurexin, PS1, synaptophysin (SYP) and
PSD95 antibodies. Neurexin-CTFs levels are markedly increased in synaptosomes and presynaptic fractions of PS cDKO mice. Synaptophysin and PSD-
95 are specifically enriched in the presynaptic and postsynaptic fractions, respectively.
doi:10.1371/journal.pone.0019430.g004
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observations of accumulation of APP-CTF in synaptic terminals in

PS1 cKO mice [38], indicate that PS regulates c-secretase-

dependent processing and accumulation of neurexin-CTFs at

synaptic compartments.

Expression of postsynaptic neuroligin-1 recruits PS1 to
synaptic terminals

Our data suggest that PS localizing at presynaptic terminals

might mediate the proteolysis of neurexins at glutamatergic

synapses. Therefore, we investigated whether PS are recruited to

glutamatergic terminals mediated by the neurexin-neuroligin

complex. With that purpose, we transfected cultured hippocampal

neurons with HA-neuroligin-1 (+B) (named HA-Nlg1 for simplicity),

a major neuroligin-1 isoform that triggers glutamatergic differen-

tiation in hippocampal neurons [16]. Then, the recruitment of

endogenous PS1 and neurexins to HA-Nlg1-induced synapses was

analyzed by confocal microscopy. Consistent with previous results

[11], we found that HA-Nlg1 triggered the recruitment of neurexins

to the synaptic contacts (Fig. 5A). The recruited neurexins most

likely correspond to b-neurexin isoforms, since HA-Nlg1 binds to b-

but not a-neurexins [12,14,16]. When the distribution of PS1 was

analyzed with an antibody recognizing the N-terminal domain, we

found that PS1 was concentrated and partially overlapped with

neurexins at HA-Nlg1-induced synapses (Fig. 5A). Moreover, PS1

partially colocalized with synaptic proteins, such as PSD95 and

synaptobrevin, at HA-Nlg1 synapses (Fig. S1). Furthermore,

quantification analysis of the relative dendritic area occupied by

PS1 and neurexins revealed a significant increase in dendrites

expressing HA-Nlg1 compared to dendrites expressing GFP

(Fig. 5C). Moreover, PS1 intensity was also significantly increased

on dendrites expressing HA-Nlg1 (11465.3 in control GFP

dendrites vs 1306 5.1 in HA-Nlg1 dendrites, p,0.05). Similar

results were obtained with the Ab-2 antibody that recognizes the C-

terminal domain of murine PS1 (data not shown). These results

indicate that PS1 is accumulated at Nlg1-mediated synapses.

To analyze whether the recruitment of PS1 occurs at

presynaptic terminals, we performed a mixed-culture assay of

hippocampal neurons with HEK293 cells expressing HA-Nlg1.

This assay allows the study of the recruitment of axonal markers in

response to contact with non-neuronal cells expressing a specific

neuroligin isoform [13,41]. The localization of PS1 was analyzed

with the Ab-2 antibody that only recognizes murine PS1 (see also

Fig. 3). Therefore, recruitment of axonal PS1 to neuroligin-1

hemisynapses can be detected as enrichment of PS1 staining on

HEK293 cells expressing HA-Nlg1. In HEK293 cells expressing

GFP, the distribution of PS1 was similar in all areas of the field,

regardless of the presence of HEK293 cells (Fig. 5B). In contrast,

analysis of PS1 intensity (9361.4 in control GFP cells vs 11662.1

in HA-Nlg1 cells, p,0.001) and of the relative area occupied on

the transfected cells indicated that PS1 was specifically recruited to

HEK293 cells expressing HA-Nlg1 (Fig. 5B and 5D). Triple

immunofluorescence staining and quantitative analyses revealed

that axonal neurexins were also recruited to HA-Nlg1 hemi-

synapses (Fig. 5B and 5D). These data, which are consistent with

the presynaptic localization of PS1 shown by biochemical

experiments, strongly suggest that expression of HA-Nlg1 in

dendrites triggers the recruitment of axonal PS1 at the presynaptic

sites mediated by b-neurexins.

