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Abstract

The stemness hypothesis states that all stem cells use common mechanisms to regulate self-renewal and multi-lineage
potential. However, gene expression meta-analyses at the single gene level have failed to identify a significant number of
genes selectively expressed by a broad range of stem cell types. We hypothesized that stemness may be regulated by
modules of homologs. While the expression of any single gene within a module may vary from one stem cell type to the
next, it is possible that the expression of the module as a whole is required so that the expression of different, yet
functionally-synonymous, homologs is needed in different stem cells. Thus, we developed a computational method to test
for stem cell-specific gene expression patterns from a comprehensive collection of 49 murine datasets covering 12 different
stem cell types. We identified 40 individual genes and 224 stemness modules with reproducible and specific up-regulation
across multiple stem cell types. The stemness modules included families regulating chromatin remodeling, DNA repair, and
Wnt signaling. Strikingly, the majority of modules represent evolutionarily related homologs. Moreover, a score based on
the discovered modules could accurately distinguish stem cell-like populations from other cell types in both normal and
cancer tissues. This scoring system revealed that both mouse and human metastatic populations exhibit higher stemness
indices than non-metastatic populations, providing further evidence for a stem cell-driven component underlying the
transformation to metastatic disease.
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Introduction

Stem cells are defined by their ability to both self-renew and

differentiate into mature cells. In addition to their functions in

development, stem cells play key roles in degenerative disease,

aging, and oncogenesis. Cancer stem cells may promote tumor

heterogeneity and metastasis. Identifying genes regulating stem

cell properties will greatly improve our understanding of the

molecular mechanisms regulating stem cell functions, our ability

to manipulate stem cell fate, and the roles of stem cells in

cancer.

The stemness hypothesis has been debated and so far no

conclusive evidence for a set of genes expressed in all stem cells

(‘‘one-for-all’’ pattern, Figure 1) has been reported [1,2,3,4].

Fortunel et al. [1] compared up-regulated genes from hematopoi-

etic, neural, retinal and embryonic stem cells in mouse and

uncovered only a single shared gene, integrin a6 (Itga6), with

previous stem cell expression experiments. Subsequent studies in

human and mouse found little overlap in the genes uncovered by

these studies [2]. More recently, pathway-level analyses have

advanced our understanding of stem cell mechanisms. For

example, Muller et al. [5] constructed a ‘‘PluriNet,’’ of interacting

genes with a focus to identify mechanisms that differ between

different stem cell types. Wong et al. (2008) [6] identified sets of

genes in a common pathway or physically interacting proteins as

significantly co-regulated in embryonic stem cells.

We hypothesized that homologs, genes in an organism that

share a recent common ancestral gene, may play compensatory or

overlapping roles in stem cells. Single gene- and pathway-level

analyses overlook the possible complementary activity of homo-

logs. Paralogs may diverge in function to evolve roles in parallel

pathways that control common processes but are employed in

different contexts such as distinct tissues. To test for coordinate

regulation of gene homologs or modules across different stem cell

types, we developed a pattern recognition algorithm capable of

combining the results of any number of experiments to identify

significantly and recurrently up- or down-regulated genes and

gene modules in stem cells.

Results

Derivation of modules and datasets
We compiled gene modules from either homologs or function-

ally related sets of genes that co-participate in pathways, protein-

protein interactions, and protein complexes (Figure 1). Homolog

modules were determined using a genome-wide BLAST analysis

[7], which assigned 24,403 protein-coding genes in the mouse

genome to 4,657 mutually exclusive groups and 5,251 biological
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singletons predicted to lack a close homolog in mouse (Figure S1a).

The groups had an 88% correspondence to HomoloGene [8]

clusters (Figure S1b). Non-redundant functional modules were

collected from a wide range of sources, including Gene Ontology

[9], Kyoto Encyclopedia of Genes and Genomes [10] and

BioCarta [11] pathways (376 modules), experimentally derived

mouse protein complexes (90 modules), and mouse and human

protein-protein interaction data (145 modules) (Dataset S1).

To obtain a global overview of stem cell expression patterns,

we assembled a compendium of data from 30 different studies

assaying gene expression of 49 stem cell populations representing

twelve different types of stem cells including hematopoietic,

retinal, neural, embryonic, and intestinal (Figure 1; Table 1).

From each of the 49 datasets we collected genes up-regulated in

stem cells into a stem cell gene list (SGL) and, where available, a

corresponding set of genes up-regulated in differentiated cells into

a differentiated gene list (DGL) (Table S1 and Dataset S2). The

use of gene lists facilitated the straightforward integration of

results from the variety of experimental test platforms, which has

proven effective for meta-analysis compared to alternative

approaches [12].

Computational framework to identify stemness
We developed a Stemness Meta-Analysis Pipeline (S-MAP) to

test for modules and individual genes coordinately up-regulated

(stemness-on) or down-regulated (stemness-off) in stem cells from

the SGLs and DGLs (Figure 1). S-MAP tests for significant

stemness-associated expression of a particular gene or module by

computing three scores – recurrence, specificity, and diversity (Figure 1).

The recurrence score measures the overall amount of up- or

down-regulation across all experiments that controls for redun-

dancy across datasets (Table S2). An empirical false-discovery rate

(FDR) for the recurrence score was determined by simulating

random modules of each size and defining scores with associated

FDR,5% as high, FDR.95% as low, and intermediate FDR as a

moderate (Figure S2a). The majority of the discovered modules

could also be identified using a sub-compendium containing the

results from either the cultured or the non-cultured subset of stem

cells from the main compendium (Figure S2b) suggesting that the

observed levels of coordinated expression were not due to the

cultured conditions of a subset of the cells.

Figure 1. Overview of the stemness meta-analysis pipeline (S-MAP). Gene modules were derived from several sources: A, homologs; B,
pathways; C, protein-protein interaction groups; D, protein complexes (rows labeled a1, a2, …, b1, b2, … represent individual genes in each module).
Expression from 49 studies (columns in left panel) was collected containing genes up-regulated (red) or down-regulated (blue) in stem cells. Modules
with genes highly recurrent in stem cells were classified as ‘‘stemness-on’’ (modules A and B; red region) and those with recurrent in differentiated
cells as ‘‘stemness-off’’ (module D; blue region) if the pattern was specific and found to extend across many cell types (columns in right panel labeled
SC1, SC2, …) based on cell-diversity.
doi:10.1371/journal.pone.0018968.g001

Table 1. Stem cell types analyzed in this study.

No. of No. of No. of

Stem Cell Type Abbrev Studies SGLs DGLs

Hematopoietic HSC 8 12 17

Retinal RPC 1 1 1

Neural NSC 7 7 7

Embryonic ESC 8 14 14

Mesenchymal MSC 2 2 1

Gastric GEP 2 2 1

Intestinal InSC 3 3 2

Liver LiSC 1 1 1

Breast MaSC 1 1 1

Hair follicle HBSC 2 2 1

Spermatogonial SSC 3 3 3

Trophoblast TSC 1 1 1

doi:10.1371/journal.pone.0018968.t001

Stemness Revealed by Homolog and Pathway Modules
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For all highly recurrent modules S-MAP computes an

information-theoretic cell-diversity score from the proportions of

up-regulated events. High scores reflect upregulation in a wide

range of the twelve stem cells and were defined as those with FDRs

less than 5% determined by random simulation (Figure S2c–d).

Modules with high cell-diversity had a high fraction of up-

regulated genes across multiple stem cell types. In addition,

recurrent modules were classified by gene-diversity to measure the

extent to which multiple genes within each module were up-

regulated. Based on these two diversity measures, modules were

classified into six possible idealized patterns to enable further

investigation of distinct module classes (see Methods). Here we

discuss the all-for-all and all-for-one classes because these modules

exhibit the clearest examples of stemness-related expression. The

all-for-all class contains modules in which many gene members

were up-regulated in most stem cell types whereas the one-for-all

class contain modules in which a single gene is predominantly up-

regulated across the stem cells (Figure 1). In contrast, lineage-

specific modules, not discussed further here, were classified into

the all-for-one class and contain modules in which member genes

were found to be up-regulated in a limited set of stem cell types.

