
Eugene – A Domain Specific Language for Specifying and
Constraining Synthetic Biological Parts, Devices, and
Systems
Lesia Bilitchenko1, Adam Liu2, Sherine Cheung3, Emma Weeding4, Bing Xia2, Mariana Leguia5,

J. Christopher Anderson5,6, Douglas Densmore7*

1 Department of Computer Science, California State Polytechnic University, Pomona, California, United States of America, 2 Department of Electrical Engineering and

Computer Sciences, University of California, Berkeley, California, United States of America, 3 Department of Bioengineering, University of California San Diego, La Jolla,

California, United States of America, 4 Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, Minnesota, United States of

America, 5 Department of Bioengineering, QB3: California Institute for Quantitative Biological Research, University of California, Berkeley, California, United States of

America, 6 Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California, United States of America, 7 Department of Electrical and Computer

Engineering, Boston University, Boston, Massachusetts, United States of America

Abstract

Background: Synthetic biological systems are currently created by an ad-hoc, iterative process of specification, design, and
assembly. These systems would greatly benefit from a more formalized and rigorous specification of the desired system
components as well as constraints on their composition. Therefore, the creation of robust and efficient design flows and
tools is imperative. We present a human readable language (Eugene) that allows for the specification of synthetic biological
designs based on biological parts, as well as provides a very expressive constraint system to drive the automatic creation of
composite Parts (Devices) from a collection of individual Parts.

Results: We illustrate Eugene’s capabilities in three different areas: Device specification, design space exploration, and
assembly and simulation integration. These results highlight Eugene’s ability to create combinatorial design spaces and
prune these spaces for simulation or physical assembly. Eugene creates functional designs quickly and cost-effectively.

Conclusions: Eugene is intended for forward engineering of DNA-based devices, and through its data types and execution
semantics, reflects the desired abstraction hierarchy in synthetic biology. Eugene provides a powerful constraint system
which can be used to drive the creation of new devices at runtime. It accomplishes all of this while being part of a larger
tool chain which includes support for design, simulation, and physical device assembly.

Citation: Bilitchenko L, Liu A, Cheung S, Weeding E, Xia B, et al. (2011) Eugene – A Domain Specific Language for Specifying and Constraining Synthetic Biological
Parts, Devices, and Systems. PLoS ONE 6(4): e18882. doi:10.1371/journal.pone.0018882

Editor: Diego Di Bernardo, Fondazione Telethon, Italy

Received August 31, 2010; Accepted March 24, 2011; Published April 29, 2011

Copyright: � 2011 Bilitchenko et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: Synthetic Biology Engineering Research Center (www.synberc.org), the Joint BioEnergy Institute (www.jbei.org), the Coalition to Diversify Computing
(http://www.cdc-computing.org), the Center for Hybrid Embedded Software Systems (CHESS) (http://chess.eecs.berkeley.edu), and the California Institute for
Quantitative Biosciences (http://qb3.org). The funders’ broad goals are reflected in the study design and the types of data collected and analyzed. They did not
have any role in the decision to publish, or in preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: dougd@bu.edu

Introduction

In its development as an engineering field, synthetic biology is at a

stage where encapsulation has been identified as a fundamental

challenge [1], [2], [3], [4]. Encapsulation will enable design re-use,

sharing, and software tool development, all of which greatly

increase synthetic biology’s ability to grow both in complexity and

in community size. Encapsulation has been shown to be very

important in other engineering disciplines [5], [6], [7]. We present

a domain specific programming language called Eugene meant to

encapsulate biological Parts, Devices, and Rules paving the way for

design space exploration, simulation, and automated assembly.

One popular encapsulation view in synthetic biology is that

DNA sequence information can be encapsulated as a Part. Parts

are well defined regarding the way in which they can be physically

composed to create Devices [8], [9]. Parts and Devices then can be

re-used in various designs, thus encouraging the development of

new larger constructs for the community (see Figure 1) [10]. The

process of developing standardized and well-characterized Parts is

a key challenge, and community efforts in this direction have been

undertaken through the BioBricks FoundationTM (http://bbf.

openwetware.org/), the OpenWetWare initiative (http://open-

wetware.org/), and the International Genetically Engineered

Machine (iGEM) competition (http://www.igem.org) [11].

Eugene (a play on the Greek prefix ‘‘eu’’ meaning ‘‘good’’ and

the word ‘‘gene’’) is a human readable, executable specification

[12], which reflects the creation of systems by defining, specifying,

and combining collections of Parts. Eugene is inspired by the

languages of the Electronic Design Automation (EDA) [13], [14]

industry (e.g. Verilog [15] and VHDL [16]) in terms of its ability to

provide a biological design netlist (a collection of components and

their connections). This can be synthesized (automatically trans-

PLoS ONE | www.plosone.org 1 April 2011 | Volume 6 | Issue 4 | e18882



formed) into collections of physical implementations in a design

library [17].

Eugene development has focused on:

1. Flexible Part and Device specification and composition (see

Methods and Supplemental Information).

2. Combinatorial design space exploration of Devices using an

expressive system of Rules [18] (see Results).

3. Interaction with other tools for simulation and automated

assembly (see Results and Figure 2).

This paper is organized around these three areas as shown in

Figure 3.

