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Abstract

Background: The evolution of eukaryotic cells is widely agreed to have proceeded through a series of endosymbiotic events
between larger cells and proteobacteria or cyanobacteria, leading to the formation of mitochondria or chloroplasts,
respectively. Engineered endosymbiotic relationships between different species of cells are a valuable tool for synthetic
biology, where engineered pathways based on two species could take advantage of the unique abilities of each mutualistic
partner.

Results: We explored the possibility of using the photosynthetic bacterium Synechococcus elongatus PCC 7942 as a platform
for studying evolutionary dynamics and for designing two-species synthetic biological systems. We observed that the
cyanobacteria were relatively harmless to eukaryotic host cells compared to Escherichia coli when injected into the embryos
of zebrafish, Danio rerio, or taken up by mammalian macrophages. In addition, when engineered with invasin from Yersinia
pestis and listeriolysin O from Listeria monocytogenes, S. elongatus was able to invade cultured mammalian cells and divide
inside macrophages.

Conclusion: Our results show that it is possible to engineer photosynthetic bacteria to invade the cytoplasm of mammalian
cells for further engineering and applications in synthetic biology. Engineered invasive but non-pathogenic or
immunogenic photosynthetic bacteria have great potential as synthetic biological devices.
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Introduction

While the evolution of cooperation and altruism are often seen

as paradoxical events in the course of natural selection,

endosymbiosis has been recognized as a driver of evolutionary

change. Not only has gene exchange been observed between hosts

and symbionts [1], but the development of communities suitable to

new ecological niches [2] and even the origin of the eukaryotic

kingdom hinge on symbiotic collaborations [3,4]. Modern

endosymbiotic relationships between bacteria and eukaryotic

organisms reflect a remarkable diversity in how widely disparate

species can interact in positive ways, from nutritional symbiosis

between Buchnera and aphids [5], to nitrogen fixation by Rhizobia in

plant root nodules [6] and photosynthetic symbiosis between algal

chloroplasts and sea slugs [7].

Cooperative behavior and symbiotic relationships are wide-

spread in nature and have recently begun to be exploited in

synthetic biological networks of increasing complexity [8]. Multi-

component synthetic-ecological systems have been developed for

hydrogen production through metabolic engineering [9] and for

the production of other useful metabolites [10]. Communication

between cells has also been engineered for multiple applications,

including pattern formation [11] and oscillators [12]. Engineered

communities have also been useful as a generalized model of

cooperation and competition in microbial populations [13,14] and

two-species metabolic modeling has been used in the identification

of cooperating variants of E. coli [15]. While invasive bacteria have

been explored as tools for synthetic biology and targeted tumor

killing bacteria [16], neutral or beneficial endosymbiosis has not

been pursued.

There is a fine line between the pathological and beneficial in

natural endosymbiotic events. Many endosymbiotic relationships

that exist in nature are hypothesized to have begun through the

acquisition of resistance to predation— bacterial resistance to

lysosomal digestion by amoeba after phagocytosis or eukaryotic

resistance to bacterial infection after intracellular invasion [17].

Replicating these events in the laboratory may lead to a partial

endosymbiosis. Symbiosis is generally thought to refer to a

mutualistic relationship where both partners benefit, but the term

can be construed rather broadly; Lynn Margulis paraphrases de

Bary’s 1879 definition of symbiosis as simply the ‘‘protracted

physical associations among organisms of different species, without

respect to outcome.’’ [18] We explored three paths for entry of

photosynthetic bacteria into animal cells that would satisfy this

broad definition of symbiosis (figure 1)—direct microinjection into

zebrafish embryos to explore the in vivo dynamics in a whole
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animal model, engineering with invasin from Y. pestis (inv) and

listeriolysin O from L. monocytogenes (llo) to allow invasion of

mammalian endothelial cells, and endocytosis of inv and llo

engineered strains by macrophages. Invasin is a bacterial surface

protein that interacts with mammalian b1-integrins and causes

uptake of the bacterial cells, while listeriolysin O is a hemolysin

that disrupts the endosomal membrane and allows bacteria to

enter the mammalian cytoplasm post-uptake.

Invasive bacteria cause several deadly infectious diseases in

humans, caused by intracellular pathogens such as Y. pestis, L.

monocytogenes, and enteroinvasive E. coli [19]. Recent work in

biological engineering and synthetic biology has focused on the

development of non-infectious but invasive and deadly bacteria

that target and destroy only specific cell types for disease

treatment, particularly cancer [20], or for delivery of peptide

[21] or nucleotide based vaccines [22] and RNA interference gene

therapy [23].