To pinpoint modules specifically associated with stemness, all-

for-all modules were tested for expression exclusive to stem cells.

We defined ‘‘stemness-on’’ modules as those modules classified as

either all-for-all or one-for-all when the SGL compendium was used

as the input data and were not classified by S-MAP when using the

DGL compendium. We discuss those genes and modules with

specific over-expression in either stem or differentiated cells.

However, important modules may exhibit expression in both stem

and differentiated cells. A full list of classified modules is available

as Supporting Information (Dataset S1).

Identification of stemness modules
S-MAP identified 350 non-redundant up-regulated modules

with reproducibly higher expression in stem cells compared to

their matched differentiated cells across the compendium (,5%

recurrence FDR). These included 266 homolog modules (2.7%)

and 94 functional modules (15.3%) both of which exhibited a

significant shift to higher scores compared to control modules

made up of sets of randomly grouped genes (t-statistic = 7.2669;

P,3.498e-13; Figure 2A; Figure S2e–g). Examples of several of

the stemness-on modules are listed in Table 2 and include genes

recognizable for their roles in stemness and cancer including

Myb-, Myc-, P53-, and Tcf-related families. Similarly, using

DGLs, S-MAP identified 213 homolog and 44 functional

modules with recurrent down-regulation. Thus, S-MAP was

able to identify a significant number of additional modules

untested by previous attempts by including those defined by

homology.

As a negative control, we tested whether the observed levels of

recurrence exceeded what would be expected from a diverse

collection of unrelated cells. To do this, we performed a ‘‘swap’’

experiment in which a proportion of SGLs were swapped with an

increasing number of their DGL counterparts. The FDR increased

when as little as five SGLs were replaced by DGLs and continued

to increase with additional swaps (10, 15, 20 and 25 swaps) such

that datasets containing about equal numbers of SGLs and DGLs

(25 swaps) yielded the highest FDR. Once the majority of the data

contained DGLs, the FDRs decreased, suggesting that the

differentiated cells also share overlapping expression patterns.

Importantly, however, the lowest FDR (6.6%60.0006) was

achieved with the original SGL dataset (red bar, Figure 2B)

revealing that stem cells exhibit a higher level of coordinated

expression than unrelated cells.

Strikingly, of the 350 modules with significant recurrence, 162

stemness-on and 62 stemness-off modules had significant cell-

diversity and specificity scores (Figure 3). The stemness-on

modules contained 103 homolog modules (78 all-for-all and 25

one-for-all) and 59 functional modules (46 all-for-all and 13 one-

for-all) (Dataset S1). The stemness-off modules were composed of

39 homolog and 23 functional modules each representing putative

programs requiring active repression for the maintenance of

stemness (Dataset S1). A comparison to the results of Wong et al.

Figure 2. Gene modules exhibit significantly recurrent expres-
sion across diverse stem cells. (A) Recurrence score distribution
compared to a background control. All modules of size 3 (1098
modules: 1091 homolog modules and 7 functional modules; black),
compared to randomized families of size 3 based on 1000 random
permutations of the original data (yellow). Similar results were obtained
for modules of other sizes (Figure S2e–g). (B) Swap experiment. An
increasing number of SGLs were replaced by their corresponding DGL
and used to calculate recurrence for all modules. For several swap
proportions (x-axis) the average FDR (y-axis) of the computed
recurrences was plotted (gray bars) and compared to the distribution
obtained without swapping (red bars). Error bars depict one standard
error.
doi:10.1371/journal.pone.0018968.g002

Stemness Revealed by Homolog and Pathway Modules
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(2008) [6] demonstrated that the homolog modules were enriched

for modules of higher recurrence than the modules reported in the

Stemness Module Map (Figure S3).

We also applied S-MAP to every individual gene in the mouse

genome by considering each gene as a ‘‘singleton module.’’

Remarkably, 40 stemness-on genes were identified with significant

recurrence, cell-diversity and specificity most of which have some

link to functions in cell proliferation (Dataset S3). All but three of

these genes were members of recurrent modules. Interestingly, the

gene with the highest cell-diversity was Orc1l, a homolog to the

yeast origin of replication complex recently implicated to play a

role in stem cell maintenance in ESCs [13,14]. Thus, by using a

larger expression compendium, S-MAP was able to expand the

number of individual genes implicated in stemness beyond the one

gene, Itga6, identified by the original founder studies.

Global map of stemness modules
We connected recurrent modules with similar expression

patterns and plotted the resulting network using a spring-

embedded layout algorithm (Figure 4). Seven major components

were revealed; two contained the stemness-on modules, whereas

modules with genes expressed predominantly in only one or two

stem cell types characterized the remaining five components. To

identify interaction networks enriched in stem cells, we applied

Ingenuity Pathway Analysis for the components containing

stemness-on modules (components B and C, Figure 4). The

highest scoring networks included cell cycle; embryonic, tissue and

development; cancer; and DNA replication and repair (Figure

S4a–e). The enrichment of these networks in stem cells supports

tight control of these processes across stem cell types, and suggest a

link to the molecular regulation of cancer.

Functional implications of the stemness modules
To identify functional themes, we next clustered all of the

stemness-on and –off modules detected by S-MAP according to

their patterns across the expression compendium (Figure 5A).

Several specific processes were identified including chromatin

assembly, Wnt signaling, DNA repair, and cell proliferation.

Intriguingly, the integrin alpha module, including Itga6 identified

by Fortunel et al, was among the top-scoring stemness-on homolog

modules. The integrin alpha module, but no single member gene,

was up-regulated in many stem cell types in addition to the ones

originally investigated. Some of the most compelling all-for-all

modules are discussed next; a comprehensive view is available as

Supporting Information (Dataset S1).

A permissive, or poised, chromatin structure may underlie stem

cell multipotency. S-MAP detected several chromatin-related

modules associated with stemness including those involved in

imprinting, chromatin-dependent silencing (PRC1 and PRC2

complexes), heterochromatin and the nuclear lamina, which may

indicate widespread suppression of lineage-associated genes.

Stemness contributors include the Chd/Smarca family, nucleo-

some assembly protein (Nap) like proteins; and histone variants

H2afz and H2afv (one-for-all pattern; Figure S5a). Indeed, Chd1

was recently shown to be important in ESC multipotency by

regulating chromatin structure [15]; other family members may fill

this function in adult stem cells.

S-MAP also revealed a number of Wnt signaling modules with

alternating patterns of specificity in different stem cell types

(Figure 5B; Figure S5b). Wnt-related stemness modules include the

secreted Frizzled-like proteins of the Sfrp family; the Frizzled

receptors; a subfamily of the TCF/LEF transcriptional regulators;

the Enhancer of Split/Groucho-related Tle factors; and both

alpha- and delta-catenins. Whether Wnt signaling regulates stem

cell maintenance or differentiation has been extensively debated,

and some genes have both inhibitory and activating abilities

dependent on the state of Wnt signals [16]. While functional

consequences cannot be resolved by expression data alone, our

analysis demonstrates that all stem cells tightly regulate the Wnt

pathway at the transcriptional level. The identified S-MAP

patterns provide specific candidates for functional interrogation

in different stem cell types.

DNA repair is uniquely critical in stem cells as mutations

accumulated in stem cells amplify in differentiated daughters. S-

MAP identified many stemness modules associated with DNA

repair, including the Terf, p53, and Rad families (Figure 5B;

Figure S5c). Terf1 and 2 are highly stem cell-specific and are

expressed in alternating patterns in different stem cells (Figure 5B).

