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Abstract

Restriction-site associated DNA (RAD) sequencing is a powerful new method for targeted sequencing across the genomes of
many individuals. This approach has broad potential for genetic analysis of non-model organisms including genotype-
phenotype association mapping, phylogeography, population genetics and scaffolding genome assemblies through linkage
mapping. We constructed a RAD library using genomic DNA from a Plutella xylostella (diamondback moth) backcross that
segregated for resistance to the insecticide spinosad. Sequencing of 24 individuals was performed on a single Illumina GAIIx
lane (51 base paired-end reads). Taking advantage of the lack of crossing over in homologous chromosomes in female
Lepidoptera, 3,177 maternally inherited RAD alleles were assigned to the 31 chromosomes, enabling identification of the
spinosad resistance and W/Z sex chromosomes. Paired-end reads for each RAD allele were assembled into contigs and
compared to the genome of Bombyx mori (n = 28) using BLAST, revealing 28 homologous matches plus 3 expected fusion/
breakage events which account for the difference in chromosome number. A genome-wide linkage map (1292 cM) was
inferred with 2,878 segregating RAD alleles inherited from the backcross father, producing chromosome and location
specific sequenced RAD markers. Here we have used RAD sequencing to construct a genetic linkage map de novo for an
organism that has no previous genome data. Comparative analysis of P. xyloxtella linkage groups with B. mori chromosomes
shows for the first time, genetic synteny appears common beyond the Macrolepidoptera. RAD sequencing is a powerful
system capable of rapidly generating chromosome specific data for non-model organisms.
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Introduction

Discovering genes that control morphological, behavioural and

physiological phenotypes is critical for understanding adaptive

evolution, for plant and animal breeding and for tracking the

evolutionary responses of natural populations, such as insecticide

resistance in crop pests. Commonly, traits controlled by single,

major Mendelian genes are isolated using genetic linkage maps

created from crossing experiments. A genome-wide analysis is

followed by finer scale mapping with a larger number of

recombinant individuals to narrow the region of interest, and

finally targeted sequencing of genome libraries. Linkage maps

have been constructed for scores of organisms, generally to identify

a genome region controlling a trait of interest, such as skeletal

armour morphology in stickleback fish [1,2], wing patterns in

butterflies [3,4] and morphological and physiological traits in

sunflowers [5]. Amplified fragment length polymorphism (AFLP),

RAPDs, microsatellites and single copy gene markers used to

construct such maps are all problematic, either being expensive

and difficult to develop, or anonymous and difficult to translate

into useful sequence-based markers. Next-generation sequencing

can now greatly facilitate the process of genetic mapping, allowing

rapid generation of dense genome linkage maps consisting of

thousands of sequenced markers, such that useful sequences linked

to a gene of interest can be identified in a single experiment.

The restriction site associated DNA (RAD) sequencing method

[6,7,8,9] facilitates genetic variant discovery by sequencing only

the DNA flanking specific restriction enzyme sites, allowing

orthologous sequences to be targeted in multiple individuals.

The method relies on cutting DNA with a chosen restriction

enzyme, ligating an adapter containing a molecular identifying

sequence (MID) unique to each sample, and sequencing the DNA

associated with each restriction site using the massively parallel

Illumina sequencing technology [10]. The method has proven
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highly successful in re-identifying genomic regions controlling

known phenotypes [6,11] and comparing adaptive evolution

between populations of organisms with [9] and without [8]

reference genomes.

Plutella xylostella, the diamondback moth, is a worldwide pest of

cruciferous crops including cabbage and broccoli [12]. Resistances

to insecticides have been independently reported from multiple,

isolated populations [13,14]. Recently, we identified a candidate

resistance allele that confers high level resistance to the insecticide

spinosad, using AFLP genetic mapping and single copy gene

anchors [15]. Here, we use RAD genotyping to (i) re-identify the

spinosad resistance chromosome, (ii) assign thousands of RAD

alleles to specific P. xylostella chromosomes, (iii) compare

chromosomal synteny with the reference lepidopteran genome

from the silkworm Bombyx mori, (iv) identify RAD loci likely to

encode transcribed genes and (v) create a genome-wide linkage

map with sequenced RAD loci. Instead of mapping the RAD tags

directly to a reference genome, we constructed contigs using

paired-end sequences adjacent to the RAD tags and used these for

gene identification and interspecific comparisons. The methods

described have great potential for creating genomic scaffolds to

assist in genome assembly and for identifying thousands of

sequence variants to aid in detection of major as well as minor

quantitative traits.

Results

Processing RAD sequences
Resistance to the insecticide spinosad is recessive and controlled

by a single Mendelian locus in the P. xylostella strain Pearl-Sel

[14,15]. The resistance locus has been mapped to a chromosomal

region containing a truncating point mutation in a putative

receptor; nicotinic acetylcholine receptor alpha 6 [15]. We

constructed a backcross pedigree, crossing a spinosad-resistant

Pearl-Sel male with a spinosad-sensitive (Pearl-Sel x Geneva88) F1

female. Genotyping of known markers confirmed all 12 of 12

spinosad survivors and 7 of 10 untreated controls were

homozygous for the resistance mutation. A single RAD library

was constructed from DNA of the two backcross parents and 22

backcross progeny (10 untreated controls and 12 that had survived

the spinosad challenge). We estimated that there should be ,6500

Sbf1 RAD loci in the P. xylostella genome, and thus generated raw

Illumina reads to a depth of 65x per locus per individual based on

this estimate. This was achieved in a single Illumina GAIIx lane,

producing 10,217,074 51-base paired-end reads. Each forward

sequence contained a 5 base MID that allowed reads to be

assigned to a specific individual, followed by 6 bases of the SbfI

restriction enzyme footprint (TGCAGG), leaving 40 locus-specific

bases per read.