Methods

Device Specification
Eugene is composed of primitives, constructs, rules, and functions. These

elements are outlined in Table 1 along with a brief explanation. For the

sake of brevity, we cannot cover this material in depth. For more

details, see the Supplemental Information, http://www.eugenecad.org,

and [19], which are devoted to covering Eugene’s inner workings.

To provide the reader with the required understanding of

Eugene, we will step through the creation of a ‘‘T4 Lysis Device

with Pbad as the inducible Promoter’’. This is a standardized

biological part and can be retrieved as BBa_K112809 in the MIT

Registry of Standard Biological Parts (http://partsregistry.org).

Figure 1. Encapsulation based synthetic biology design hierarchy. Shown are the various layers of abstraction at which Eugene operates. DNA
information forms the most basic unit on which everything else is built (e.g. the genetic code, as specified by bases G, A, T, and C). This is followed by
Parts. Parts are non-reducible elements of genetic composition (e.g. promoters, ribosome binding sites, open reading frames, etc). Devices, which can
contain one or more Parts, are the next level in the hierarchy. Finally, Devices are followed by a System view that contains collections of Devices. The
traversal upward in the hierarchy represents an abstraction process while a downward traversal represents the refinement process. Eugene currently
operates at the Part and Device levels via explicit Part and Device data types while encapsulating the DNA level as Eugene Properties.
doi:10.1371/journal.pone.0018882.g001

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 2 April 2011 | Volume 6 | Issue 4 | e18882



Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 3 April 2011 | Volume 6 | Issue 4 | e18882



Before beginning, it should be pointed out that there are two

approaches to design in Eugene:

1. Bottom-Up Design (BUD) – BUD begins with low-level

Properties, creates individual Parts, and then creates Devices.

BUD is how libraries of Parts in Eugene will be created but

requires a very detailed understanding of the system being

created a priori.

2. Top-Down Design (TDD) – TDD begins by specifying the

Devices of interest and then instantiating Parts, and finally

specifying the Properties that make up the Parts. TDD is a very

natural way to design systems, but in the absence of the lower-

level elements the design is incomplete.

Our example follows the TDD paradigm in the interest of

clarity.

Step 1: Specify the Header Files. These files encapsulate

information on libraries of Eugene design elements at your

disposal. Eugene comes with pre-created sample Header Files.

Users can create their own Header Files manually or automatically

(more in the Supplemental Information). Here the Header Files

are divided into categories detailing what they contain. This

separation is not a requirement.

include PropertyDefinition.h, PartDefini-

tion.h, PartDeclaration.h;
Step 2: Specify the Device(s). Devices are collections of 1)

Parts or 2) other Devices. These must be specified in the body of

the Eugene code or in a Header File. Here the Device is composed

of eight Parts (ordered from 59 to 39). This syntax includes the

Device type along with the name (for readability) but the type is

optional (see Supplemental Information for alternate syntax).

Device BBa_K112809(

Promoter BBa_I0500,

ORF BBa_K112805,

ORF BBa_K112806,

Terminator BBa_B0010,

Terminator BBa_B0012,

Promoter BBa_J23116,

ORF BBa_K112807,

Terminator BBa_B0010

);
Step 3: Instantiate the Part(s). This entails specifying the

Property values of the Part(s). This can be done in the main body

of the code or in the Header File. In this case, it will be inside of

PartDeclaration.h. For brevity, we only show the sixth of the eight

parts in the Device. All eight Parts will have to be specified.

Alternate syntax without explicitly assigning values to Properties

exists as well (see Supplemental Information).

Promoter BBa_J23116(.ID("BBa_J23116"),
.Sequence("GATCTttgacagctagctcagtcctagggac-

tatgctagcG"),
.Orientation("Forward"));
Step 4: Declare the Part(s). Parts are collections of

Properties. This again can be captured in Header Files (e.g. in

PartDefinition.h) or in the main body. Here we show all four Part

types in the design. It is the job of the designer to decide which

Properties make up the individual parts. Notice the ‘‘Promoter’’

Part has a Property ‘‘Inducible’’ which can remain unspecified in

Step 3.

Part Promoter(ID, Sequence, Orientation, Indu-
cible);

Part ORF(ID, Sequence, Orientation, CDS);

Part RBS(ID, Sequence, Orientation);

Part Terminator(ID, Sequence, Orientation,
Strength);

Step 5: Declare the Properties. Properties are text,

number, or Boolean values (either arrays or single values). These

represent biological characteristics associated with the design.

They can be manually specified or pulled from repositories (more

in the Supplemental Information).

Property ID(txt);

Property Sequence(txt);

Figure 3. This paper is organized around three sections which reflect a Eugene design flow. The Methods section provides an overview of
how to use Eugene to create a Device using a T4 lysis Device from the MIT parts registry. The Results section illustrates design space exploration with
a Cell Surface Display system from UC Berkeley’s 2009 iGEM team. The Results section also details integration of Eugene with automated assembly in
Clotho for a protein tagging system and simulation via SynBioSS for a repressilator design.
doi:10.1371/journal.pone.0018882.g003

Figure 2. Eugene based synthetic biology design flow. Shown here is the role that Specification, Design, Assembly, and Data can play in
synthetic biology. In particular, we illustrate that Eugene is concerned with the activities at the specification level explicitly but at the same time it is
designed in such a way that it develops designs that are amenable to other pieces of this design flow. Opportunities for the flow to provide feedback
to earlier stages and perform iterative refinement are outlined in red.
doi:10.1371/journal.pone.0018882.g002

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e18882



Table 1. Eugene language elements overview.