PS1 regulates the recruitment of neurexins to
neuroligin-1 synapses

After showing that PS1 is concentrated at glutamatergic

terminals mediated by HA-Nlg1, we investigated whether blocking

PS function increases neurexin-CTFs levels at these terminals. To

explore this possibility, we infected cultured hippocampal neurons

with lentiviral vectors expressing GFP, PS1 or the dominant

negative mutant PS1 D385A for 9–10 days. Then, HA-Nlg1 was

expressed in isolated neurons by transfection and accumulation of

neurexins to transfected dendrites was studied with the cyto-

neurexin antibody. We reasoned that accumulation of neurexin-

CTFs could be visualized as an increase in fluorescence staining

detected with the cyto-neurexin antibody. Indeed, we observed

increased cyto-neurexin staining at HA-Nlg1-mediated synapses in

neurons expressing PS1 D385A, as compared to GFP or PS1-

infected neurons (Fig 6A). Quantification analysis of multiple

confocal images showed an increase in the relative dendritic area

occupied by neurexin in neurons expressing PS1 D385A (Fig. 6C).

In the above experiments PS1 was overexpressed in both the

pre- and postsynaptic neurons. To determine whether the

accumulation of neurexins is due to a presynaptic effect of PS1

rather than an effect of PS1 in the postsynaptic cell, we adapted

the mixed-culture assays described before to inhibit PS1 function

selectively at axons contacting HA-Nlg1-expressing cells. For that,

hippocampal neurons at 3 DIV were infected with lentiviral

vectors expressing GFP, PS1 or PS1 D385A for 9–10 days and

then co-cultured with HEK293 cells expressing HA-Nlg1. Thus,

the expression of exogenous PS1 was restricted to axons at the

time of synaptic differentiation, while the postsynaptic HEK293 cells

expressing HA-Nlg1 were not affected. Again, we found that

axonal expression of PS1 D385A increased the presynaptic

recruitment of neurexins (Fig. 6B and 6D). Taken together, these

studies indicate that PS regulate the processing and accumulation

of neurexin-CTFs at presynaptic terminals of glutamatergic

synapses.

Discussion

Neurexins belong to a large family of plasma membrane

proteins with synaptic function. In this study, we show that PS/c-

secretase mediates the cleavage of neurexins at synapses.

Inhibition of PS/c-secretase results in the accumulation of

neurexin-CTFs in vitro and in vivo. Loss of PS function enhances

neurexin accumulation at synaptic contacts mediated by HA-Nlg1,

whereas expression of HA-Nlg1 triggers the recruitment of PS1 to

glutamatergic terminals. Moreover, neurexin-CTFs mostly accu-

mulate at presynaptic terminals of PS cDKO mice coinciding with

initial synaptic and memory impairments and prior to the onset of

neurodegeneration, suggesting that impaired neurexin processing

caused by loss of PS function is an early event in the synaptic

plasticity and memory deficits observed in PS cDKO mice.

Based on biochemical analyses, we demonstrate that neurexins

are sequentially cleaved by metalloprotease- and PS/c-secretase-

dependent activities. Expression of epitope-tagged a- and b-

neurexin isoforms in heterologous cells generates neurexin-CTFs,

which abnormally accumulate in the presence of the PS/c-

secretase inhibitor DAPT. Immunoprecipitation of conditioned

media of HEK293 cells transfected with HA-bNrx1 and treated

with the metalloprotease inhibitor GM6001 revealed that

neurexin-CTFs are generated after shedding of the extracellular

domain. Interestingly, the ectodomain of APP is shed by a- and b-

secretases at alternative sites within the extracellular region,

yielding a-CTF and b-CTF fragments that are substrates of PS/c-

secretase [35]. In this line, we show that neurexin-CTFs appear as

two distinct species of ,12–15 kDa, suggesting the possibility that,

similarly to APP, differential cleavage in the extracellular domain

of neurexin generates CTFs of distinct sizes. Although the

functional significance of neurexin ectodomain shedding by
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metalloprotease(s) requires further investigation and we can not

rule out the involvement of other proteases, our results with the

TAPI-1 inhibitor suggest a role of TACE/ADAM17 metallopro-

tease in the shedding of b-neurexins-1 and -2, as recently

demonstrated for b-neurexin-3 [36].