The sequence reads were split into groups by MID, resulting in

one group for each of the 24 individual moths. The average

number of sequence reads per individual was 425,000, although

there was high variability amongst the 24 individuals (16K-842K)

(Table 1). Two of the progeny (untreated control 5 and spinosad

survivor 12) had significantly fewer RAD reads than the average

and were removed from the analysis, raising the average number

of reads per individual to 461,500. For each individual, the 40-

base reads were clustered into candidate RAD loci containing one

or more candidate RAD alleles. These RAD loci were then

merged across all individuals, with RAD alleles appearing in only

one individual removed from the analysis. 8,342 candidate RAD

loci were identified, containing 13,768 candidate RAD alleles.

Two RAD haplotypes were considered allelic if they had 3 or

fewer base differences within the 40 bases of forward sequence.

This candidate set is liberally defined to avoid losing any real RAD

alleles, with a subset of RAD alleles selected later based on linkage,

as described below.

The forward sequence for each RAD allele begins at a defined

position; the SbfI cut site. Due to size shearing of the library, the

paired-end reverse sequence read for individual RAD alleles was

located a variable distance from the cut site, and could be grouped

and clustered into RAD contigs using VelvetOptimiser. The

length distribution of RAD contigs produced was bimodal, with

average length = 333 bp, median length = 211 bp (Figure 1).

RAD contigs do not overlap the 40-base RAD allele but are

expected to be spaced within 300–700 bp of them in the genome

(as determined by the size of the sheared genomic DNA). Thus,

RAD contigs could be used in BLAST searches for homologous

genes in other species, which would not have been possible with

the 40-base RAD alleles themselves.

Mapping maternally derived RAD alleles to linkage
groups

Crossing over between homologous chromosomes does not

occur in female Lepidoptera. Hence all genes and markers on the

same maternally inherited chromosome are completely linked

[16,17]. P. xylostella (2n = 62) backcross progeny therefore inherit

one unrecombined chromosome of each maternal pair. Crossing

over does occur during spermatogenesis in males, enabling the 31

paternally inherited chromosomes to be used for linkage mapping

and determining genetic distances between markers [4].

To identify RAD alleles specific to each chromosome, candidate

RAD alleles present in the mother and absent from the father were

analyzed. A subset of these RAD alleles segregated (present or

absent) across the 20 backcross progeny, indicating that the F1

mother was heterozygous. The presence/absence of candidate

RAD alleles in a set of progeny individuals can be represented as a

binary number string of 1 (allele present) or 0 (allele absent) per

individual. For 20 progeny, more than 1 million combinations are

mathematically achievable (220). However, we expect to find 62

patterns representing segregation of the 31 maternal chromosome

pairs. From 4,826 candidate maternally derived RAD alleles,

3,177 were grouped into exactly 31 pairs of different binary

patterns, each representing a distinct chromosome containing 49–

190 sequenced markers (mean = 102.5 per chromosome, Table 2).

A further 223 candidate RAD alleles were present in the mother

and all offspring but not the father, and so are likely to be

homozygous in the mother. The remaining 1,426 candidate RAD

alleles grouped into 1,055 binary patterns and are likely to be a

result of a combination of sampling and technical error. Most were

almost identical to one of the 62 patterns of interest but with

genotypes from one or more individuals missing (i.e. false-negative

allele nulls). Others likely arise from the presence of repeated

sequence in the genome, and errors in sequencing. Each of these

likely error patterns occurred in less than 20 candidate RAD

alleles and 914 patterns were associated with a single candidate

RAD allele. These errors are not unexpected given the varying

coverage across the individual moths.

Chromosomal synteny in Lepidoptera
Lepidoptera show a high degree of genetic synteny [18], but

local rearrangements appear common [19]. To enable a

comparative analysis, the RAD contigs associated with the 3,177

maternally derived, chromosome-linked RAD alleles were com-

pared using TBLASTX to the 28 sequenced chromosomes of

Bombyx mori (432 Mb) using an expect value cut-off of ,1E-10.

RAD contigs with hits to more than one chromosome were

removed from the analysis. From each P. xylostella linkage group,

Linkage Mapping and Comparative Genomics in Moths
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the number of significant hits to each B. mori chromosome were

counted to identify the most likely chromosomal homologue. Due

to differences in chromosome number, it was expected that

multiple P. xylostella chromosomes would collapse into a single B.

mori chromosome. The 31 linkage groups collapsed into the 28

chromosomes of B. mori, and have been numbered according to B.

mori chromosome nomenclature with three exceptions: B. mori

chromosome (BmChr) 11 represents a fusion of P. xylostella linkage

group (PxLG) 11 and 29; BmChr 23 fuses PxLG 23 and 30; and

BmChr 24 fuses PxLG 24 and 31 (Table 3).

Genotyping Control Offspring and Identifying the
Spinosad Resistance Chromosome

A chromosome carrying the spinosad resistance gene mutation

was previously identified using AFLP markers [15]. Although only

20 backcross progeny were ultimately used in this study, a perfect

correlation between PxLG5 and the expected spinosad resistance

chromosome was detected. Of 190 RAD alleles assigned to

PxLG5, 82 were present in all spinosad-treated surviving offspring

and six untreated controls, indicating linkage to the chromosome

encoding resistance. The remaining 108 RAD alleles were absent

from all spinosad-treated individuals and present in the remaining

three controls, indicating that this maternally derived chromosome

encodes wild-type susceptibility to spinosad, and that these RAD

alleles could be used to determine the previously unknown

genotypes of the control offspring. This chromosome contained

the highest number of mapped RAD clusters (n = 190), providing

an extensive sequence dataset within this chromosome.

Identification of sex chromosomes and sex-linked
markers

Backcross progeny were sexed prior to DNA isolation (see

Table 1). The sexes of the progeny matched the segregation

patterns for one P. xylostella chromosome, which is syntenic with B.

mori chromosome 1 (the B. mori Z chromosome [20]). Of 104

maternal-derived RAD alleles on PxLG1, 39 were present in

female offspring alone, and were therefore W-linked, whereas 65

were present in male offspring alone, and therefore Z-linked (see

Table 2). 147 paternal-derived RAD alleles were associated with

PxLG1 Z-linked maternal-derived RAD alleles by sequence

homology (see below). 15 protein-coding genes were associated

with PxLG1 based on UniRef90 hits by the associated RAD contig

Table 1. Number of Illumina reads sequenced per individual.