S-MAP classified the p53 family as a stemness-on module. While

p53 was found to be expressed in several tissues, p63 was up-

regulated in gastric and intestinal cells consistent with its known

role in the development and maintenance of epithelial stem cells

[17]. Likewise, Brca1 and its homolog Mcph1, the Msh family of

proteins, and a Rad/Dmc module were detected as stemness

modules by S-MAP (Figure S5c).

Several transcriptional regulators, including the Myb family of

oncogenes, were among the highest scoring stemness-on modules

(Figure 5B; Figure S5d). c-myb was enriched in hematopoietic stem

cells, consistent with its known role in differentiation control, as well

as neural, embryonic, intestinal and retinal stem cells. a-myb

complements the expression of its partner genes by significant up-

regulation in gastric stem cells, while b-myb was up-regulated in liver

and trophoblast stem cells. The Pbx and Id families have also been

implicated in maintaining stem cell function (Figure 5B, Figure S5d)

[18,19,20,21,22]. The myc family displayed a strongly complemen-

tary stemness expression pattern. c-myc has been implicated in

reprogramming of differentiated cells into pluripotent cells [23]. Not

surprisingly, c-myc is the only gene of the four original iPS

reprogramming factors that is represented in a stemness-on module;

the other three factors (Sox2, Nanog and Oct4) are ESC-specific and

not expressed by most adult stem cells (Figure 4).

Many modules representing cell proliferation or control of the

cell cycle were stemness-specific. Strikingly, three Mcm proteins

(Mcm2, 4 and 5) and several proteins that cooperate with Mcm’s

Table 2. Selected stemness-on homolog modules with high
recurrence and specificity.

Stemness

modules Size Gene Members

Myb 3 a-myb,b-myb,c-myb

Tcf/Lef 4 Tcf3, Tcf7, Lef1

Myc 6 c-myc,N-Myc,L-Myc,s-myc

P53 3 p53, p63, p73

Cip/Kip 3 p21, p27, p57

Sfrp 3 Sfrp1, Sfrp2, Sfrp5

Pbx 5 Pbx1-4

Smarc/Chd .10 Chd1-9,Smarca1-5

Aurora 5 Aurka,Aurkb,Aurkc,Plk4,Ulk3

Integrin alpha 10 Itga2b-9,Itgav,Gpld1

Mcm 9 Mcm2-9

Nme 4 Nme1-4

doi:10.1371/journal.pone.0018968.t002

Stemness Revealed by Homolog and Pathway Modules
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Figure 3. Multidimensional pattern classification reveals stemness-on modules. Module sizes (column 1), recurrence (column 2), cell type
diversity, gene diversity and specificity (columns 3–5) are shown for all highly recurrent modules. Each line represents one module. Modules with high
cell-diversity and specificity were classified as stemness-on (red and green). S-MAP classified modules with high gene-diversity (many genes within the
module contribute to the stemness score) as all-for-all (red) and those with low gene-diversity (eg, only one gene within a module contributes to the
stemness score) as one-for-all (green). Modules scoring as non-cell-diverse or non-specific were designated as non-stemness (gray). Non-recurrent
modules are not displayed. Boxes and gene names highlight examples discussed in the text.
doi:10.1371/journal.pone.0018968.g003

Stemness Revealed by Homolog and Pathway Modules
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Figure 4. A gene expression map of modules reveals seven major components. Two modules (nodes) were connected by an edge (blue
links) if their Pearson correlation exceeded 0.8 and one of the modules was recurrent (green nodes) or classified as stemness-on by S-MAP (red
nodes). Non-recurrent modules connected to recurrent or stemness-on modules are also shown (grey nodes). For each component in the network
(labeled A through G), the mean fraction of upregulated genes in each cell type was computed (gray bar graphs). Cell types listed on the x-axis from
left to right: HSC (hematopoietic), MaSC (mammary), NSC (neural), ESC (embryonic), LiSC (liver), InSC (intestinal), MSC (mesenchymal), RPC (retinal),
GEP (gastric), HBSC (hair bulge), SSC (spermatogonial), TSC (trophoblast). For the B and C components, upregulation fractions were computed for
stemness-on modules only (red bar graphs).
doi:10.1371/journal.pone.0018968.g004

Stemness Revealed by Homolog and Pathway Modules
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(Cdt1, Orc1, Pcna, and Cdc6) were identified (Figure S5e). Other

genes with known roles in cancer included Smoothened, a G-

protein coupled receptor in the hedgehog pathway; the transcrip-

tional activator Eya2; the histone-binding oncoprotein SET; and

the mTOR inhibitor Depdc6.

S-MAP identified 62 stemness-off modules including cytokine and

growth factor signaling (e.g., Pdgf and Fgf receptors; Jak signaling

proteins; Src and Fyn and their homologs), actin-interacting proteins

(ankyrins; gelsolin and homologs), and regulators of transcription

(e.g., basic helix-loop-helix factors Bhlhb2 and 3; the Cebp family; the

Mef2 family (Figure 5B)). Several of these genes are known to

promote differentiation. Notably, Mef2 transcription factors may act

as transcriptional on/off switches, as they preferentially interact with

histone deacetylases in undifferentiated cells and with histone

acetylases in differentiating cells [24,25].

Module-informed prediction of stemness
We hypothesized that the modules recovered by S-MAP could

be used to classify transcriptomes into either stemness or

differentiation programs. We first computed a stemness enrich-

ment score (SE) to measure the difference in the average overlap of

a set of up-regulated genes to stemness-on compared to stemness-

off modules (see Methods). A cross-validation test confirmed that

the held-out SGLs received significantly higher SE scores than the

held-out DGLs (t = 8.777; p-value = 6.204e-16; Welch two-

sample t-test; Figure 6A) and each was higher than random control

modules of matching sizes (t = 4.802; P,2.107e-06; paired Student

t-test; Figure S2c–d).

We next used a stemness index (SI) based on the SE to predict

stemness in nine experiments of normal stem cells, including lung,

muscle, prostate and iPS cells, that were not included in the

compendium (Table S3). The SI takes two query lists as input and

measures the degree to which the first list has a higher SE than the

second list (see Methods). A confidence measure was also

computed as the total overlap to any S-MAP module. Amazingly,

in spite of low total overlap for three datasets (grey zone,

Figure 6B), all normal mouse populations designated as stem cell-

like obtained a higher stemness score than differentiation score

Figure 5. Stemness-on and stemness-off modules identified by S-MAP. A. Heatmap entries show the difference in the proportion of over-
expressed (red) compared to under-expressed (blue) genes in each stemness-on and –off module (rows) for each type of stem cell (columns).
Homolog modules are depicted above the functional modules, defined by gene functional similarity. Selected significantly enriched GO functional
categories are indicated. B. Expression heatmaps of selected stemness-on and –off homolog modules in the Wnt, DNA repair, and transcriptional
regulation categories. Event matrices for individual modules are separated by spaces. Each entry in an event matrix corresponds to the proportion of
experiments in which a gene was up-regulated in a particular cell type, ranging from 0 (white; up-regulated in zero experiments) to 1 (red, up-
regulated in all experiments, or blue, down-regulated in stem cells). Gray entries correspond to genes untested in any of the experiments for a
specific stem cell type. Genes without any data in the compendium were excluded from the plot.
doi:10.1371/journal.pone.0018968.g005

Stemness Revealed by Homolog and Pathway Modules
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(P,0.002, binomial test), and four of the datasets scored at least

two standard deviations above randomly simulated datasets

(Figure 6B).

Cell populations enriched for cancer stem cells have
higher stemness indices

Recently, several studies have linked metastasis and stem cells

through self-renewal (25–27). We tested five populations from

cancer studies, where cancer cells had been separated into putative

cancer stem cell (CSC) and non-stem-cell populations, and two

metastatic cancer populations. Intriguingly, both of the metastatic

populations and three out of five of the cancer stem cell

populations were classified as more stem cell-like than the

corresponding normal or non-metastatic tissue (Figure 6C). To

further test this, we mapped human metastatic cancer data onto

the mouse genome and assigned stemness scores. Five out of

fourteen datasets had too little overlap to be scored with

confidence (grey zone, Figure 6D). Remarkably, all but one of

the remaining datasets was classified as stem cell-like (Figure 6D).