Primitives

Name Description Examples

txt txt variables store strings of zero or more characters. txt message = "hello world";
txt sequence = "ACTG";

num num variables store numbers, both integer and floating point num num1, num2;
num1 = 1.0;

boolean boolean values are either true or false. boolean flag = true;

txt[] and num[] txt[] and num[] are arrays of the corresponding singleton primitives. txt[] str_array = ["A", "CG", "T"];
num[] num_array = [1,2,3,4];
num num1 = num_array[0];

Properties

Property Definition Property definitions assign names to possible properties of Parts.
Properties have a name and map to a primitive type.

Property ID(num);
Property sequence(txt);
Property strength(num);

Parts

Part Definition Part definitions define the fields of a type of Part. The fields are defined by
using pre-defined properties.

Part Promoter(ID, sequence, strength);
Part CDS(ID, sequence);

Part Declaration Once a part type is defined, instances of that Part type can
be declared, initialized, and used.

Promoter P1(1, "TATATA", 30);
CDS GFP(1, ‘‘ATG…’’);

Devices

Device Declaration Devices represent a composite Part. They can include both parts and other
Devices as subcomponents. Devices are ordered 59 to 39.

Device BBa_1(P1, GFP);
BBa_1[0]; //References P1

Rules

Rule Declaration Rule declarations use rule operators (such as BEFORE and CONTAINS) to
describe constraints on Devices. Rules need to be declared before they can be used.

Rule R1(P1 BEFORE GFP);
Rule R2(BBa_1 CONTAINS P1);

Assert and Note Once declared, rules can either be asserted or noted. Asserted rules throw an
exception when the rule is not satisfied, while noted rules print an error message.

Assert(R1);
Note(R2);

Header Files

Header files containing predefined properties, Part definitions, and Part declarations in separate files can be imported into a Eugene file.

Utility Functions

print() A simple print function to allow output of data. print("hello world");
print(P1);

permute() Permute creates all the permutations of a given Device. This is done by swapping
out each component part of a Device with other instances of the same Part type.

Device BBa1(P1, GFP);
permute(BBa1);
BBa1_2; //Accesses the 2nd permutation

A short summary of the Eugene language specification is provided. While not a complete explanation, this table highlights key features and shows how the elements
are organized. A complete description of both the language and technology used to implement it can be found at http://www.eugenecad.org. Further examples can be
found in the Supplemental Information.
doi:10.1371/journal.pone.0018882.t001

Figure 4. We illustrate both visually (SBOL visual; http://www.sbolstandard.org) and textually (Eugene code) an example Device
(BBa_K112809) from the MIT registry of standardized parts. Key to notice is the fact that the three included header files encapsulate much of
the design effort leaving a single line to produce the composite Device.
doi:10.1371/journal.pone.0018882.g004

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 5 April 2011 | Volume 6 | Issue 4 | e18882



Property Orientation(txt);

Property CDS(boolean);

Property Strength(num[]);

Property Inducible(boolean);

The final design for BBa_K112809 is shown in Figure 4.

Ten experimentally created Devices representative of MIT’s

Registry of Standard Biological Parts were created to explore the

process of specifying Devices using Eugene. Table 1 in file

Appendix S1 captures this exploration. Specific information on

these Devices and the Eugene code for their designs can be found

in the Supplemental Information.

The purpose of this exercise was to display the significance in

the separation of Part and lower level Property information, which

is hidden in the Header Files, from the Device level construction in

the main Eugene file. As a result of this separation, an average of

85% less code is utilized in the main file. At the same time, the

ratio of DNA base pairs to total lines of code (an average of
139:1) implies the portability of very complex designs to other

tools or systems. Sharing designs becomes much easier, since the

creation of an underlying data structure and programming

interface is achieved automatically when Eugene designs are

interpreted. The design interpretation times are very reasonable

(average of 95.2 ms). We have confidence that as designs move

to encompass tens or hundreds of devices, the interpretation time

will remain very reasonable.

Results

Design Space Exploration
The Methods section illustrates how to specify Devices with

Eugene. This is only one very limited aspect of Eugene. Design

Space Exploration (DSE) is Eugene’s primary task. DSE in this

context consists of two phases:

1. Design Expansion – This phase creates new Devices with

Eugene’s permute function. Permute goes through each of the

individual Parts making up a Device and creates new Devices

with other Part instances of the same type as the original

Device.

2. Design Pruning – This phase systematically reduces the

Devices created with Eugene via the application of Rules.

Rules specify desired Device compositions or Part Properties.

Rules and permute can be combined to prevent certain

permutations.

A cell surface display system built by the UC Berkeley Wetlab 2009

iGEM team went through the DSE process. This cell surface

display system exposes various peptides or proteins to the

extracellular environment by anchoring them to the outer

membrane of E.Coli. The genetic Device for such a system is

composed of three categories of protein domains: passenger domains,

displayer domains, and structural spacer elements. An example of such a

Device is shown in Figure 5. The individual Parts for this Device

are explained briefly in Table 2 in the file Appendix S1.