Number of Illumina reads sequenced per individual Coverage per RAD allele

Individual Sex MID Sequences Mean SD

Father Male CGATA 297,795 27.9 17.7

Mother Female CGGCG 495,190 41.9 17.5

Control 1 Female CTAGG 474,048 43.1 17.8

Control 2 Male CTGAA 381,912 34.5 16.2

Control 3 Female GAAGC 467,094 42.5 17.2

Control 4 Male GAGAT 496,749 43.5 20.1

Control 5 Male GCATT 16,959 - -

Control 6 Male GGAAG 510,666 45.4 18.5

Control 7 Male GTACA 842,036 69.4 35.1

Control 8 Female TAATG 414,966 38.4 16.8

Control 9 Female TAGCA 462,595 42.4 18.2

Control 10 Female TCAGA 325,581 30.7 13.5

Bioassay 1 Male TCGAG 510,086 46.3 17.7

Bioassay 2 Male TGACC 609,811 48.8 24.6

Bioassay 3 Male TGGTT 374,328 34.7 15.1

Bioassay 4 Male TTAAT 168,157 15.9 8.1

Bioassay 5 Male AACCC 375,236 34.5 14.1

Bioassay 6 Female ACTGC 373,667 33.8 14.6

Bioassay 7 Female AAGGG 513,757 44.2 20.2

Bioassay 8 Female ACGTA 463,518 43.2 17.6

Bioassay 9 Male AGAGT 638,261 58.4 24.6

Bioassay 10 Male ATGCT 482,003 43.7 20.6

Bioassay 11 Male CAGTC 476,704 40.7 22.1

Bioassay 12 Female CCAAC 45,955 - -

All (24) 14M, 10F - Mean 425,711 - -

Analysed (22) 13M, 9F - Mean 461,553 41.1 18.5

24 individuals were multiplexed on one lane of Illumina GAIIx sequencing, yielding 10,217,074 reads (mean 425,711). The above table lists the numbers of reads
featuring the molecular identifiers (MIDs) assigned to each individual. Individuals ‘Control 5’ and ‘Bioassay 12’ were excluded from further analyses due to the low read
counts for these individuals, resulting in an average read number of 461,533. Mean+/2SD read counts for high quality RAD alleles (3177 maternal-derived and 2878
paternal-derived, 6055 in total; see Table 3) are given.
doi:10.1371/journal.pone.0019315.t001
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(Table S1), and all of these genes were associated with Z-linked

markers. No genes were associated with the W chromosome. Of

the 15 genes, 8 have BLAST annotations to B. mori sex

chromosome scaffolds, according to the Silkworm Genome

Database (silkdb.org), two of which have previously been identified

as sex-linked genes in Lepidoptera (Catalase [21], Stretchin-

MLCK [22]).

Linkage map of the P. xylostella genome
The experimental cross analysed here was intended to associate

RAD alleles with chromosomes, and in particular, identify

sequenced markers on the chromosome encoding spinosad

resistance. Nonetheless, despite the small number of individuals

sampled we were able to construct a linkage map of the P. xylostella

genome with paternally derived RAD alleles. In total, 4,042

paternally derived candidate RAD alleles segregated among the

progeny. Using allelic homology with the 3,177 maternally derived

markers, the paternal markers were assigned to chromosomal

linkage groups, where possible. Candidate RAD alleles were

considered allelic between the parents provided that a) there were

three or fewer base differences in the 40 base forward sequence

and b) each paternal RAD allele matched either i) a single

maternally derived RAD allele or ii) multiple RAD alleles on the

same chromosome. Markers with multiple matches to multiple

chromosomes (or no chromosome matches) were not assigned to a

chromosome.

Once a subset of the paternal candidate RAD alleles had been

assigned to chromosomes, the segregation patterns of all paternal

markers were analyzed. Candidate RAD alleles that showed a

segregation pattern identical to that of a previously chromosome-

assigned marker were also assigned to that chromosome.

Candidate RAD alleles displaying the inverse of these segregation

patterns were also included. Finally paternally derived candidate

RAD alleles with segregation patterns that differed by only one

genotype from a chromosome-assigned marker were linked to that

chromosome.

To minimize the likelihood of erroneous markers contributing

to the linkage map, a robust criterion was established: each locus

Figure 1. Assembling RAD alleles and creating RAD contigs from RAD paired-end reads. Inset. Each forward sequence read contains a 5
base molecular identifier (MID), followed by 6 bp of SbfI restriction enzyme footprint. After identifying candidate RAD alleles, RAD contigs were
assembled from the paired-end reads. Scatter plot. The size distribution of RAD assembled paired-end contigs. The X-axis is contig length in base
pairs and Y-axis the number of RAD contigs with each length. The mean read length is 333 bases. One RAD allele can have multiple RAD paired-end
contigs, as significant variation in the paired-end sequence can result in assembly of more than one contig, or low coverage may prevent complete
assembly. Read lengths of 57 bases (containing 542 contigs) and 61 bases (containing 596 contigs) plus 200 contigs containing stretches of Ns were
deemed to be assembly artefacts and omitted.
doi:10.1371/journal.pone.0019315.g001
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had to contain three or more distinct RAD alleles. Segregation

patterns with less than three RAD alleles often had questionable

support and so were discarded. Valid loci containing one or two

RAD alleles could be manually identified, however a criterion of at

least three markers per loci was sufficient for our purposes.