Macrophages can take up and phagocytose many different

species of bacteria. However, most species of bacteria, including

many pathogens, are unable to replicate in the cytoplasm of

mammalian cells, and the precise mechanism of growth inhibition

is unknown and a matter of controversy [24]. In contrast, non-

pathogenic Bacillus subtilis expressing heterologous hemolysin has

been shown to escape phagosome digestion by macrophages and

divide in the mammalian cytoplasm [25]. However, microinjection

studies have found that only those species that naturally divide in

the cytoplasm were able to replicate upon injection into

mammalian cells, with even intravacuolar pathogens unable to

divide in the cytoplasm [26]. To our knowledge, such experiments

have not been attempted with photosynthetic bacteria or other

autotrophs.

Nearly eighty years ago, photosynthetic algae were explored as

symbionts for cells grown in tissue culture, as a method for

renewing and replenishing growth media with oxygen and

nutrients while removing waste products and carbon dioxide

[27,28]. More recently, photosynthetic symbiosis in tissue culture

was explored as a method for understanding the nutritional

requirements of host and symbiont [29]. We sought to explore the

behavior of the photosynthetic bacteria Synechococcus elongatus inside

eukaryotic cells as a platform for engineered photosynthetic

endosymbiosis and found that cyanobacteria have little apparent

effect on their host cells and can divide in the macrophage

cytoplasm. Further engineering of metabolite production and

secretion [30] in such endosymbiotic strains has the potential to

lead to true mutualistic relationships between photosynthetic

bacteria and mammalian cells, essentially creating artificial,

engineerable, animal chloroplasts.

Materials and Methods

Cells and media
E. coli DH5a was used for all plasmid manipulation using

standard procedures. S. elongatus PCC 7942 was cultured in BG-11

medium [31] at 30uC and illuminated by strong light. CHO and

J774 cells were maintained using standard procedure in F-12

medium (Invitrogen) for CHO cells and RPMI 1640 medium

(Invitrogen) for J774 cells. All media contained L-glutamine and

were supplemented with 10% FBS (HyClone) and 1% Penicillin/

Streptomycin Mix (Invitrogen). For culturing cells during

infections outside of the controlled 5% CO2 atmosphere,

Leibovitz’s L-15 medium without phenol red (Invitrogen) was

used for all cell lines, supplemented with 10% FBS for all cell types

and 0.069 mg/ml proline for CHO cells.

Plasmids and DNA construction
The invasin gene from Yersinia pestis (inv) was subcloned from the

pAC-TetInv plasmid [16] provided by Chris Voigt (University of

California, San Franscisco) and listeriolysin O (llo) was amplified

from Listeria monocytogenes genomic DNA provided by Heather

Kamp (Harvard Medical School, Boston MA). Invasin DNA was

amplified with primers adding a SpeI site upstream (59-CGCAAC-

TAGTATGGTTTTCCAGCCAATCAG-39) and NotI and XbaI

sites downstream (59-CTGCAGCGGCCGCTAGCTCTAGAT-

TATATTGACAGCGCACAGA-39) Listeriolysin was amplified

with primers adding a SpeI site, a ribosome binding site, and a

short spacer for cloning downstream of invasin (59-CGCAACTAG-

TAGGAGGAAAAACATATGAAAAAAATAATGCTAGTTTT-39)

and NotI and XbaI site downstream (59-CTGCAGCGGCCGCT-

TCTAGATTATTCGATTGGATTATCTA-39). Invasin and lis-

teriolysin were then sequentially subcloned into the pNS3 vector for

homologous recombination into Synechococcus neutral site 3 [30].

The pNS3-invllo vector was incubated overnight in the dark

with a culture of S. elongatus PCC 7942 cells washed in 10 mM

NaCl, and integration into the neutral site was selected using

BG11 plates containing 1.5% Noble Agar and 12.5 mg/ml

chloramphenicol. Expression of invasin and listeriolysin was

induced with 100 mM IPTG for 24 hours.

Zebrafish injection
Zebrafish embryos in the one-cell stage were injected with a

solution containing mRNA for expression of membrane GFP

(mGFP) and bacteria. Needles were pulled on a Sutter P2000 laser

needle puller from Drummond glass capillary tubes. Eggs were

injected with 2.3 nl of injection solution using a Nanoject. The

injection solution consisted of injection buffer (50 mM NaCl,

Figure 1. Three paths to endosymbiosis used in this study. A.) Direct microinjection of S. elongatus into zebrafish embryos allow exploration
of in vivo dynamics of bacteria inside animal cells. B.) Invasion of mammalian cells through heterologous expression of invasin and listeriolysin O. C.)
Phagocytosis of bacteria by macrophages. Bacteria subsequently escape from the endosomal compartment through expression of listeriolysin O.
doi:10.1371/journal.pone.0018877.g001
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1 mM Tris pH 8, 0.1 mM EDTA and 0.1% Phenol Red) and

contained 40 ng of mGFP mRNA and 1 ml of a saturated bacterial

suspension per 10 ml of injection solution. The bacterial suspension (S.

elongatus or E. coli) was prepared by spinning down 1 ml of an

overnight E. coli culture or a dense 24–48 h old, exponentially

growing S. elongatus culture. The cells were resuspended in 1 ml of

injection buffer without Phenol Red and again pelleted. The

supernatant was removed; the cells were mixed and always used

fresh for the injections.