Ectodomain shedding of type I proteins by metalloproteases is

usually followed by regulated transmembrane cleavage by the c-

secretase complex [35]. It has been reported that inactivation of c-

secretase by genetic ablation or mutation of the aspartate residues

within the active site of PS1 diminishes APP cleavage and Ab

Figure 5. Recruitment of PS1 to neurexin/neuroligin mediated synapses. A) Confocal images of cultured hippocampal neurons transfected
with GFP or HA-Nlg1 at 10–13 DIV and stained with PS1 (PS1 N-terminal antibody, red in the colocalization) and cyto-neurexin antibodies (blue in the
colocalization) two days after transfection. PS1 is recruited along neurexins to HA-Nlg1 transfected dendrites. B) Hippocampal neurons (14–16 DIV)
were co-cultured with HEK293 cells expressing GFP or HA-Nlg1 for 24 hours. The recruitment of PS1 and neurexins to the transfected HEK293 cells
was analyzed by immunofluorescence with PS1 (Ab-2 antibody, red in the colocalization) and cyto-neurexin antibodies (blue in the colocalization).
The Ab-2 antibody does not recognize human PS1 expressed in HEK293 cells. In A) and B) HA-Nlg1 expression was analyzed with a HA antibody and
GFP expression was detected by direct fluorescence. C, D) Quantitative analysis of the recruitment of PS1 and neurexins to dendrites (C) or HEK293
cells (D) transfected with GFP or HA-Nlg1, as indicated. Recruitment was quantified as the relative area occupied by each specific marker in the
transfected cell. Data collected from three (C, n = 25 cells per condition) or two (D, n = 20 cells per condition) independent experiments are shown.
Asterisks indicate significant statistical differences (*P,0.05; ***P,0.001). Data are expressed as means 6 SEMs. Scale bars: 5 mm.
doi:10.1371/journal.pone.0019430.g005
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Figure 6. Recruitment of neurexins to HA-Nlg1-mediated synapses in PS1-deficient neurons. A) Confocal images showing the
recruitment of neurexins to HA-Nlg1 synapses in hippocampal cultures overexpressing PS1 or PS1 D385. Hippocampal neurons were infected at 3 DIV
with LV-GFP, LV-PS1 or LV-PS1 D385, as indicated. The cultures were transfected 9 days after infection (12 DIV) with HA-Nlg1 and the localization of
HA-Nlg1 (middle panels, red in the colocalization), and neurexins (lower panels, blue in the colocalization) was analyzed by immunofluorescence 2–3
days after transfection. The fluorescence signal obtained with the cyto-neurexin antibody is increased in dendrites expressing PS1 D385. B)
Recruitment of neurexins to HEK293 cells expressing HA-Nlg1 in neuronal cultures overexpressing PS1 proteins. Hippocampal neurons infected with
LV-GFP, LV-PS1 or LV-PS1 D385 at 3 DIV were co-cultured at 12 DIV with HEK293 cells expressing HA-Nlg1 for 24 hours. The cultures were co-stained
with HA and neurexin antibodies, as above. The expression of exogenous PS1 proteins in these hemisynapses is restricted to axons contacting HA-
Nlg1 expressing cells. C, D) Quantification of neurexin recruitment to dendrites (C) or HEK293 cells (D) expressing HA-Nlg1. Pooled data collected from
three independent experiments are shown (n.24 cells per condition). Data are expressed as means 6 SEMs. ***P,0.001. Scale bars: 5 mm.
doi:10.1371/journal.pone.0019430.g006
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generation, as well as the processing of other PS/c-secretase