Of the 4,042 paternally inherited and segregating candidate

RAD alleles, 2,878 met this criterion. This set further collapsed

into 285 distinct segregation patterns, or markers, containing

between 3 and 71 RAD alleles at each position. Of these 2,878

RAD alleles, the associated RAD contigs of 718 hit the B. mori

genome using TBLASTX, with 636 (89%) having at least one

hit to their assigned chromosome. Linkage groups were

assembled independently (JoinMap 3.0), producing a map

length of 1292 cM (Figure 2, Table S2). Using measurements

on nuclei stained with propidium iodide, we estimated the P.

xylostella haploid genome size to be 339.4 (+/21.1) Mb for

homogametic males and 338.7 (+/21.1) Mb for heterogametic

females. This implies a physical map distance of 262.7 kb/cM in

males.

RAD contigs containing protein coding regions
RAD contigs were compared to the UniRef90 protein database

using BLASTX to predict the number of chromosome linked

RAD markers that are likely to be parts of protein-coding genes.

Using an expect value significance cut-off of 1E-10, 282 (8.8%) of

the 3,177 maternally derived RAD contigs and 231 (8.0%) of the

2,878 paternally derived RAD contigs are predicted to derive from

protein-coding genes. As a proportion of markers were allelic

Table 2. Segregation Patterns and RAD Alleles for P. xylostella linkage groups.

LG Segregation Pattern 1 Alleles Segregation Pattern 2 Alleles Total

1 010111000 11111000111 65 101000111 00000111000 39 104

2 001010110 11101001010 25 110101001 00010110101 24 49

3 101100000 00111110011 64 010011111 11000001100 50 114

4 000001010 11111101101 104 111110101 00000010010 56 160

5 100000110 00000000000 108 011111001 11111111111 82 190

6 010011101 11000110001 46 101100010 00111001110 43 89

7 111110000 10100101000 41 000001111 01011010111 34 75

8 001101010 01001010000 76 110010101 10110101111 70 146

9 100011010 11110011101 41 011100101 00001100010 30 71

10 000111001 11100011000 81 111000110 00011100111 57 138

11 110001111 11000111100 40 001110000 00111000011 29 69

12 011100001 10100011010 53 100011110 01011100101 45 98

13 110100001 00011111000 73 001011110 11100000111 39 112

14 101011101 10011101000 32 010100010 01100010111 28 60

15 110111110 01100011101 77 001000001 10011100010 52 129

16 011010010 10110000001 80 100101101 01001111110 70 150

17 101100011 00111001011 73 010011100 11000110100 69 142

18 111100101 11101011000 38 000011010 00010100111 38 76

19 011001111 11010010111 46 100110000 00101101000 40 86

20 011101011 11001100010 57 100010100 00110011101 44 101

21 011000100 11001100001 78 100111011 00110011110 26 104

22 000100010 00100111001 54 111011101 11011000110 44 98

23 101011100 10010111001 64 010100011 01101000110 44 108

24 000100111 11101100101 41 111011000 00010011010 36 77

25 101110101 00001010101 77 010001010 11110101010 56 133

26 101111110 10100101101 51 010000001 01011010010 24 75

27 100111010 11011101000 70 011000101 00100010111 35 105

28 100011011 10100001000 47 011100100 01011110111 41 88

29 001111110 10001001010 52 110000001 01110110101 47 99

30 000111000 00111111100 46 111000111 11000000011 32 78

31 011010100 10111000010 28 100101011 01000111101 25 53

Total 1828 1349 3177

Maternally derived segregation patterns (for RAD alleles present in the mother but absent in the father) for the 62 chromosomes of P. xylostella fall into 31 pairs.
Offspring segregation patterns are presented as binary strings, where 1 indicates presence of RAD allele and 0 indicates absence. The two sets of digits separated by a
space are the Control and Bioassay individuals (Control 5 and Bioassay 12 are not included). For example, Segregation Pattern 1 for PxLG5 (the resistance chromosome)
is present in Controls 1, 8 and 9 and absent in all other individuals, including all Bioassay survivors. 108 candidate RAD alleles had this segregation pattern, with 82
candidate RAD alleles having the inverse pattern. The segregation patterns for PxLG1 identify the sex chromosomes (sexes segregate FMFMMMFFFMMMMMFFFMMM;
see Table 1). Segregation Pattern 2 is the W chromosome (present in females, absent in males) and Segregation Pattern 1 the Z chromosome.
doi:10.1371/journal.pone.0019315.t002
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between the cross parents, there were hits to 365 unique proteins

(Table 4, Table S1).

Discussion

Understanding the molecular control of novel phenotypes in

complex organisms is a central goal of modern evolutionary

biology. Identifying the general region of a genome containing an

adaptive locus is often the first critical phase in this process that

ultimately aims to pinpoint the causal sequence under selection.

However, technical limitations have made this a considerable

challenge in most species. Restriction-site associated DNA (RAD)

sequencing presents a powerful approach to dramatically improve

molecular marker density across genomes and considerably

accelerate the identification of genomic regions linked to traits of

interest. This technique has evolved from pioneering studies

utilizing microarray hybridization techniques to score presence/

absence of marker regions adjacent to restriction sites in the

genome [23], to exploit next-generation techniques to directly

sequence these regions [6]. RAD tags from a species can be

mapped directly onto its reference genome sequence [9], however

since none is available for P. xylostella we used paired-end

sequences adjacent to the RAD tags for interspecific comparisons

to the genome sequence of the model lepidopteran Bombyx mori.

Here, using a single lane of Illumina GAIIx sequencing, we have

identified over 8,000 candidate loci with about 14,000 alleles. The

number of loci identified is larger than the 6,652 expected from a

simple Poisson model of SbfI site frequency in the 339Mb P.

Table 3. Matching Plutella xylostella linkage groups with Bombyx mori chromosomes.