These findings strongly concur with the hypothesis that metastatic

populations in both mouse and humans exhibit the molecular

properties of stem cells, perhaps following an epithelial-to-

Figure 6. S-MAP modules predict stemness in validation data and in cancer metastases in mouse and human. (A) A Stemness
Enrichment score (SE; y-axis) between each experimental set of up-regulated genes – for all DGLs (left boxplot) and all SGLs (right boxplot) – was
measured. Positive scores indicate higher overlap with stemness-on compared to stemness-off modules. (B–D) A Stemness Index (SI) was calculated
for each experiment as the difference between the Stemness Enrichment scores computed for its up- and down-regulated lists of genes (y-axis) and is
plotted against a Total Module Overlap (x-axis). For each query experiment (red squares and red triangles), 20 matched random experiments were
simulated to construct a null distribution for both the SI and Total Module Overlap (black circles). Gray regions are drawn to enclose half of the
random controls. The mean SI from the null distribution (solid red line) is shown along with one standard deviation (black solid lines) and two
standard deviations (black dashed lines) estimated using a windowing approach. Differentially expressed gene lists were scored for (B) mouse normal
stem cells and side populations; (C) mouse cancer stem cells and metastatic tumors; and (D) human metastatic cancer cell populations.
doi:10.1371/journal.pone.0018968.g006

Stemness Revealed by Homolog and Pathway Modules
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mesenchymal transition. Collectively, our results demonstrate that

the SI can be used to correctly classify both mouse and human cell

populations as stem cell-like in a normal, cancer, and metastatic

context.

Discussion

The inclusion of evolutionarily related genes as modules

revealed a striking number of families with expression patterns

associated with stemness. It is plausible that various stem cells

employ common mechanisms through the use of evolutionarily

related families of proteins. Duplication and subsequent modifi-

cation of genes and their enhancers through evolution may have

provided the control logic needed to diversify stem cells for

populating new tissue systems distinct from ancestral counterparts.

Indeed, the homolog modules consistently received higher S-MAP

scores compared to the modules in a previous study that did not

consider gene homology [6] (Figures S15, S16).

The identification of stemness modules has obvious implications

for both iPS cells and cancer therapeutics. Reprogramming

candidates essential for stem cell properties are likely found among

the stemness-on modules while stemness-off modules likely contain

genes that have to be silent in stem cells. The SI scoring strategy,

possibly adapted specifically to ESC/iPS cell signatures, could be

used in the characterization of putative iPS lines. Similar strategies

can be used to identify and target CSC within a heterogeneous

cancer population and serve as valuable tools for fighting cancer

progression. In addition, the results can be used to test for novel

stem cell marker genes to improve the definition and isolation of

stem cells.

The S-MAP approach synergizes with large-scale efforts to

systematically extract differentially expressed genes in many

different conditions represented in current microarray gene

expression repositories, such as Oncomine [26] and GeneChaser

[27]. It is complementary to previous approaches to uncover the

mechanisms of pluri- and multi-potency maintenance, such as the

development of the PluriNet [5].

In this study, we focused our analysis on modules with

expression patterns ranging across a broad array of different stem

cell types. However, S-MAP also revealed 152 homolog and 32

functional modules that were restricted to specific stem cell types

(Table S2); these modules should reveal tissue- or lineage-specific

stem cell mechanisms. The method synergizes with large-scale

efforts to systematically extract differentially expressed genes in

many different conditions represented in current microarray gene

expression repositories, such as Oncomine [26] and GeneChaser

[27]. Finally, S-MAP can be used to test for inter-species stem cell

expression conservation, to characterize cancers from their normal

counterparts, and is readily transferrable to other systems and

diverse types of data.

Materials and Methods

S-MAP calculates scores for gene modules, sets of related genes,

based on the pattern of differential expression of each module’s

constituent genes observed in several studies. It uses the scores to

classify modules according to whether the genes are associated

with up-regulation in stem cells (stemness-on), down-regulated in

stem cells (stemness-off) or neither. S-MAP can then use the lists of

stemness-related modules to classify additional datasets according

to their stemness signatures using a Stemness Index score. We

describe the definition of S-MAP’s non-redundant set of modules,

collection of the stem cell expression compendium, and the various

scores for classifying modules and datasets.

Definition of gene modules
A non-redundant set of gene modules was collected that

included both putative homolog families determined by BLAST

similarity analysis and genes that participate in common pathways

(Figure S1a–b). Our method used sets of functionally- and

evolutionarily-related genes to determine if each set has an

expression pattern significantly associated with stemness. We

collected a large number of gene modules including putative

homolog families and genes that participate in common pathways.

Homolog modules. We identified putative homolog modules

by determining collections of genes sharing high protein sequence

similarity. BLASTP (at an E-value cutoff ,0.05) was used to align

the entire mouse proteome (UCSC version mm9) containing

45,480 peptides with an associated EntrezGene identifier. For

each pair of proteins, only the alignment with the highest BLASTP

E-value, as well as the highest overall sequence coverage, was

chosen as representative of the gene pair. Only gene pairs whose

sequences had an E-value smaller than 10270 and coverage of

more than 50% were connected. A depth-first traversal on the

resulting protein-protein similarity network was used to identify all

connected components totaling 14,941 in total. Of these, 11,920

had only a single gene in the group. To incorporate more

evolutionarily distant relationships and connect genes in singleton

groups to more distantly related homologs, unconnected genes

were assigned to the module containing the gene with the most

similar protein sequence if its best match exceeded a less stringent

cutoff of 10210 and coverage of at least 50%. The process was

iteratively repeated until singleton modules could no longer be

assigned to larger gene sets. The process converged on a final set

4,659 homolog modules and decreased the number of genes

remaining unconnected to 5,249. Of the homolog modules, six

represented very large families of over 100 gene members. We

found that the homolog module definitions were highly

concordant with HomoloGene [8] (Figure S1b) even though

HomoloGene was not designed specifically to delineate paralogous

groups.

Functional modules. We collected functional modules from

five different data sources including Gene Ontology [9],

BioCarta’s curated pathway sets [11], CORUM’s experimentally

derived mouse protein complexes [28], and putative protein

complexes identified from dense sub-networks derived from

BioGRID’s database of interacting proteins [29]. For BioGRID,

modules were also identified from human datasets and the genes

were mapped to mouse using best-reciprocal BLASTP hit analysis.

Non-redundant collection of modules. While the S-MAP

procedure could score all collected modules, we defined a non-

redundant set of modules to use for assessing the overall

significance and distribution of scores. Allowing redundancy

could skew the results because of highly characterized pathways.

For example, Gene Ontology contains a deep hierarchy with

many sub- and sub-sub-categorizations under the cell cycle process

because it has been studied extensively in yeast. A redundancy

filter on the functional modules helped us avoid redundant

annotations of highly characterized pathways and protein

complexes from dominating the results.

To filter out redundant functional modules, we first sorted the

functional modules from smallest to largest and excluded any

having a 25% or greater gene overlap with a smaller functional

module. Functional modules with over half of the genes (50%

overlap) belonging to the same set of homologs were also excluded

because any such module also reflects an evolutionary connection

between the genes to a greater degree than the functional

connection. The relatively high overlap cutoff (50%) between

evolutionary and functional gene modules allows genes with
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multiple functional roles to be captured by different module types.

We collected all homolog and functional modules into the set V.