Design Expansion
There are two types of cell surface display Devices (more details

in the Supplemental Information):

//A passenger/spacer/displayer/terminator
Device

Device DeviceType1 (PassNeedle, SpacerINP,
Disp_upaG, T01);

//Permute this device to switch out each Part
instance

permute(DeviceType1);

//A passenger/displayer/terminator Device

Device DeviceType2 (PassNeedle, Disp_upaG,
T01);

permute(DeviceType2);

These four lines of code generate 540 Devices created from

the basic Parts specified initially in Eugene. Figure 6 illustrates

both how our initial design space consisted of these two devices

created with two lines of code, as well as the increase to 540

Devices with the addition of two permute functions (four lines

total).

Design Pruning
Figure 7 is a heat map showing the results of assaying cell surface

display Devices for functionality depending on the type of

passenger used in the Device. The quantitative data sets from

these assays were normalized to an appropriate control and can be

used to analyze the functionality of each combination of passenger,

displayer, and spacer element.

In order to reduce the design space from the original 540

Devices to the 135 Devices in Figure 7, we added an additional

13 lines of code (Figure 6) composed of Rule statements. The

full list of these statements is in the Supplemental Information and

a sample is provided here:

//Rules forbidding Ag4, Leucine Zipper, and
Cellulase passengers

Rule NoAg4(NOTCONTAINS PassAg4); //Removes 90
Devices

Rule NoLeu(NOTCONTAINS PassLeu); //Removes 90
Devices

Rule NoCell(NOTCONTAINS PassCell); //Removes
90 Devices

//Rules forbidding certain passenger/spacer
combos

//Do this for all 5 spacers; removes 75 devices

Rule NeedleSpacers1-5(PassNeedle NOTWITH
SpacerY);

Figure 5. Illustration of the ‘‘cell surface display’’ Device case
study. Here are shown the three Part types (passengers, spaces, and
displayers) which when combined into a Device made up the systems
that we explored. As shown the displayer interacts with the outer
membrane of the bacterial cell to display the passenger protein
extracellularly. Table 2 in file Appendix S1 provides more information on
this system.
doi:10.1371/journal.pone.0018882.g005

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 6 April 2011 | Volume 6 | Issue 4 | e18882



//Do this for all spacers but INP repeats;

removes 60 devices

Rule StrepSpacers1–4(PassStrep NOTWITH

SpacerY);

Assert(NoAg4 AND NoLeu AND NoCell AND Needle-

Spacers1–4 AND StrepSpacers1–4);

We next reduced these Devices to six sets of fifteen Devices (90
total). These sets were combinations of three types of passengers,

Figure 6. Device exploration and pruning capabilities with Eugene. This graph shows how the number of Devices created with Eugene can
change with the addition of rule statements. The change in many cases can be quite dramatic with relatively few lines of code (new rules). For
example with just two lines of code the initial design space explodes from two devices to 540. Then with 13 additional lines, it drops to 135 Devices.
Finally, a design space of three Devices can be achieved by a total addition of 28 lines of code while still maintaining the original information to
specify 540 Devices.
doi:10.1371/journal.pone.0018882.g006

Figure 7. A heat map depicting the functionality of the cell surface display Devices, where the white constructs had the highest
signal of functionality. This data was used to determine which Devices could be considered functional and which were not. This analysis helped to
drive the development of the Eugene code. The overlaid annotations reflect a reduced heat map. This shows how Devices can be removed with the
targeted application of Eugene rules. The entire design space of 90 Devices is a reduction from the original heat map’s 135 Devices. Each area is
labeled with the rules that affect the creation of these Devices. Rules 1-4 deal with the removal of Devices while Rules 5–6 preserve the final three
highly active Devices. The x-axis is displayer domain parts and the y-axis is protein/spacer combinations.
doi:10.1371/journal.pone.0018882.g007

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 7 April 2011 | Volume 6 | Issue 4 | e18882



fifteen displayers, and three spacers. This reduction required the

following four lines:

//Removes 45 Devices in 4 lines

Rule MgfpSpacers1(PassMgfp NOTWITH SpacerGly-
Ser);

Rule MgfpSpacers2(PassMgfp NOTWITH SpacerGfp-
Iva);

Rule StrepSpacers5(PassStrep NOTWITH Space-
rINP);

Assert(MgfpSpacers1 AND MgfpSpacers2 AND
StrepSpacers5);

To remove the inactive Devices (dark areas on Figure 7), we add

the following four lines to reduce the space to 61 Devices:

Rule Rule1((PassMgfp WITH SpacerBeta-Roll) OR
(PassMgfp WITH SpacerBeta-Helix) OR (PassMgfp
WITH SpacerINP)); //Removes 15 Devices

Rule Rule2((PassStrep WITH Disp_Vta) OR (Pass-
Strep WITH Disp_ehaB) OR (PassStrep WITH
Disp_CPG6) OR (PassStrep WITH Disp_AIDA)); //
Removes 11 Devices

Rule Rule3((PassNeedle NOTWITH Disp_cl) AND
(PassNeedle NOTWITH Disp_Pcryo) (PassNeedle
NOTWITH Disp_CPG6)); //Removes 3 Devices

Assert(Rule1 AND Rule2 AND Rule3);

To prune the entire lower half of Figure 7, only one line is

required. There are no highly active Devices in this region. This

removes the need for Rule 1 for a net gain of 0 lines of code and

leaves 16 Devices.