B. mori P. xylostella RAD hits to B. mori Chr. Other matches
Maternal-
derived

Paternal-
derived Uniref90 Hits

Chromosome
Linkage Group
assignment (TBLASTX,1E-10) Chromsome(Hits) RAD alleles RAD alleles (BLASTX,1E-10)

1 1 8 16(2) 104 147 15

2 2 6 17(1) 49 48 1

3 3 16 - 114 119 9

4 4 40 - 160 156 19

5 5 41 18(1),23(1) 190 152 29

6 6 13 - 89 101 14

7 7 1 23(1) 75 102 3

8 8 26 - 146 116 15

9 9 13 - 71 67 11

10 10 32 - 138 120 21

11 11 8 3(1),8(1),20(1) 69 63 9

12 12 18 - 98 90 10

13 13 17 - 112 105 14

14 14 7 - 60 80 10

15 15 33 - 129 158 25

16 16 40 - 150 118 19

17 17 23 - 142 88 15

18 18 3 - 76 115 10

19 19 8 16(1) 86 77 4

20 20 13 - 101 104 13

21 21 26 - 104 82 15

22 22 15 21(1) 98 61 6

23 23 18 - 108 94 10

24 24 6 22(1) 77 40 7

25 25 33 10(2) 133 132 18

26 26 4 - 75 49 3

27 27 17 - 105 71 10

28 28 6 13(1) 88 4 1

11 29 20 - 99 103 19

23 30 11 1(1) 78 85 6

24 31 5 7(1) 53 31 4

28 Chr. 31 Chr. 451 Hits 3177 2878 365

P. xylostella linkage groups reassigned to B. mori chromosomes based on number of TBLASTX hits of RAD contigs. 19 linkage groups had hits to a single chromosome.
The remaining 12 linkage groups were assigned to the chromosome with the majority of hits. Other hits are shown in the table above. Maternal-derived candidate RAD
allele counts are sums of the counts for the two segregation patterns for each linkage group shown in Table 2. Uniref90 hits are hits to unique proteins for RAD contigs.
doi:10.1371/journal.pone.0019315.t003
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Figure 2. Linkage map of the Plutella xylostella (n = 31) genome. This was inferred from 2,878 RAD alleles collapsed into 285 discrete RAD
markers. Each linkage group contains between 10 and 158 RAD alleles (labelled RADs) and the total map length is 1,292 cM. Each RAD marker is
labelled with three numbers (i_ii_iii) corresponding to (i) the RAD marker (1–285), (ii) the chromosome number (1–31) and (iii) the number of RAD
alleles at that marker. Linkage groups 1–28 are homologous to the B. mori (n = 28) chromosome numbering system, and LG29, LG30 and LG31
represent fusions to chromosomes 11, 23 and 24 respectively in B. mori. Dashed lines represent manual linkages inferred from 3, 4 or 5 genotype
differences that were otherwise left ungrouped due to small sample size. As 20 progeny were used to construct the map, distances were
approximated as 5 cM (1/20) per 1 crossing-over (c/o) event. On chromosomes 14, 16 and 22, markers formed two distinct groups and may be
separated by regions of high recombination rates or chromosomal assignment error. In total, 11 of the 285 RAD markers could not be confidently
assigned to their predicted chromosome. Linkage group 28 contained only four RAD markers at a single locus. Six additional markers were identified
for this chromosome using JoinMap 3.0, from the remaining paternal markers not assigned to linkage groups.
doi:10.1371/journal.pone.0019315.g002
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xylostella genome, likely reflecting the inadequacy of this model in a

complex, repeat-rich, eukaryote genome. These RAD-derived

molecular markers have been assigned to chromosomal locations

in the genome of the insect pest P. xylostella.

Due to a lack of crossing over in female Lepidoptera, we were able

to confidently establish a set of 3,177 maternally inherited,

chromosome-specific RAD markers identified by their segregation

pattern among backcross progeny. Each of the 31 chromosomes

contained 49–190 sequenced markers and, overall, 8% of the contigs

associated with mapped RAD alleles showed homology to predicted

proteins. From just a limited number of backcross progeny, we

accurately mapped a Mendelian spinosad insecticide resistance trait

to chromosome 5. The resistance chromosome produced the greatest

number of maternally derived RAD markers (190), although it is

unclear whether this is due to the chromosome size or physical

linkage to the resistance locus. The spinosad resistant Pearl strain was

previously crossed to susceptible strain Geneva88 to select for survival

on an artificial diet and then reselected for spinosad resistance to

produce the mapping strain, Pearl-Sel. The effect of this laboratory

selection prior to the Pearl-Sel x Geneva88 backcross presented here

meant that many polymorphisms were shared by cross parents,

except those at or perhaps near to the resistance locus itself. This may

have increased the number of markers that could be mapped on the

resistance chromosome.

The maternally derived paired-end data allow a comprehensive

genome wide comparison of synteny with the sequenced genome

of B. mori [18]. This demonstrates a high degree of conservation of

synteny between these species, such that chromosomal orthologues

can be predicted with high confidence. As karyotypes of these two

species differ by three chromosomes (n = 28 and n = 31), a perfect

1:1 assignment was not expected. We identified homology between

P. xylostella linkage groups and B. mori chromosomes, including the

three putative fusion or breakage events. This high degree of

synteny conservation at the level of whole chromosomes is

consistent with previous analyses within the Macrolepidoptera,

and suggests that the conservation seen previously between

butterflies and B. mori [18,24] is also true more widely in the

Lepidoptera. Using assembled paired-end contigs for comparative

genome analysis should have a considerable advantage over using

short forward reads [11], particularly for non-model organisms.

Linkage maps have been produced using RAD sequence data in

barley [11] and perennial ryegrass [25], which both have extensive

genomic resources. Our experiment was not designed for

construction of a linkage map, as too few individuals were

sampled to robustly map markers to chromosomal positions.