Collection of a compendium of differentially expressed
gene lists

We collected lists of differentially expressed genes from 30

transcriptional profiling studies, corresponding to 49 different cell

populations and 12 different stem cell types. For each stem cell

population in each study, we collected the list of clones found to be

up-regulated relative to differentiated cells. Likewise, a differen-

tiated-cell gene list (DGL) was constructed by including genes

found to have higher expression in differentiated cells compared to

stem cells. The lists were obtained or inferred either directly from

the publication or by communication with the authors. To obtain

a stem cell gene list (SGL), clones were mapped to their

corresponding EntrezGene identifiers. If a gene had even a single

matching differentially expressed clone it was included in the SGL.

Clones without a corresponding EntrezGene identifier were

excluded from further analysis.

For each module, a stem-cell event matrix S was constructed from

the set of all SGLs such that Sij is empty if gene i was not tested in

study j, 1 if it was found to be differentially up-regulated, and 0

otherwise. In addition to the lists representing genes over-

expressed in stem cells, we also derived lists with genes over-

expressed in differentiated cells (or under-expressed in stem cells).

Differentiated-cell gene lists (DGLs) were obtained in an analogous

fashion using the clones reported to be downregulated in each

study. A DGL was obtained for all but four of the studies in the

compendium. Each module was also associated with a corre-

sponding differentiation event matrix D recording the up-

regulation events across the DGL compendium for that module.

The descriptions of the publications, cell types, and gene list sizes

are listed in Dataset S1.

The recurrence score used for S-MAP (described subsequently)

was motivated by the need to compensate for potential biases in

combining heterogeneous results. There are obvious variations in

the overlap and sizes of the SGLs and DGLs, which reflect the

differences in the compared biological specimens, cell, and RNA

isolation techniques, hybridization protocols, and statistical

methods applied to identify differentially expressed clones. The

recurrence score down-weights the influence of studies reporting

highly similar gene lists to avoid a bias due to over-representation

of any one stem cell type. Before computing recurrence scores for

genes or modules, we calculated the similarity of all gene lists to

derive groups of gene lists. Gene lists in the same group could then

be collectively down-weighted in the recurrence scoring. The

identification of these gene list groups is described next.

Identifying groups of similar gene lists
Groups of similar gene lists from possibly different studies were

identified by performing an all-against-all comparison of the

collected gene lists, constructing a network from the pair-wise

overlaps, and then unifying lists that fell into the same sub-network

(Figure S1c). Gene list groups were determined by clustering

similar gene lists on a network. All pairs of gene lists were

compared and the significance of their overlap was determined by

calculating the hypergeometric P value reflecting the probability of

obtaining k overlapping genes by drawing two clusters of size n and

m randomly from a genome of size N. Gene lists with overlap P

values smaller than 10250 were linked together to form a network

of gene lists. Less stringent cutoffs did not separate gene lists from

the same or different stem cell types.

Cytoscape [30] was used to ordinate and visualize the resulting

network using the negative logarithm of the hypergeometric P

values as the weights for spring-embedded layout (Figure 4). The

final groups were determined by visual inspection of the network.

Subnets of mutually similar gene lists of the same stem cell type

were identified with the same group. This yielded three groups of

sizes 2, 5, and 7 with the remaining left as degenerate groups of

size 1. While the Ramalho-Santos HSC gene list [4] had overlaps

with many other HSC-derived gene lists and appeared at first to

warrant inclusion in the HSC group of size 5, the significance of

the overlaps were borderline and less than all of the other HSC

overlaps. For this reason, we left the Ramalho-Santos HSC gene

list in its own degenerate group. We denoted the set of gene list

groups including degenerates as B1, B2,…, BF, where F is the

number of groups identified by the above procedure. The Bf’s

define a mutually exclusive and exhaustive partition of the

experiments in the compendium. We write experiment j’s replicate

group with the notation b(j). For example b(j) = 1 is interpreted to

mean the jth experiment was placed in the first group, B1. Thus,

the notation Bb(j) represents the set of gene lists grouped with a

particular gene list j including gene list j itself.

Recurrence
A score called recurrence was developed to measure the degree to

which observed differential expression in a module is replicated

across independent gene lists. Two recurrence scores were

computed – one measuring repeated up-regulation across the

SGLs and the other down-regulation across the DGLs. The DGL

recurrence is interpreted as a measure of specificity for a module

when considering its association to stemness. The recurrence score

uses a meta-analysis that computes a weighted count of the

number of upregulated genes across all of the studies, observed for

a particular module. The score incorporates a weight for each

experiment that is inversely proportionally to the number of genes

upregulated in the study. Thus, studies with smaller, more specific

gene lists are given higher weight than studies with large, less

specific lists. The score also incorporates the redundancy of the

gene lists by allowing each group of similar lists to have a single

vote no matter how many lists are in a group.

A module M from V was considered to have a stemness-

associated pattern of expression if some of its genes were found in a

high proportion of SGLs. We developed a score called recurrence

that measures the degree to which observed differential expression

in a module is replicated in independent gene lists. In practice, we

compute two recurrence scores – one measuring repeated up-

regulation across the SGLs and the other down-regulation across

the DGLs – but here we describe the calculations only for SGLs as

the others for the DGLs are analogous. The recurrence score used

for module M computed over the SGL matrix S is:

R(M,S)~
X
i [M

1

Ti Sð ÞGi Sð Þq,

where Gi(S) is a gene-specific score for gene i measuring its degree

of up-regulatation across all of the studies, Ti(S) is a normalization

constant to compensate for the number of genes in the module,

and the q exponent determines how much weight frequently

expressed genes have on the score relative to less frequently

expressed genes.

A gene-specific score was used that reflects the frequency with

which a gene is up-regulated in the SGL compendium. Because

the SGLs are of highly different sizes, we introduced a ‘‘signal

strength’’ zj for each gene list j to account for the differences in

specificities inherent in the experimental results. We computed the

gene specific score:
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Gi Sð Þ~
XJ

j~1

zjuijSij ,

where J is the total number of SGLs, uij is the unit of weight

contributed by gene list j in its gene list group, and Sij encodes the

binary event that gene i is upregulated in SGL j as defined above.

The uij term forces each gene list to contribute the same amount of

weight as any other experiment in its group and is a function of the

gene because different genes may be tested in different sets of

experiments in the group. This term is defined as:

uij~
tijP

j ’[Bb(j)

t
ij ’

,

where tij is 1 if the ith gene was tested in experiment j and 0

otherwise. Experiments in large groups get a smaller weight while

experiments in small or singleton groups get the largest weight. For

example, suppose three gene lists are grouped together and one

gene is tested in two of the lists, while a second gene is tested in all

three. For the first gene, two experiments would contribute a

weight of 1/2 while, for the second gene, all experiments would

contribute a weight of 1/3.

Finally, the normalization constant for the recurrence score

ensures that the zjuij products sum to unity to normalize for the

overall size of the module; i.e. Ti(S) = Sj zjuij, where j ranges from

1 to J. A completely analogous score was used to compute the

recurrence of a module’s down-regulated events across the

compendium. Only, in this case, the D matrix was used in place

of S so that each module also had an associated R(M,D) recurrence

measure as well.

The recurrence score is similar to vote-counting meta-analysis

methods that count the number of occurrences of a particular

observation in a set of independent tests. In addition, as described

next, it incorporates a weight for each experiment similar to the

inverse variance weighting used for combining effect sizes (or

inverse document frequency weighting used in information

retrieval applications).

Simulation to determine recurrence parameters
Due to the lack of appropriate positive controls, we used

synthetic data to assess the accuracy of recurrence scores with

different parameter choices (q and zj) at identifying significant up-

regulation across many stem cell types.

First, the size (n) of each module was randomly sampled from an

exponential distribution with a mean number of four genes to

match the size distribution of modules in our collection. Stemness-

related modules were simulated by randomly sampling three

different idealized stemness patterns: 1) Many genes expressed in

Many tissues (MM), 2) Single gene expressed in Many tissues (SM),

and 3) Single gene expressed in a Single tissue (SS).