substrates, such as Notch and N-cadherin [27,39,42–44]. Consis-

tent with a role of PS/c-secretase in the regulation of neurexin

processing, we show that pharmacological or genetic inactivation

of PS function by using DAPT or by expressing the dominant

negative PS1 D385A mutant results in the accumulation of

neurexin-CTFs in hippocampal neurons. Similarly, neurexin-

CTFs levels are increased in brain lysates of both PS12/2

embryos and adult PS cDKO mice, confirming that neurexins are

processed by PS/c-secretase in vivo.

One of the key findings of our study is that neurexins are

proteolytically processed by PS/c-secretase at synapses, mostly at

presynaptic terminals. It is worth noting that although neurexins

were originally proposed as presynaptic proteins [45], immuno-

histochemical and electrophysiological studies have identified

neurexin functions at both pre- and postsynaptic sites

[11,25,46,47]. In addition, neurexins accumulate intracellularly

at the cell body of neurons [11]. Therefore, a relevant question

regarding the regulation of neurexins by PS is to determine

whether PS/c-secretase mediates the processing of neurexins at

synapses. By analyzing synaptosomal fractions from adult mice, we

were able to detect low levels of neurexin-CTFs at the presynaptic

fraction of control mice, which were robustly increased in PS

cDKO mice. In addition, neurexin-CTFs were accumulated at

lower levels in the postsynaptic fraction of PScDKO mice. The

subcellular localization of neurexin-CTFs resembles that of APP

CTFs, which accumulate mainly in presynaptic compartments in

PS1cKO mice [38]. The fact that PS are deleted specifically in

glutamatergic neurons in PS cDKO mice strongly suggests that the

PS-dependent proteolysis of neurexins takes place at glutamatergic

synapses, and lack of PS expression or function would result in

accumulation of neurexin-CTFs at glutamatergic synapses.

Accordingly, we found that loss of PS1 function by expression of

the PS1 D385A mutant increases neurexin signal at glutamatergic

terminals induced by HA-Nlg1. This effect is likely mediated by

presynaptic PS, as suggested by our experiments where the

function of PS1 was inhibited in axons contacting HA-Nlg1

expressing HEK293 cells. Importantly, we found that co-culture of

hippocampal neurons with HEK293 cells expressing HA-Nlg1

recruits PS1 to glutamatergic terminals, thus concentrating PS1

within the same synaptic compartment as b-neurexins. Since b-

neurexins and HA-Nlg1 participate in a trans-synaptic mechanism

that mediates glutamatergic differentiation [12,16–19,48], our

results suggest that PS-mediated neurexin processing could affect

glutamatergic synapse assembly and/or function.