Nonetheless, the extensive sampling of the genome provided by

the RAD markers enabled us to construct a linkage map based on

recombinational distances between paternally inherited RAD

markers. The paternal dataset of 2,878 RAD markers was limited

to those with patterns of segregation observed three or more times

and showing allelic homology to one of the 3,177 chromosome

specific maternal markers. The genomic linkage map predicts a

total map length of 1292 cM (Figure 2), similar to other

lepidopteran linkage maps including Heliconius melpomene (1616

cM) [4], B. mori (between 1305 cM and 3229 cM) [20,26], and

Bicyclus anynana (between 1352 cM –1642 cM) [24,27]. CentiMor-

gan distances separating markers can vary markedly, depending

upon both mapping program and criteria. For example in B.

anynana, Van’t Hof (2008) calculated total linkage distances of 1354

cM and 1873 cM from the same data set using two different

mapping programs.

The methods used for this study were suitable for our purposes

but may not be appropriate for RAD studies in other species with

different aims. We have provided information on the effect of

using different numbers of mismatches and fragment count

thresholds for our data (Tables S3 and S4) and recommend that

others choose parameters suitable for their chosen experiment.

The crude normalisation applied here (see Methods and Figure

S1) allowed us to resolve chromosome prints cleanly but retained a

large number of alleles resulting from sequencing error that were

filtered using other criteria. Accurate normalisation of the curves

shown in Figure S1 is clearly amenable to a machine learning

approach, and we are continuing to address this problem.

The strength of RAD-based linkage maps is the volume of

accountable genomic sequence. Traditional linkage maps based on

anonymous markers are useful in determining rates of crossing

over, or focusing on a specific locus. However, the anonymity of

these markers limits the utility of such maps for further studies, and

they provide no information on comparative genomics. More

recently, a genetic linkage map for Bicyclus anynana was constructed

based on EST sequences, but required costly prior identification of

SNPs before mapping could be carried out [24]. In contrast, we

here present a map for Plutella xylostella based on RAD alleles, large

numbers of which can be readily identified as orthologues of

known genes in reference genomes. Presence/absence patterns of

RAD alleles furnish the basic data for linkage map construction,

SNP variation within the 40-base RAD alleles enables integration

of paternally- and maternally-informative linkage maps, and

longer sequences adjacent to the RAD alleles provide enough

information for cross-species comparisons. This will provide a

wealth of genome sequence data for future gene-finding and

genomic studies in this economically important pest species.

Furthermore, our dataset demonstrates the feasibility of this

approach for future genomic studies of any non-model organism.

Table 4. Oligonucleotide primers and adapters for RAD Sequencing.

Name Sequence

P1-FOR-xxxxx 59-Phos-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCTxxxxxTGC*A-39

P1-REV-xxxxx 59-Phos-xxxxxAGATCGGAAGAGCGTCGTGTAGGGAAAGAGTGTAGATCTCGGTGGTCGCCGTATCAT*T-39

P2-PE-FOR 59-Phos-GATCGGAAGAGCGGTTCAGCAGGAATGCCGAGACCGATCAGAACAA-39

P2-PE-REV 59-Phos-CAAGCAGAAGACGGCATACGAGATCGGTCTCGGCATTCCTGCTGAACCGCTCTTCCGATC*T-39

P1-PCR 59-AATGATACGGCGACCACCGA-39

P2-PCR 59-CAAGCAGAAGACGGCATACGA-39

xxxxx = MID Sequence (see Table 1).
* = phosphorothioate linkage.
doi:10.1371/journal.pone.0019315.t004
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Materials and Methods

Terminology
In what follows, a read is the raw sequence determined from the

P1 adapter, containing the captured restriction site overhang,

obtained on an Illumina sequencing instrument. The sequence

read from the P2 adapter at the other end of the DNA fragment is

called the paired-end read. A RAD locus is a region downstream

of a restriction site. Each RAD locus contains one or more RAD

alleles, depending on whether the locus is homozygous or

heterozygous within and across individuals. RAD loci and RAD

alleles are initially described as candidates to indicate that further

error correction (such as removal of repeats and RAD alleles

appearing in only one individual) will take place downstream

during processing. A RAD contig is an assembly of the paired-ends

for a single RAD allele into a long contiguous sequence. Each

allele will have a read count (the number of reads associated with

the allele) and a fragment count (the number of unique paired-end

reads associated with the allele, assumed to represent the number

of DNA fragments for this allele in the initial sheared genomic

DNA sample). A segregation pattern is a pattern of presence/

absence of a particular RAD allele across all individuals in the

sample. A RAD marker is a segregation pattern of alleles at a locus

used in the construction of the linkage map.

Insects and Crosses
The spinosad-resistant strain Pearl was collected from Hawaii in

2001. A resistant derivative, Pearl-Sel, was isolated after crossing

Pearl to a sensitive line (Geneva88) to facilitate laboratory

adaptation. The reference spinosad-sensitive strain, Geneva88,

was collected in 1988 and reared in the laboratory without

exposure to insecticide. Pearl-Sel shows .1000 fold resistance to

spinosad compared to Geneva88 [14]. Crosses were performed by

mating a Pearl-Sel male with a Geneva88 female then backcross-

ing a single F1 female to a Pearl-Sel male. Approximately 60

backcross progeny were treated with a discriminating dose of

spinosad (10 ppm) and, as resistance is recessive, survivors were

inferred to be homozygous for the spinosad resistance allele. Some

backcross progeny were reared without exposure to spinosad as

controls and were either homozygous or heterozygous for the

resistance allele [15].

RAD Library Preparation
After sexing, single adult moths were homogenised in DNA

isolation buffer and genomic DNA purified using three phenol

extractions followed by a single chloroform extraction [28]. RNA

was digested using RNase A, DNA precipitated and quantified

using a NanoDrop. A paired-end RAD library was constructed

using a protocol adapted from Baird et al. (2008). DNA samples

from the backcross father, F1 mother (400 ng DNA each), 10

untreated controls and 12 bioassay survivors (200 ng each) were

used to produce a single Illumina sequencing library.