Rule Rule4(NOTCONTAINS PassMgfp);

Finally, to reduce the design space to only the 3 most active
Devices, we add 3 lines of code.

//Removes all but the last 3 Devices

Rule Rule5((PassStrep WITH Disp_CPG6) OR
(PassStrep WITH Disp_AIDA));

Rule Rule6(PassNeedle WITH Disp_upaG);

Assert (Rule5 AND Rule6);

With more data on these Parts, such as molecular weight, shape,

efficiency, and data relevant to surface displayers, we could create

more informative Properties. This would lead to more detailed,

powerful rules in the future. These rules would allow more specific

pruning of the combinatorial space, and the ease and specificity of

the reduction would be greater still.

Assembly and Simulation Integration
As shown, Eugene ultimately produces collections of Devices

which both adhere to specific constraints and encapsulate Parts

and Properties. There are two natural next steps in the design

process:

1. Automated Assembly – 1) Determine an optimal global

assembly strategy for all Devices [20]. 2) Create assembly files

for a liquid handling robotic platform [21].Figure 8 illustrates

this design flow. This was carried out with the help of Clotho

[22], [23], (http://www.clothocad.org).

2. Simulation – Convert the underlying Eugene data structures to

an exchange format for external simulation programs. We

illustrate this process with the Synthetic Biology Software Suite

(SynBioSS) [24].

Automated Assembly
We created a ‘‘protein tagging’’ (PT) system which uses

combinatorial tagging of ORFs to optimize protein expression

and purification, and test protein-protein interactions, by quickly

creating iterations of functional designs. Our PT systems consisted

of the components types in Table 3 in file Appendix S1.

Devices were created so that each Device would encode two

different ORFs where each was tagged with a different tag, either on

the N- or C-terminus of the ORF. Tags were always separated from

ORFs by a protease cleavage site (such that tags and ORFs can be

physically separated from each other). Thus, each ORF-tag combo is

made of three basic parts (one ORF, one tag, and one cleavage site

between them). Therefore, a two ORF-tag architecture contains six

basic parts. Since proper protein expression of a Device also requires

a promoter and a terminator, each Device consists of eight basic parts

in total (the six above, plus a promoter, plus a terminator). In all cases,

the first Part is always a promoter, and the last Part is always a

terminator. The order of the six middle Parts varies according to the

desired topology of the ORF-tag combos. Figure 8 shows an example

PT Device topology and sample Eugene code follows:

//Topology 1: Two nTag configuration

Device deviceTypeNN(P, nTag, CS, OS, nTag, CS,
OS, T);

//Topology 2: Two cTag configuration

Device deviceTypeCC(P, RSO, CS, cTag, RSO, CS,
cTag, T);

//Topology 3: cTag then nTag configuration

Device deviceTypeCN(P, RSO, CS, cTag, nTag,
CS, OS, T);

//Topology 4: nTag then cTag configuration

Device deviceTypeNC(P, nTag, CS, OS, RS0, CS,
cTag, T);

These four Device types result in 2304 Devices using Eugene’s

permute function. We next use Rules to prevent the same antibody

type of nTag or cTag from appearing in a Device. These Rules

take three forms (where X is the specific tag antibody from the 12

different Part choices):

//These rules prevent specific tag combina-
tions

Rule r1a(ctagX NOTWITH ntagX); //for CN and NC
type Devices

Rule r1b(ctagX NOTMORETHAN once); //for CC
type Devices

Rule r1c(ntagX NOTMORETHAN once); //for NN
type Devices

This reduces the number of Devices to 2112 Devices. We were

only interested in Devices with distinct protein-tag set combina-

tions. This is a total of 528 Devices. See the Supplemental

Information for the complete Eugene code.

Automated assembly for Eugene based Devices occurs as follows

(Figure 8):

1. Create Device specifications in Eugene using Header Files

created by a Clotho compatible database.

2. Use a Clotho App (e.g. Spectacles [25] or Eugene Scripter) to

read in the Eugene code.

3. Clotho assembly algorithms [20] produce files for liquid handling

robot based on information provided by the Clotho connection to

the database (e.g. well location, sample volume, etc).

The assembly was carried out in 3 separate rounds (or stages) of

assembly. In stage 1, we used 31 basic Parts to assemble 56

composite Parts (made of 2 basic Parts each). In stage 2, we used

the Parts made in stage 1 to assemble 48 composite Parts (made of

4 basic Parts each). In the final stage, we used the Parts made in

stage 2 to assemble 528 composite Parts (made of 8 basic Parts

each). All 528 bi-cistronic operons contained a total of 3696

junctions between parts, out of which 632 were unique. Assuming

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 8 April 2011 | Volume 6 | Issue 4 | e18882



$3 a Part junction and an amortized time of 10 minutes per part

junction, we estimate that this saved around $9000 ($11,088-

$1,896 = $9,192) and 500 hrs (36,960 min-6,320 min = 510 hrs).