Embryos were raised in egg water (0.3 g/L Instant Ocean,

75 mg/L CaSO4) slightly shaded from the light in the cyano-

bacterial incubator at 30uC. Egg water was changed as needed. To

follow individual embryos over time, the embryos were separated

from each other in 12-well plates.

Development of the embryos injected with bacteria was

monitored with a fluorescence dissecting microscope. For confocal

imaging the embryos were dechorionated and placed in imaging

molds made from 1% (w/v) agarose in egg water. Mounted embryos

were imaged in an upright Zeiss LSM 710 confocal microscope.

The embryo was submerged in eggwater containing 16 Tricaine

solution (106Tricaine solution: 0.1% (w/v) Tricaine and 10 mM

Tris in egg water adjusted to pH 7 with NaOH) for anesthetization.

All of our zebrafish protocols were approved by the Harvard

Medical School (HMS) Office for Research Subject Protection and

the HMS Standing Committee on Animals (IACUC Approval

Number 04487).

Mammalian cell invasion assay
For infections of mammalian cells with bacteria, induced

bacteria were washed and transferred from their culture medium

into PBS (137 mM NaCl, 2.7 mM KCl, 10 mM Na2HPO4,

2 mM KH2PO4). Bacterial suspensions in PBS were set to the

same OD and 100 ml of this suspension were added per 2 ml of

cell culture medium per well of 12-well tissue culture dishes

containing the mammalian cells. L-15 medium during the

infection did not contain antibiotics. After the treatment of the

cells with S. elongatus for 3 hours to overnight, the cells were

washed with PBS three times and the medium was replaced by L-

15 containing 100 mg/ml gentamicin, an antibiotic that does not

cross the mammalian cell membrane. During and after infections

of the mammalian cells with bacteria, the cultures were kept at

30uC in atmospheric CO2 levels. For S. elongatus, cells were

illuminated with fluorescent lamps from both sides of the tissue

culture plate.

For time-course of S. elongatus infection in macrophages, 10,000

J774 cells were plated per well of a 96-well plate in L-15 media

and were allowed to attach to the bottom overnight at 37uC in the

dark. Following attachment, 10 microliters of wild type or inv/llo

engineered S. elongatus diluted to OD750 of 0.025–0.4 in PBS

(corresponding to approximately ,1 bacteria per macrophage to

.4 bacteria per macrophage) were added to each well and

incubated at 30uC in the light for six hours. Each well was then

washed in PBS and the media was replaced with L-15 containing

100 mg/ml gentamicin and plates were incubated at 30uC in the

light. One plate was removed every 24 hours and cells were fixed

in 3% paraformaldehyde, cells were permeablized in 0.01%

Triton-X in PBS and stained with DAPI. Plates were stored at 4uC
in the dark and imaged at the same time using fluorescence

microscopy.

FACS analysis of mammalian cells with intracellular
bacteria

After 24 hour infection, CHO cells were washed in PBS,

trypsinized, and resuspended in FACS buffer (PBS supplemented

with 1%FBS). Cells were sorted with a BD FACSAria cell sorter

based on red channel fluorescence. Cells positive for red

fluorescence were gently reattached to glass-bottomed tissue

culture dishes with concanavalin A and imaged with confocal

microscopy.

Results

Zebrafish embryos injected with S. elongatus hatch and
thrive

Photosynthetic symbiosis exists in several underwater species,

such as the sea slug Elysia chlorotica, which incorporates the

chloroplasts from algae that it feeds on into the cells of its

intricately branched digestive system, allowing it to survive for

months photoautotrophically [7]. While such a complex symbiotic

relationship likely evolved over much longer time scales, we were

interested in replicating the first step of an underwater photosyn-

thetic symbiosis and exploring the in vivo dynamics of photosyn-

thetic bacteria in a developing animal. We chose zebrafish

embryos as they are easy to microinject, well studied, and are

clear, allowing light to penetrate.