Genomic DNA from each of the 24 library individuals was

digested separately for 30 minutes at 37uC, in 50 mL reactions with

15 units of SbfI (NEB). The enzyme was heat inactivated at 65uC
for 20 minutes. A different P1 adapter, each with a unique 5 bp

molecular identifying sequence (MID) (Table 4), was then ligated

to a designated individual (0.5 mL of 100 nM adapter, 1 mL

100 mM rATP, 1 mL NEB buffer 2, 0.5 mL T4 Ligase (NEB) with

400,000 cohesive end units/mL) by incubating for 2 hours at

room temperature, then overnight at 4uC. The T4 ligase was heat

deactivated at 65uC for 20 minutes. Samples were pooled (30 mL

each) and a maximum of 300 mL aliquoted into 1.7 ml lo-bind

tubes (Eppendorf). DNA was sheared using a Bioruptor set to high,

for 8 minutes (30 s on/30 s off). Sheared DNA was purified with a

Qiagen PCR cleanup column and eluted in 30 mL of buffer EB.

The entire sample was size separated using gel electrophoresis

(0.5X TBE, 1.2% agarose) and a DNA fraction corresponding to

300–700 bp was excised with a clean scalpel blade. The gel slice

was purified with a Qiagen column and eluted in 20 mL of water.

Fragment ends were repaired using the Quick Blunting Kit

(NEB) (19 mL DNA, 2.5 mL 10X buffer, 2.5 mL dNTP, 1 mL

enzyme), incubated at room temperature for 30 minutes, purified

with MinElute Reaction Cleanup Kit (Qiagen) and eluted in

16 mL water. dATP overhangs were added to the DNA using

15 mL of purified library template, dATP (1 mL 100 mM), 15 units

Klenow exo- (NEB) and 2 mL NEB buffer 2. The reaction was

incubated at 37uC for 30 minutes, then purified with a MinElute

column and eluted in 21 mL of water.

Paired-end P2 adapter, containing T overhangs, was prepared

by combining HPLC purified oligonucleotides P2-PE-FOR and

P2-PE-REV (Table 4) in 1X annealing buffer, heating to 95uC and

gradually allowing to cool. P2 adapter was ligated to 20 mL of

sheared, size-selected, P1-ligated and pooled DNA template with

5 mL of 2 mM adapter, 1 mL of 100mM rATP, 3 mL NEB buffer 2

and 0.5 mL of 400,000 cohesive end unit/mL T4 DNA ligase in

total reaction of 30 mL. The ligation was incubated overnight at

4uC then DNA purified with a MinElute column and eluted in

50 mL of buffer EB (Qiagen). PCR enrichment of the library was

performed in seven 50 mL PCR reactions (2.5 mL template, 25 mL

Phusion Flash High-Fidelity PCR Master Mix and 2.5 mL of P1-

PCR [10 mM] and P2-PCR [10 mM] (Table 4) primer and

17.5 mL water). Cycling conditions were; 98uC for 30 s then 18

cycles of 98uC for 10 s, 65uC for 30 s, 72uC for 30 s, and a final

extension at 72uC for 5 minutes. PCR amplicons 350–700 bases

long were then size extracted using gel electrophoresis (0.5X TBE,

1.2% agarose). The RAD library was sequenced using an Illumina

GAIIx instrument following standard protocols [10], and is

available via the Sequence Read Archive through accession

number ERP000449 (http://www.ebi.ac.uk/ena/data/view/

ERP000449).

Generating candidate RAD loci and RAD alleles
Raw Illumina reads from the P1 adapter were separated into

pools according to the MID assigned to each individual sample in

the RAD library. The 5 base MID and 6 base partial restriction

site were removed from each 51 base read, leaving 40 bases of

downstream sequence. For each individual, candidate RAD loci

were identified and candidate RAD alleles called within loci as

follows.

Identical reads were collapsed into unique sequences, with

median quality values calculated for each unique sequence, and

singleton reads discarded. Uniques less than a threshold distance

apart were grouped together, with each group of uniques treated

as a candidate RAD locus. Uniques were separated into different

groups if they were more than a distance of 7 bases apart, allowing

for sequence diversity and sequencing error between uniques

within a group. This is likely to be an overestimate of sequence

diversity in a real biological dataset, as it does not take repeat

content into account, but a more liberal approach to clustering is

preferred because there are many criteria by which clusters can be

corrected at later stages. In fact, increasing the number of

mismatches above three for this dataset has a minor effect on the

number of candidate loci and alleles present in more than one

individual in the final marker set (see Table S3). The distance

between uniques was calculated by adding the differences between

uniques and weighting each base difference by the probability that

Linkage Mapping and Comparative Genomics in Moths

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e19315



the two bases are called accurately (based on the median quality

score for each base).

Each group of unique sequences was considered to be a

candidate RAD locus. The set of uniques will include not only real

RAD alleles but also sequencing errors. To correct these errors, for

each possible base at each position in the locus, the mean quality

score was calculated across all uniques. Bases that appeared in

only one unique were rejected as likely errors. Uniques were then

clustered together into candidate RAD alleles, merging uniques

that were identical except for bases whose average qualities fell

below a chosen quality threshold (in this case, Q = 20).

Candidate RAD loci and RAD alleles were defined based on the

read containing the restriction site overhang, ignoring the paired-

end read. Once RAD alleles were defined, the paired-end reads

were grouped together by RAD allele. For each RAD allele,

duplicate paired-end reads were collapsed into unique sequences,

with the number of unique sequences taken to represent the

number of DNA fragments in the original sample. These fragment

counts were used instead of read counts in the following analysis.

Candidate RAD loci were then merged across all individuals if

they shared a RAD allele in common, with 3 mismatches allowed

between RAD alleles (Table S4). Fragment counts were crudely

normalized for each individual, so thresholds could be applied

over all samples. Scale factors were derived for each individual,

using the mother m as a standard (scale factor 1), based on the

curves shown in Figure S1. Ignoring the peak and long tail of each

curve, the minimum and maximum of the curves were estimated

manually for each individual i. The scale factor for individual i was

calculated as SFi = (minm/mini + maxm/maxi)/2. The number of

fragments for each candidate allele for individual i was then

multiplied by SFi before thresholds were applied. RAD alleles with

less than 3 fragments or only appearing in a single individual were

discarded (see Table S4 and Discussion for more on thresholds and

normalisation methods).