This is considering that the 528 constructs made contained a total

of 3696 junctions between Parts, but of those only 632 were made

since unique junctions only need to be made once.

Simulation
For simulation, we chose to look at a classic genetic regulatory

network, namely a ‘‘repressilator’’ [26]. The example repressilator used

here is based on a lac-tet-ara oscillatory network examined by Tuttle

et al [27]. The overall behavior is that LacI represses the expression of

TetR, which represses the expression of AraC, which in turn represses

expression of LacI. See Figure 9 for an illustration of a repressilator. We

decided to examine a repressilator because its behavior is well

understood and it can be composed of primitive parts. It also provides a

point of comparison with other tools in the literature (e.g. GEC [28]).

SynBioSS is a software suite for the generation, storage, and

quantitative simulation of synthetic biological networks. One

component of this software suite, called SynBioSS Designer, uses

biological rules to create a reaction network given a series of

biological parts, such as promoters and ribosome binding sites, and

the spatial and temporal connectivity of these parts [29]. This

reaction network represents the transcription, translation, and

regulation occurring in the system. SynBioSS Designer outputs

this reaction network as either a NetCDF or SBML file to be used

in simulation software of the user’s choice. We use SynBioSS for
this investigation but Eugene could be used with a
variety of simulation tools (e.g. Tinkercell [30]).

The Eugene code for this design is provided in the Supplemental

Information. We provide a small sample here to give the reader a

feel for some key elements of the repressilator design.

The following Property definitions form the pool of parameters

to be associated with Parts in the repressilator:

Property Sequence(txt); //The DNA sequence for the part

Property Neg35StartEnd(txt); //Promoter in-
formation
Property Neg10StartEnd(txt); //Promoter in-

formation
Property OperatorSites(txt[]); //An array of

promoter information
Property Corresponding Protein(txt); //Which

protein the part produces
Property ProteinBindingInfo(txt); //Protein

interaction information
The following Part definitions form the set of Part types in the

repressilator and the Properties associated with them:

Part Promoter(Sequence, Neg35StartEnd, Neg10-
StartEnd, OperatorSites, OperatorSiteLocations);

Part RBS(Sequence);
Part CodingDNA(Sequence, CorrespondingProtein,

ProteinBindingInfo);
Part Terminator(Sequence);
The following example Part declarations specify the actual

physical Parts in the repressilator:

Promoter araP(); //lacI and tetR promoters
created as well
RBS rbs1(); //two other RBS created as well
CodingDNA DNAlac(); //tetR and araC ORFs created

as well
Terminator term1();

The following rules constrain Devices to use Parts in such a way

to give rise to the repressilator behavior:

Rule promoterToCoding1(araP BEFORE DNAlac);

Figure 8. Illustration of an automated assembly flow beginning with a Eugene file for a protein tagging (PT) Device with nTag and
cTag Parts. This shows the eight Parts that make up the Device and the order in which the Parts must be assembled to have a functional Device. In
the Eugene import process, the Devices of interest are captured with Eugene and processed by a Clotho App (e.g. Spectacles). Later the Device
construction is planned for a specific assembly protocol with the creation of an assembly graph. In the final phase, the files for a liquid handling robot
are created and fed to the platform doing the assembly.
doi:10.1371/journal.pone.0018882.g008

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 9 April 2011 | Volume 6 | Issue 4 | e18882



Rule promoterToCoding2(lacP BEFORE DNAtet);
Rule promoterToCoding3(tetP BEFORE DNAara);
Assert(promoterToCoding1 AND promoterToCod-

ing2 AND promoterToCoding3);
Finally, the repressilator Device is declared with the specific

ordering of these Parts:

Device Repressilator(araP, rbs1, DNAlac, term1,
lacP, rbs2, DNAtet, term2, tetP, rbs3, DNAara,
term3);

SynBioSS Designer loads this Eugene code for simulation.

Specifically, Designer uses SimpleXML to load the XML

produced as an artifact of Eugene interpretation. SimpleXML

is a PHP extension which converts XML to an array with the

same structure as the original XML. This array is then

manipulated to have a structure compatible with all of

Designer’s algorithms. A diagram of this design flow is shown

in Figure 9.

Discussion

Eugene is a language in development. We have illustrated a very

brief snapshot of its capabilities. Here are future directions for the

language:

Control Flow Extensions – It will be important to incorporate other

control statements into Eugene. The language will require the

ability to systematically iterate through lists, which can be achieved

through loops. This will be useful when different combinations of

Parts or Devices need to be traversed and some operations on

them performed.

Functional Extensibility - The user should have the ability to create

custom functions as well. This mechanism could resemble other

imperative programming languages. This process would introduce

the importance of scope in variables and instances, since functions

should only apply to specific scoped instances of variables.

Currently, all variable instances in a file can be accessed globally.