For each experiment, MM modules were simulated by

independently drawing two genes at random such that all genes

were equally likely to be selected. SM modules were simulated by

first selecting a random gene from the module to have a high

probability (p = 0.8) and the rest a low probability (p = 0.2/(n-1)).

For each of the nine synthetic experiments, a single gene was

chosen as up-regulated according to these probabilities. Finally, SS

modules were simulated by independently choosing a single gene

to be up-regulated in each experiment where each gene was

equally likely to be selected.

In addition to the simulated stemness-related modules, two

types of non-stemness modules were simulated: 1) tissue-specific

(TS) modules in which genes were primarily expressed in a single

tissue, and 2) non-related (NR) modules in which genes exhibited

up-regulated events expected by chance. First, a set of preferen-

tially up-regulated genes U was simulated by selecting each gene

independently in the module with probability p = 0.5. For TS

modules, a random experiment was selected and assigned a higher

probability (p = 0.8) relative to the other experiments (p = 0.2/(J-

1)). TS modules were then simulated by allowing only genes in U

to be up-regulated, each up-regulated in one tissue chosen

according to these biased probabilities. For NR modules, the

simulation was similar but all experiments had an equal

probability of selection.

Nine experiments were simulated for 2000 modules among

which 120 represented stemness modules (MM, SM, and SS in

equal proportions). The remaining non-related modules were

simulated in the ratio 2:3 (TS:NR).

For the q exponent, we tested values of 0.5, 1, 2, and 3. For the

signal strength zj, three different functions of the size of gene list j

were tested – 1/vj, (1-vj), -log(vj) – where vj corresponds to the size

of gene list j. For q = 2, we also tested an additional zj assignment,

zj = 1, equivalent to the use of no weighting.

All 13 combinations were evaluated for their ability to find

different stemness-associated patterns in synthetic data, and the

results were tabulated in Table S2. The area-under-the-curve

(AUC) was calculated for the different q and zj choices. To

estimate the AUC, we ranked all simulated stemness-related and

unrelated modules by their scores. Precision and recall were

computed by sweeping through cutoffs in the recurrence score.

False positives were assumed to be those unrelated modules with

scores above the cutoff; false-negatives were assumed to be those

related modules with scores below the cutoff.

The critical parameter in the simulation was q. Smaller values of

q produced more accurate results for modules that use multiple

genes in multiple tissues, while higher values of q produced more

accurate results for modules that use a single gene in many tissues.

The combination q = 2 and zj_ = -log(vj) gave the highest average

AUC among all combinations (Table S2) and was used for the

analysis.

Diversity scoring
A cell-diversity score based on information theory was used to

distinguish between modules that are up-regulated in many,

compared to few, stem cell types. The score is computed on the

relative proportions of up-regulated genes in the module rather

than on the absolute proportions. Thus, even a module expressing

a small number of genes on average can have a high diversity if the

same (small) fraction of its genes is expressed across many cell

types. In contrast, a module with a low diversity has a higher

relative proportion of up-regulated genes in one or a few stem cell

types compared to the relative proportion in other types.

A relative frequency vector was derived from a module’s event

matrix by computing, for each cell type l, the relative proportion of

its genes found to be up-regulated across all SGLs of type l:

f ’
l(M)~

P
j [Al

P
i [M

Sij

P
j [Al

P
i [M

tij

,

fl(M)~
f ’

l(M)P
l ’[L

f ’
l ’ (M)
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where Al represents the set of experiments of cell type l and L is the

total number of such cell types. The second equation above defines

f’l to be the relative frequency of the module genes present in any

SGLs of type l. The cell-diversity of a module is defined as the

normalized entropy over these relative frequencies:

Dcell(M)~{
X
l [L

f ’
l Mð Þlog f ’

l(M)
� �

,

where log(x) is the base 2 logarithm of x. Dcell(M) ranges between 0

and log |L| ‘‘bits,’’ with a module obtaining a value near the

maximum when its up-regulated events are roughly equal across

all cell types.

An analogous gene-diversity score was defined to quantify how

evenly utilized the genes are across the studies. The gene-diversity

score Dgene(M) was calculated on the transpose of the event matrix.

Cell- and gene-diversity scores were computed over the DGLs. We

computed normalized versions of cell-diversity, denoted Dcell’(M),

by dividing by log |L|, and of gene diversity, denoted Dgene’(M), by

dividing by log |n|, to provide an intuitive measure of the diversity

ranging between 0 and 1.

Significance of the recurrence and diversity scores
The significance of the recurrence and cell-diversity scores was

determined by simulating randomly drawn modules with matched

sizes to generate size-specific false discovery rates. Each module

could then be compared to a thousand permuted modules of the

same size to identify those with significantly scores.

The data within each experiment were permuted to produce

1,000 different SGL compendiums and their corresponding event

matrices. The total number of up-regulated genes in each

experiment was kept the same, but a random set of genes of the

same size was simulated as up-regulated. The permutations

preserved the correlation structure between gene lists in the same

gene list group (Figure S1c) by keeping blocks of data values for

each gene within each group together. This procedure produced

randomly generated event matrices ~SS(1), ~SS(2), …, ~SS(1000) from

which an empirical distribution for the recurrence was obtained by

calculating the recurrence for each module and each permuted

event matrix. Because we expected the distribution of the

recurrence to be influenced by the size of a module, we grouped

modules into six size classes 1, 2, 3, 4, 5-10, and .10 and denote

the modules in the kth class as V(k) (Figure S2a). From this null

distribution, we estimated the false-discovery rate of a recurrence

score for a module of size-class k as:

FDR(r,k)~

1

1000

X1000

a~1

X
M [V kð Þ

1 R M,~SSa
� �

§r
� �

P
M [V kð Þ

1 R M,Sð Þ§rð Þ ,

where 1(x) is the indicator function equal to 1 if the argument x is

true and 0 otherwise. To identify all modules with a score

associated with an FDR of 5% or less, we determined a critical

value c for each module size class that gave FDR(c,k) = 0.05.

We used a similar random sampling approach to assess the

significance of the cell-diversity scores. Randomized families from

1,000 permutations were used to generate cell-type diversity scores

for random modules. For each module size, a false discovery rate

was estimated for various cell-diversity cutoffs ranging between 0

and 3.6 bits (log (12) for the 12 stem cell types). Inspection of these

cutoffs suggested that the FDR estimates for modules of different

sizes were highly comparable (Figure S2c). Therefore, a single

overall cell-diversity cutoff of 2.5, calculated as a weighted average

across all modules, was used to achieve a desired FDR rate of 5%.

Any module with a cell-diversity exceeding 2.5 was considered

‘‘cell type diverse.’’

Because modules have a variety of different genes, identifying

FDR cutoffs is problematic, especially for small modules.

Therefore, a simple cutoff was used to distinguish modules

utilizing many genes versus those utilizing a few. Modules with

calculated normalized gene diversity scores higher than 0.5 were

considered ‘‘gene-diverse’’.

Specificity score
While individual genes in a module could be exclusively

expressed in some stem cells, if a module has many such genes

(differentially expressed in a diverse set of cell types), it may not

always be stemness-specific. For example, even a recurrent module

could have a subset of genes switched on in stem cells and a

different subset switched on in differentiated cells. To identify

modules with highly specific patterns, we used the recurrence score

computed on the DGLs as a measure of specificity. If a module’s

SGL recurrence had an FDR less than 5% and its DGL

recurrence had an FDR higher than 95%, it was classified as

‘‘highly specific’’. Modules with DGL recurrence FDR between

5% and 95% were classified as ‘‘moderately specific.’’ Highly and

moderately specific modules were included in the stemness

categories.