For each RAD allele, paired-end reads for that RAD allele were

pooled together across all individuals and assembled using

VelvetOptimiser version 2.1.4 [29] and velvet version 1.0.02

(http://bioinformatics.net.au/software.velvetoptimiser.shtml), us-

ing the ‘max’ optimisation function, which aims to generate the

longest contig possible. The RAD contig produced does not

overlap the associated RAD allele since the smallest fragment

formed by shearing (approx 300 bp) is longer than the length of

the read plus the paired-end read.

A general version of this pipeline has been implemented in the

open source toolkit RADtools (http://www.radseq.info).

Sequence comparison
The assembled RAD contigs were compared using the BLAST

suite of programs (NCBI BLAST+ Version 2.2.23 [30] to the

Uniref90 protein database [31], downloaded on 13 October 2010,

and the assembled genome of Bombyx mori, (Integrated sequences

uploaded 30 September 2008, downloaded 10 February 2009,

from the Silkworm Genome Research Program, sgp.dna.affrc.

go.jp [32] to identify potentially coding RAD contigs, and

homologues in the sequenced lepidopteran genome.

Linkage map construction
RAD loci heterozygous in the maternal parent were assigned to

linkage groups corresponding to chromosomes, based on complete

linkage. As crossing-over between non-sister chromatids only occurs

during spermatogenesis in Lepidoptera, segregating RAD alleles

from the father were used for linkage mapping. Of 4,042 paternally

derived candidate RAD alleles, 702 could be assigned to a

chromosome based on alleleism with the maternally derived

dataset. The presence/absence segregating patterns for RAD alleles

with allelic matches were then used as chromosome-anchored

paternal RAD alleles to recover other candidate RAD alleles with

identical patterns. In total, 2,878 paternal RAD alleles were

recovered and these clustered into 285 distinct segregation patterns,

hereafter called RAD markers, with each RAD marker containing a

minimum of 3 RAD alleles, and this set of RAD markers was used

for linkage map construction. Chromosomes were assembled

separately by first grouping RAD markers with LOD.2, and then

inferring chromosomal linkage maps with a LOD.1 and theta.0.4

using JoinMap 3.0 (Kyazma). Due to the small number of progeny

analyzed (20 individuals) some chromosomes contained multiple

linkage groups, or RAD markers that did not group together. In

these cases, raw genotypes were manually analyzed to assess likely

order. A maximum of 5/20 genotype differences (representing 5

crossing over events) were considered, with distance approximation

of 1 event , 5cM. Markers with more than 5 recombinants were

not grouped together and are presented as distinct linkage groups

for a particular chromosome.

Genome size estimations
The genome size of P. xylostella was estimated by comparing red

fluorescence from propidium iodide-stained nuclei isolated from

brain tissue of single adults to that produced by co-prepared nuclei

from the head of a single Drosophila melanogaster adult (1C = 175

Mb) using flow cytometry [4].

Accession Numbers
The dataset for this study has been submitted to the Sequence

Read Archive under accession number ERP000449.

Supporting Information

Figure S1 Normalisation of fragment counts. Numbers of

unique paired-end fragments per candidate allele are plotted

against number of candidate alleles, for the mother, father and one

backcross individual, control 07. For example, the mother has 149

candidate alleles with 6 fragments each and 259 candidate alleles

with 27 fragments each. Both the axes are truncated, obscuring a

large peak of alleles with three fragments or less (likely to be

sequencing errors) and a long tail of alleles with eighty fragments

or more (expected to be repeat clusters). Each curve shows a

trough (marked with a circle) and a peak (marked with an

arrowhead) which represent mini and maxi respectively for each

individual i (see Methods).

(PDF)

Table S1 Uniref90 hits to P. xylostella chromosomes.
RAD allele sequences are listed with the best Uniref90 hit to their

RAD contig. E-values are for TBLASTX. Alleles are listed as

Mother (M) or Father (F) derived.

(XLS)

Table S2 Dataset for linkage map construction. 2,878

paternally derived RAD alleles were collapsed into 285 discrete

RAD markers and used for linkage map construction (Figure 2).

The forward sequence read and normalized sequence counts are

provided for each individual, along with their segregating pattern

across 20 backcross progeny in JoinMap 3.0 format (bold text).

Each RAD marker (bold) and RAD allele is labelled with a set of

three numbers corresponding to (i) the RAD marker (1-285), (ii)

the chromosome number (1-31) and (iii) the number of alleles

contributing to the marker (bold text) or the paternally derived

allele number, between (1-2878).

(XLS)
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Table S3 Effect of grouping uniques into loci with
different numbers of mismatches. Reads for each individual

were processed with the RADtools pipeline, allowing different

numbers of mismatches between uniques when clustering them

into candidate loci. The resulting candidate loci for each

individual were then clustered together using the RADmarkers

tool, with no thresholding of read or tag count and no mismatches

allowed between sequences, only clustering together loci with

identical alleles across individuals. After clustering, the loci present

in only one individual were removed, as they are likely to be

sequencing error. The numbers of loci and alleles fall sharply when

using three mismatches instead of one mismatch, but only show

small decreases as more than three mismatches are used.

(PDF)

Table S4 Effects of normalisation, varying fragment
count threshold and number of mismatches allowed
during clustering with RADtools. Loci with normalised

fragment counts (A) and raw fragment counts (B) were clustered,

allowing 0-6 mismatches and accepting only alleles with fragment

counts equal to or above thresholds 1-6 (ie only alleles with at least

the threshold number of fragments were allowed). All loci

appearing in one individual only were discarded.

(PDF)
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