We have recently shown that PS expression in postnatal mouse

brain is required for maintaining normal synaptic function and

memory [5]. Accordingly, conditional inactivation of both PS genes

in forebrain glutamatergic neurons results in synaptic and memory

deficits in PS cDKO mice at 2 months of age, which are followed by

progressive neurodegeneration at 4–6 months [5,49]. The early

synaptic deficits in PS cDKO mice are associated with impaired

paired-pulse facilitation and NMDA receptor-mediated responses,

and long-term potentiation (LTP) deficits [5]. These deficits are

likely caused by a PS-dependent presynaptic mechanism. Thus, PS

expressed presynaptically, but not postsynaptically, are required for

neurotransmitter release and induction of LTP in Schaffer-collateral

pathway synapses [6]. These observations indicate that PS acting by

a presynaptic mechanism regulate glutamatergic neurotransmitter

release and LTP induction and suggest that impaired proteolysis of

PS substrates may contribute to the synaptic defects caused by loss

of PS function. It is noteworthy that the cytoplasmic tail of neurexins

associates with a molecular complex formed by CASK and

components of the neurotransmitter release machinery [50], and

that presynaptic b-neurexins are required for maintaining the

release probability at neuroligin-1 synapses in CA3 hippocampal

neurons [51]. Our data showing that neurexin processing is mostly

impaired in presynaptic terminals of PS cDKO mice suggest that

neurexins are potential candidates to mediate the synaptic defects

associated with loss of PS function. Additionally, the processing of

neurexins might regulate the function of the postsynapses by a trans-

synaptic mechanism mediated by neuroligins. The accumulation of

neurexin-CTF at synaptosomes of PScDKO mice suggests the

possibility that the proteolytic shedding of neurexin ectodomain can

take place at glutamatergic synapses and, thereby, it may affect the

binding with neuroligins located at the postsynaptic terminal.

More than 180 autosomal dominant inherited mutations in the

PS genes are responsible for the majority of early-onset familial

FAD cases (http://www.molgen.ua.ac.be/ADMutations). Muta-

tions in PS alter the c-secretase-dependent cleavage of APP,

resulting in altered levels of amyloidogenic Ab peptides. PS

pathogenic mutations have distinct effects on the c - and/or e-
secretase-dependent cleavages of different substrates including

Notch, APP and N-Cadherin [39,44,52]. These data have lead to

the hypothesis that FAD-linked PS mutations may act through a

partial loss of function mechanism [7]. Notably, here we show that

some FAD-linked PS1 mutations are not able to rescue the normal

processing of b-neurexin-1 when expressed in a PS null

background. Specifically, FAD-linked mutations with the lowest

levels of endoproteolysis, C410Y and DE9, fail to rescue the

normal processing of b-neurexin-1. Some FAD-linked mutations,

including C410Y and DE9, have been previously shown to

negatively affect PS1 endoproteolysis or they alter the precise

presenilinase cleavage of PS1 [53], although the mutant PS1

proteins are incorporated into the c-secretase complex

[40,44,54,55]. In agreement with this result, we found that the

maturation of nicastrin is increased in PS2/2 cells expressing

H163R, C410Y and DE9 mutants, although at lower levels than

PS1 WT and M146L proteins. We therefore suggest that there is a

differential effect of FAD-linked PS1 mutations on c-secretase-

dependent neurexin processing, as it is the case for other

substrates. The relationship between PS endoproteolysis and PS/

c-secretase activity is still controversial. For instance, there is

evidence that cleavage of PS and formation of heterodimeric PS

NTFs and CTFs complexes is required for complete stabilization

and function of PS/c-secretase [24,27,56]. By contrast, other

reports indicate that the amyloidogenic function of c-secretase

seems to be independent of PS endoproteolysis [57]. While this

manuscript was in preparation, Bot et al. reported the shedding of

b-neurexin-3 by a- and c-secretase activities in heterologous cells

[36]. Our results showing the processing of different a- and b-

neurexin isoforms are consistent with a more general mechanism

of neurexin shedding by PS, and importantly, demonstrate that

such processing occurs at synapses during synaptic assembly.

Finally, it is worth mentioning that the previous identification of

mutations in the NRXN1 gene affecting a and b isoforms

associated with autism, mental retardation and schizophrenia

strongly suggests a role for synaptic defects mediated by neurexins

in mental diseases [23]. The data reported here showing the

processing of b-neurexin-1 and the effect of FAD-linked PS1

mutations could point at a dysfunction of neurexins in a broader

range of brain disorders.

Supporting Information

Figure S1 Colocalization of PS1 with synaptic markers
at HA-Nlg1-induced synapses. Confocal images of cultured

hippocampal neurons transfected with HA-Nlg1 and co-stained
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with HA antibody (green in the colocalization), PS1 N-terminal

antibody (red in the colocalization) and the presynaptic marker

synaptobrevin (VAMP2 antibody, blue in the colocalization)

(upper panels) or the postsynaptic marker PSD95 (blue in the

colocalization) (lower panels). Arrows indicate colocalization of

PS1 with synaptic markers at HA-Nlg1-mediated synapses. Scale

bar: 5 mm.

(TIF)
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