Pattern classification
For all modules found to have significant recurrence (FDR

,5%), we classified their pattern of expression using cell- and

gene-diversity. Restricting our investigation to the recurrent

modules is expected to reduce false positive inferences but may

miss some interesting biological phenomena. Based on the cell-

and gene-diversity scores, modules were assigned to one of six

possible categories: all-for-all (AFA), one-for-all (OFA), constitutive

module (CM), and constitutive gene (CG), all-for-one (AFO), and

one-for-one (OFO). The definitions used were as follows: AFAs,

OFAs, CMs and CGs had cell-diversities of at least 2.5 bits of

information entropy, while AFOs and OFOs had lower cell-

diversity values. AFAs, AFOs and CMs had normalized gene-

diversities of at least 0.5 while OFAs, OFOs, and CGs had lower

gene-diversity values. CMs and CGs were non-specific, as they

showed significant recurrence in both SGLs and DGLs and may

reflect housekeeping functions. AFA and OFA modules were

defined as stemness modules and are referred to as stemness-on if

identified from the SGLs and stemness-off if from the DGLs.

Deriving an expression map of stemness modules
Each module was represented as a vector of fractions of

upregulated genes in each cell type. We calculated the Pearson

correlation between all pairs of modules. The large number of

correlations was reduced by a filtering step, such that only

correlations higher than 0.8 were kept. To reduce the number of

spurious unrelated connections, at least one of the two compared

modules was required to be recurrent. The modules (nodes) and

their correlations (edges) were loaded into Cytoscape. A force-

directed layout algorithm was used to position the modules onto

the X-Y plane such that the correlations were treated as pair-wise

force constraints among the modules.

Stemness index (SI)
We used the set of stemness-on modules M+ and stemness-off

modules M2 identified by S-MAP to develop a score capable of
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recognizing that a new query set of differentially expressed genes Q

is enriched for stemness modules. We defined the Stemness Index (SI)

as a contrast between the overlap of the query with modules

indicative of stemness compared to those indicative of differentiated

cells. To this end, we defined the Stemness Overlap (SO) to be the

weighted overlap of Q with all of the stemness modules – the higher

the overlap, the more likely the query was derived from genes up-

regulated in stem cells. To increase the sensitivity of the score for

identifying new modules involved in core stemness, overlaps with

modules of high cell diversity were more highly weighted compared

to modules of lower diversity. We defined the weight of influence for

a module in proportion to its cell-diversity as w Mð Þ~
c Mð Þ

� P
M [Mz

c Mð Þ. The SO could then be defined as:

SO(Q)~
X

M [Mz

w Mð Þlog
DM\QD
1
n
DM D:DQD

� �,

where M > Q represents the observed fraction of overlap between

the query Q and module M; the denominator in the logarithm

represents the fraction of overlap expected by chance. The form of

the SO score is similar to a log-likelihood ratio where each term in

the summation can be thought of as the log-probability that the

query would be observed given it was produced by module M,

contrasted by the log-probability of it being produced by chance. A

Differentiation Overlap (DO) was calculated identically except that

M2 was used in place of M+ for the calculation of the module

weights and the score. For a given list of genes, we compute the

Stemness Enrichment (SE) as half of the difference between the SO

and DO scores. A positive SE indicates that the gene list Q has a

higher overlap with stemness modules compared to differentiated

modules on average.

The stemness index (SI) score assigns a single number to a type-

II study, one that compares two populations. Each type-II study

has two associated gene lists: a positive gene list containing genes

upregulated in the experimental population (e.g. stem cells) and a

negative gene list containing genes upregulated in the control

population (e.g. differentiated cells). Let Q+ and Q2 represent the

postive and negative gene lists for an experiment respectively. An

experiment that induces stemness-related modules to the exclusion

of differentiation-related modules will receive a high SE(Q+). By

the same token, the same experiment could also repress

differentiation modules to the exclusion of stemness modules

detected in the negative list and therefore receive an extremely

negative SE(Q2). To capture both of these indicators of stemness,

we defined the stemness index (SI) score as the difference between

the SE(Q+) and the SE(Q2). A positive SI indicates that the

experiment’s positive gene list has higher correspondence with

stemness-on compared to stemness-off modules relative to the

experiment’s own negative gene list. Values near zero indicate

either that an experiment’s queries have little overlap with any

stemness-on or –off modules, or that they overlap with modules

from both in equal proportions. For this reason, we also consider

the total overlap of these gene lists against SI. The total module

overlap (TMO) was computed as the sum of all of the module

overlap scores for both the positive and negative gene lists; i.e.

TMO(Q+,Q2) = 1/2 * (SO(Q+) + SO(Q2) + DO(Q+) + DO(Q2)).

To assess the self-consistency of the SI score, we used a 5-fold

cross-validation framework. In each cross-validation run, we held

out 20% of the SGLs (and their corresponding DGLs). We then

identified stemness-on and –off modules using recurrence, cell-

diversity, and specificity applied to the remaining 80% of the gene

lists. The SI was then calculated on all of the lists in the held-out

20%.

We compared the ability of homolog versus functional modules

to contribute accurate information to the SI. Each set was used

without the other. Surprisingly, homolog modules showed higher

precision than functional modules at all levels of recall (Figure

S6a). The precision-recall plot showed significant levels of

precision compared to a control in which SI was computed on

random modules (Figure S6b).

Assessing the significance of the stemness index and
total module overlap.

We asked whether the observed SI and TMO scores were

significant. We constructed a background distribution for these

scores by simulating pairs of random gene lists. For both the up-

regulated and down-regulated genes in an experimental set, we

simulated random gene lists of the same size by drawing without

replacement from the set of all genes tested in the experiment.

This sampling procedure was repeated twenty times to generate

twenty pairs of matched upregulated and downregulated gene lists

for each experimental data set. The SI and TMO were calculated

on all simulated pairs. Because we expect the variability in the SI

to increase with an increase in TMO (because, for example,

extremely positive or negative SI’s must necessarily have high

TMO levels), we estimated both the mean and standard deviation

of the simulated pairs as a function of their TMO. We used

windows of width equal to one TMO unit and incremented by 0.1

units.

Detection of Enriched Biological Categories
We compiled a collection of functional categories from Gene

Ontology [9], BioCarta [11], KEGG [31] and MIPS [32] into a

single set of functional gene groups. To avoid any categories that

may be too general, we restricted the collection to functional

categories that had 100 member genes or less. For each module,

we assessed the significance of its overlap with every individual

functional category using the hypergeometric distribution to

estimate a P-value (PV) as:

PV~1{
Xk{1

i~1

n

i

� �
N{n

K{i

� �

N

K

� �

where k is the number of genes in the module that are also in

functional group, n is the total number of genes in the module, K is

the number of genes in the functional group, and N is the number

of total genes with any functional annotation. All P-values were

corrected for multiple hypotheses testing using the Bonferonni

correction and a significance level of 0.01 was chosen for further

analysis.

Stemness Index
We developed a Stemness Index (SI) to contrast the degree to

which a study upregulates modules associated with stemness

compared to those associated with differentiated cells. For a

particular study, we are given two lists of genes: one representing

genes up-regulated (Q+) and another representing those down-

regulated (Q2) in the conditions of the study. Both Q+ and Q2 are

overlapped with every S-MAP module to compute a score

reflecting the total overlap to stemness and differentiated modules,

weighted by each module’s cell-diversity. A total overlap to all S-

MAP modules provides an indication of how relevant a prediction

of stemness might be to the study. For studies found to have at

least some non-random level of overlap, we can then ask whether
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the upregulated genes show a biased correspondence to stemness

or differentiated modules – i.e. Q+ may overlap with stemness

modules in higher proportion than Q2 or vice versa. To quantify

this intuition, we used a stemness enrichment (SE) score to

measure the difference in overlap between stemness modules and

differentiated modules for both Q+ and Q2. The final SI was then

defined as SE(Q+)-SE(Q2).

Supporting Information

Figure S1 A. A Protein sequence similarity BLASTP-
based approach yields homolog-based gene modules.
BLASTP is used to generate alignments between all proteins

(white nodes) in the mouse proteome and at a stringent cutoff,

depth-first search (DFS) is applied to identify all connected

components: homolog families. Lines connecting genes indicate

that the gene pair satisfies the cutoff criteria. Subsequently, an

iterative neighbor expansion technique is applied to all singletons

(red) until the set of homolog modules converges to its final form.