Figure 9. High-level diagram of a repressilator as well as its Eugene implementation. Here the relationship between LacI, TetR, and AraC
and the promoters in the system is shown. This design was chosen since its behavior is well understood and can be easily decomposed into the
individual Parts that make up the Device. The SynBioSS design flow with Eugene is also shown. Beginning with the Eugene XML produced by the
Eugene interpreter, SimpleXML creates an array which holds the data from Eugene. After a reorganization process the data can now be transformed
by SynBioSS into a reaction network in SBML or NetCDF which can then be simulated. Sample of the reaction network generated by SynBioSS
Designer is also provided. These reactions describe the unregulated expression of TetR, as well as its dimerization and degradation. All rate laws are
elementary and all kinetic data is in SI units unless otherwise noted. Asterisks indicate gamma-distributed reactions.
doi:10.1371/journal.pone.0018882.g009

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 10 April 2011 | Volume 6 | Issue 4 | e18882



Explicit Database Support - Another potential strength in a

language like Eugene is the direct access to a database of Parts.

By providing an explicit function to connect to a specified

database, we would certainly give more expressional power to the

language. Currently, database access is performed outside of

Eugene by translating XML information from the database to

Eugene code.

Abstraction Level – Currently, the highest level in the design

hierarchy is the ‘‘Device Level’’. Ideally, we would like to extend

Eugene to contain Systems and the ability to operate on such a

level by providing built-in functions, which will depend on new

assembly standards.

Constraint Scope – Currently, rules are based on Part instances but

not Part definitions. For example, a rule will be based on Promoter

P1 but not across all Promoters. In many cases, it would be much

more appropriate to apply rules to Part definitions to not only save

on programming effort but also increase the expressiveness of the

constraint system.

Constraint Application – Currently, rules are applied to Device

composition. However, if one wanted to make a rule regarding two

Devices, this is currently not possible. The introduction of a

‘‘System’’ level of abstraction with System level wide rules could

address this.

We also are aware that there are a number of existing languages

and tools in this domain. In particular, we consider comparisons to

Systems Biology Markup Language (SBML) [31], Antimony [32],

GenoCAD [33], Genetic Engineering of living Cells (GEC) [28],

Proto [34], Tinkercell [30],and CellML [35] particularly relevant.

In the Supplemental Information we address these comparisons

directly. Broadly speaking, we feel Eugene offers certain

advantages in the areas of flexibility, ease of use, interoperability

with other tools, reflection of synthetic biology design flows, and

extensibility.

Summary
We have introduced the Eugene programming language for

synthetic biology. In particular, we have illustrated flexible Part

and Device specification and composition, combinatorial design

space exploration of Devices using an expressive system of Rules,

and interaction with other tools for simulation and automated

assembly. We have also provided ample Supplemental Materials

with comparisons to other approaches, additional information

regarding our results, a complete set Eugene designs, and more

information regarding how to write Eugene programs.

Availability
Eugene is available at http://www.eugenecad.org . This is an

open source project covered broadly under a BSD general license.

The download includes all the examples provided here along with

documentation regarding how to use the tool. In addition the

grammar file used to create Eugene is available as well. It requires

Java 6 (http://java.sun.com/javase/6) to run. We encourage

questions and comments.

Eugene is most effectively used with other tools as illustrated in

this paper. Clotho is available at http://www.clothocad.org . It too

is an open source project under BSD. We highly recommend

Notepad++ for the creation of Eugene files and we provide a

Notepad++ syntax highlighter with the Eugene download. You

can get Notepad++ at http://sourceforge.net/projects/notepad-

plus/. SynBioSS is available at http://synbioss.sourceforge.net .

Supporting Information

Appendix S1

(DOC)

Acknowledgments

We thank the following people for making this work possible: the UC

Berkeley 2009 computational iGEM team (Joanna Chen, Richard Mar,

Thien Nguyen, and Nina Revko), the UC Berkeley 2009 experimental

iGEM team (Jenn Brophy, Susan Chen, Elicia Farrar, Gabriela Guzman,

Patrick Harrigan, Tom Huffaker, Terry Johnson, Joseph Silo, Matthew

Walters, John Wang and Lane Weaver), Josh Kittleson, Tim Hsiau, the

SBOL Visual team (Cesar Rodriguez, Suzie Bartram, Anusuya Ramasu-

bramanian, Drew Endy), the JBEI Registry Team (Nathan Hillson, Tim

Ham, Zinovii Dmytriv), and the CIDAR Team (Traci Haddock, Roza

Ghamari in particular). In addition, the following people provided valuable

input during development of Eugene: Paul Hilfinger (consulted on initial

Eugene design), Jacob Beal and Ron Weiss.

Author Contributions

Conceived and designed the experiments: LB AL SC BX ML EW JCA

DMD. Performed the experiments: LB AL SC BX EW ML. Analyzed the

data: LB SC EW ML. Contributed reagents/materials/analysis tools: JCA

DMD. Wrote the paper: LB AL SC EW BX DMD.

References

1. Endy D (2005) Foundations for engineering biology. Nature 438: 449–453.

2. Lucks JB, Qi L, Whitaker WR, Arkin AP (2008) Toward scalable parts families

for predictable design of biological circuits. Curr Opin Microbiol 11: 567–573.

3. Arkin A (2008) Setting the standard in synthetic biology. Nat Biotechnol 26:

771–774.

4. Purnick PE, Weiss R (2009) The second wave of synthetic biology: from modules

to systems. Nat Rev Mol Cell Biol 10: 410–422.

5. Stevenson D (1981) A Proposed Standard for Binary Floating-Point Arithmetic.

Computer 14: 51–62.

6. Bickford JH, Nassar S (1998) Handbook of bolts and bolted joints. New York: M.

Dekke. pp x, 911.