B. Overlap of homolog modules with HomoloGene
indicates an 88% correspondence between our BLASTP-
based homolog modules and the HomoloGene paralog
groups (left). In most cases HomoloGene groups are smaller and

are identified as subsets of our BLAST-derived homolog modules

(right). This is most likely because the HomoloGene groups

identify only very recent paralog occurrences (most recent

common ancestor at the split of rodents). The highest discrepancy

between homolog group assignments comes from the assignments

of putative and predicted genes with no known associated

descriptions, or gene names. C. Groups of gene lists
determined from a similarity network. Each node represents

a gene list; color indicates stem cell type. Edges connect two gene

lists of significant overlap, and can connect either gene lists derived

from the same (red) or different (blue) stem cell types. Gene list

groups used for recurrence scoring are circled in black.

(TIFF)

Figure S2 A. A false discovery approach to recurrence
identifies 266 significantly recurrent homolog modules
in the compendium. The x-axis corresponds to the size-

dependent recurrence score, while the y-axis shows the false

discovery rate. Each color represents the FDR curve associated

with a different module size. The value under each colored arrow

represents the number of up-regulated homolog families of that

size that passed the recurrence cutoff for that size. FDR cutoff used

to identify significantly recurrent modules was 5%. B. Separa-
tion of stem cells into cultured and non-cultured groups
detected little polarization impact. Each circle in the Venn

diagram represents the number of recurrent modules identified

using each type of input data: cultured-cell-only input (pink),

primary cell-only input (blue), and combined cell input (yellow).

The thick black dashed line demarks the set of recurrent modules

that have primary cell contribution. The moon-shaped area

represents 54% of the recurrent modules identified using the whole

compendium. C. FDR analysis to determine a significant cell-

diversity cutoff. A cutoff was determined for the cell-diversity by

averaging results from various module sizes (different line styles

and colors). The FDR (x-axis) was plotted against a sweep of the

cell-diversity cutoff (x-axis) D. The number of modules (y-axis) at

or exceeding the cell diversity value (x-axis) aligned with the x-axis

in (C). The cutoff was selected as the 5% FDR cutoff score

associated with the weighted average of the FDR curves for all

family sizes (A). Each color represents the FDR curve associated

with a different module size. X-axis represents the cell diversity

score, while the y-axis shows the FDR in log scale. To facilitate

log-plotting, a floor value of 0.0001 was selected for all entries that

would be otherwise 0. At the 5% FDR cutoff, 114 recurrent

homolog families (red) passed the criteria and were labeled as cell-

type diverse modules (lower panel). E. Various module sizes
displayed significant shifts in recurrent up-regulation
scores. Recurrence score distribution of all homolog modules of

size 2 (black), compared to randomized modules of size 2, based on

1,000 random permutations of the original data. X-axis shows the

recurrent up-regulation score; y-axis indicates the number of

modules in each bin. F. Same as A, but for modules of size 4 genes.

G. Same as A, but for modules of size 5 genes.

(TIFF)

Figure S3 Homolog modules (black) are more enriched
for modules with higher recurrence scores than modules
from the Stem Cell Module Map of Wong et al. (2008)
(green). Histograms show the proportion of modules (y-axis) that had

a given range of excess recurrence for all modules (x-axis). Excess

recurrence was defined as a module’s recurrence score minus the

recurrence corresponding to the 5% FDR cutoff for that module’s size.

(TIFF)

Figure S4 Ingenuity Pathway Analysis of stemness
modules. Ingenuity Pathway Analysis identified two networks

associated with stemness-on component B (A-B), two networks

associated with stemness-on component C (C-D), and a network

associated with stemness-off modules (E).

(TIFF)

Figure S5 Each module is represented by two heatmaps

(delineated by each dotted rectangle) – the upper heatmap

represents the expression of every gene in the module in each stem

cell type and can range from 0 (no sGLs of a given stem cell type

express highly a given gene) to 1 (all sGLs of a given stem cell type

express highly a given gene). The lower heatmap in each case shows

the average up-regulation state of every gene in the module in every

differentiated cell type. Gray represents missing data, or the inability

to calculate an average because of missing data in either the stem

cell or differentiated cell experiments. Abbreviations: HSC –

hematopoietic stem cells, ESC – embryonic; NSC – neural; MaSC

– mammary; MSC – mesenchymal; LiSC – liver; InSC – intestinal;

RPC – retinal; GEP – gastric; TSC – trophoblast; SSC –

spermatogonial; HBSC - hair bulge (epithelial) stem cells. A.
Chromatin-associated modules were highly represented
among the stemness-on modules. B. Wnt signaling-
associated modules were well represented among the
stemness-on modules. At least six different Wnt-related

modules are scored by S-MAP as stem-cell specific – Sfrp, Tcf,

Tle, Fzd, alpha-catenin, and delta-catenin. C. DNA-repair-
associated modules were highly represented among the
stemness-on modules. Seven different repair-related modules

are scored by S-MAP as stem-cell specific –Msh, Exo1, Rad51-

related, p53, Terf, Brca1, and Pcna. D. Several important
transcriptional regulator modules were well represented
among the stemness-on modules – Myc, Myb, Pbx, and Id
(Inhibitor of Differentiation). E. Cell cycle-related and
DNA replication-associated modules were also well
represented among the stemness-on modules by several
modules – Mcm, Cdt1, Pcna, Orc1 and Cdc6. Most genes

represented in these modules are so frequently expressed that they

score as stemness genes in S-MAP on their own.

(TIFF)

Figure S6 A. Precision-recall comparison of twelve
stemness index (SI) scores, based on homolog-only
(red), functional-only (blue) and combined (green)
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features shows a superior performance of the homolog-
based predictors over the functional feature-based
predictors. X-axis measures the recall associated with each

method, while the y-axis measure the precision of each method.

The most accurate method should be approximately in the top

right hand-side corner. The comparison between the twelve

stemness index scoring measures suggests that the multiplicative-

based log-ratio method, based on a homolog-based feature set (red

dashed line) has the highest accuracy. B. Precision-recall
comparison of the real stemness and differentiation
features to 100 randomly selected feature sets. The red

line indicates the performance of the real feature set of stemness

and differentiation homolog modules, while the black dashed line

shows the average performance of 100 random homolog feature

sets of the same size as the original feature set. The real stemness

and differentiation features perform significantly better than the

average random feature sets.

(TIFF)

Dataset S1 Lists of all homolog and functional modules tested

with associated S-MAP scores, their corresponding stem cell

recurrence scores, stem cell diversity scores, differentiated cell

recurrence scores, differentiated cell diversity scores, and their

stem cell and differentiated cell gene diversity scores. Each score

can also have a ‘hi’, ‘mod’, and ‘lo’ status assigned. Stemness-on/

off status, as well as module type classification (if available) is

provided, where appropriate. All functional modules available

have been scored and shown, but only the non-redundant subset

(611 modules; labeled as ‘‘non-redundant’’ in the table) is

discussed in this paper.

(XLS)

Dataset S2 Stem cell compendium gene lists for all studies

examined by S-MAP. Each worksheet represents an individual

population gene list with annotation of the study name, stem cell

type, SGL/DGL membership, EntrezGene, and gene name

annotation.

(XLS)

Dataset S3 List of all 40 stemness genes identified by S-MAP,

along with their corresponding stem cell recurrence and diversity

scores. Gene names, annotations, and descriptions are provided

for all genes.

(XLS)

Table S1 Summary of the studies in the stem cell compendium.

(DOC)

Table S2 Area under the curve (AUC) for 13 different

recurrence parameter combinations.

(DOC)

Table S3 List of independent studies tested with the SI score.

(DOC)
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