7. Karwowski W (2006) Handbook on standards and guidelines in ergonomics and

human factors. Mahwah, N.J.: Lawrence Erlbaum Associates. pp xvii, 623.

8. Canton B, Labno A, Endy D (2008) Refinement and standardization of synthetic

biological parts and devices. Nat Biotechnol 26: 787–793.

9. Gardner TS, Cantor CR, Collins JJ (2000) Construction of a genetic toggle

switch in Escherichia coli. Nature 403: 339–342.

10. (2009) What’s in a name? Nature Biotechnology 27: 1071–1073.

11. Smolke CD (2009) Building outside of the box: iGEM and the BioBricks

Foundation. Nat Biotechnol 27: 1099–1102.

12. Scott ML (2009) Programming language pragmatics. Amsterdam; Boston:

Elsevier/Morgan Kaufmann Pub. pp xxx, 910.

13. Keutzer K, Malik S, Newton AR, Rabaey JM, Sangiovanni-Vincentelli A (2000)

System-level design: Orthogonalization of concerns and platform-based design.

Ieee Transactions on Computer-Aided Design of Integrated Circuits and

Systems 19: 1523–1543.

14. Sangiovanni-Vincentelli A (2007) Quo vadis, SLD? Reasoning about the trends

and challenges of system level design. Proceedings of the Ieee 95: 467–

506.

15. Palnitkar S (2003) Verilog HDL: a guide to digital design and synthesis. Upper

Saddle River, NJ: SunSoft Press. pp xlii, 450.

16. Ashenden PJ (2008) The designer’s guide to VHDL. Amsterdam; Boston:

Morgan Kaufmann Publishers. pp xxii, 909.

17. Chinnery D, Keutzer KW (2002) Closing the gap between ASIC & custom: tools

and techniques for high-performance ASIC design. Boston: Kluwer Academic

Publishers. pp xiv, 407.

18. Densmore D, Kittleson JT, Bilitchenko L, Liu A, Anderson JC Rule based

constraints for the construction of genetic devices. pp 557–560.

19. Bilitchenko L, Liu A, Densmore D (2011) The Eugene Language for Synthetic

Biology V0.03b User’s Manual and Examples. Methods in Enzymology.

20. Densmore D, Hsiau TH, Kittleson JT, DeLoache W, Batten C, et al. Algorithms

for automated DNA assembly. Nucleic Acids Res 38: 2607–2616.

21. Leguia M, Brophy J, Densmore D, Anderson JC (2011) Automated assembly of

standard biological parts. Methods in Enzymology.

22. Densmore D, Devender AV, Johnson M, Sritanyaratana N (2009) A platform-

based design environment for synthetic biological systems. The Fifth Richard

Tapia Celebration of Diversity in Computing Conference: Intellect, Initiatives,

Insight, and Innovations Portland, Oregon: ACM.

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 11 April 2011 | Volume 6 | Issue 4 | e18882



23. Bhatia S, Xia B, Bubenheim B, Dadgar M, Douglas D, et al. (2011) Clotho: A

Software Platform for the Creation of Synthetic Biological Systems A
Developer’s and User’s Guide for Clotho v2. Methods in Enzymology.

24. Hill AD, Tomshine JR, Weeding EM, Sotiropoulos V, Kaznessis YN (2008)

SynBioSS: the synthetic biology modeling suite. Bioinformatics 24: 2551–2553.
25. UC Berkeley 2009 iGEM Software Team.

26. Elowitz MB, Leibler S (2000) A synthetic oscillatory network of transcriptional
regulators. Nature 403: 335–338.

27. Tuttle LM, Salis H, Tomshine J, Kaznessis YN (2005) Model-driven designs of

an oscillating gene network. Biophys J 89: 3873–3883.
28. Pedersen M, Phillips A (2009) Towards programming languages for genetic

engineering of living cells. J R Soc Interface 6(Suppl 4): S437–450.
29. Weeding E, Houle J, Kaznessis YN (2010) SynBioSS designer: a web-based tool

for the automated generation of kinetic models for synthetic biological
constructs. Briefings in Bioinformatics.

30. Chandran D, Bergmann FT, Sauro HM (2009) TinkerCell: modular CAD tool

for synthetic biology. J Biol Eng 3: 19.

31. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, et al. (2003) The systems

biology markup language (SBML): a medium for representation and exchange of

biochemical network models. Bioinformatics 19: 524–531.

32. Smith LP, Bergmann FT, Chandran D, Sauro HM (2009) Antimony: a modular

model definition language. Bioinformatics 25: 2452–2454.

33. Czar MJ, Cai Y, Peccoud J (2009) Writing DNA with GenoCAD. Nucleic Acids

Res 37: W40–47.

34. Beal J, Bachrach J (2008) Cells Are Plausible Targets for High-Level Spatial

Languages. Second IEEE International Conference on Self-Adaptive and Self-

Organizing Systems Workshops. pp 284–291.

35. Lloyd CM, Halstead MD, Nielsen PF (2004) CellML: its future, present and

past. Prog Biophys Mol Biol 85: 433–450.

Eugene - Synthetic Biology Design Language

PLoS ONE | www.plosone.org 12 April 2011 | Volume 6 | Issue 4 | e18882