Up to ten million bacteria were injected into zebrafish embryos

at the single cell stage to track the relationship between the

vertebrate and bacterial cells through development. Red auto-

fluorescent bacteria were found intracellularly throughout the

embryo during development, including in the brain and even the

lens of the eye (figure 2A–D) with no discernible morphological

effects. Synechococcus survived inside the embryo’s cells for up to

twelve days based on continued red autofluorescence (figure 2F), at

which time the experiment was terminated as the fish began to

develop pigment that would block light to the intracellular

bacteria.

In stark contrast, injecting E. coli cells killed the embryo within

two hours (figure 3B). This rapid death occurred even when the E.

coli were UV killed prior to injection (figure 3C) and when the

Lipid A production was attenuated by deletion of msbB (figure 3D),

a modification shown to decrease incidence of septic shock by

tumor-targeting Salmonella [32]. These data point to other surface

markers that can cause the death seen in the E. coli injected

embryos and a benign role for the non-pathogenic S. elongatus in

vivo.

Synechococcus expressing invasin and listeriolysin invade
mammalian cells

We also sought to explore a more physiological model of

intracellular invasion than direct microinjection. The bacterial

virulence factors encoding mammalian cell invasion—invasin from

Yersinia pestis [33]—and escape from the lysosomal compartment—

listeriolysin O from Listeria monocytogenes [34] have been identified,

cloned, and shown to confer invasive behavior to non-pathogenic

bacterial species. We inserted invasin and listeriolysin as a tandem

operon in S. elongatus neutral site 3 [30] and incubated induced S.

elongatus cells with CHO cells at 50%–80% confluence overnight at

30uC in bright light.

While expression of invasin alone is sufficient for high efficiency

invasion by E. coli for multiple mammalian cell types in culture

(HeLa, U2OS, HepG2, CHO [16]), expression of both invasin

and listeriolysin was required for invasion of CHO cells by S.

elongatus, a result previously reported for engineered E. coli cells

invading colon cancer cells [23]. The invasion efficiency was such

that 4.8% of mammalian cells were positive for the red channel

autofluorescence from intracellular photosynthetic bacteria as

measured by fluorescence-activated cell sorting (FACS) analysis

(figure 4A). Sorted cells were imaged with confocal microscopy

Towards a Synthetic Chloroplast
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(figure 4B), confirming intracellular localization with approxi-

mately one bacterial cell per CHO cell analyzed.

Replication inside mammalian macrophages
Bacteria can also enter cells through phagocytosis, and escaping

digestion by the lysosome is a prerequisite for pathogenic and

symbiotic growth. Macrophages are a crucial part of the

mammalian immune system, seeking out, engulfing and digesting

foreign bodies and bacteria. The immortal mouse macrophage cell

line J774 will quickly engulf large numbers of bacterial cells in

culture. We therefore incubated plates of 50% confluent

macrophages with varying concentrations of bacterial cells for

one hour at 37uC for E. coli and six hours at 30uC for S. elongatus.

As with zebrafish embryos, engulfed E. coli cells will quickly kill

their host macrophages (figure 5A), while even high numbers of S.

elongatus cells will remain inside J774 for several days with relatively

little effect.

E. coli highly expressing listeriolysin were observed to kill

macrophages faster than wild type E. coli (figure 5B). However,

after two days of incubation with Synechococcus, similar levels of cell

death were observed in macrophages with Synechococcus with only

the empty vector integrated (figure 5C), those expressing invasin

and listeriolysin (figure 5D), and with macrophages without any

bacteria (figure 5E).

Non-pathogenic bacteria that have been engineered with

listeriolysin O to escape the macrophage endosome have been

shown to replicate in the cytoplasm [25]. However, there are

many factors in the mammalian cytoplasm speculated to be

involved in preventing bacterial growth, a fact suggested by the

extremely small number of intracellular pathogens able to divide

in the presumably nutrient-rich cytoplasm [24]. S. elongatus

Figure 3. Zebrafish embryos are immediately killed by E. coli.
A.) Zebrafish embryo two hours after injection of S. elongatus. Cells
appear red due to phenol red present in the injection buffer. B.)
Injection of E. coli led to drastic morphological changes in the embryo
after two hours, and this change was observed with E. coli cells that
were C.) UV killed, or D.) DmsbB mutants.
doi:10.1371/journal.pone.0018877.g003

Figure 4. Invasion of CHO cells. A.) S. elongatus engineered with
invasin and listeriolysin are able to invade CHO cells at a higher
efficiency than S. elongatus harboring the empty vector or invasin alone.
Cells positive for red fluorescence were sorted by FACS and B.)
observed under confocal microscopy, showing intracellular localization
of at least one bacterial cell per CHO cell in the majority of the cells
observed.
doi:10.1371/journal.pone.0018877.g004

Figure 2. Tracking intracellular S. elongatus through zebrafish
development. Single optical slice confocal microscopy images of the
anterior of the zebrafish embryo at A.) Day 1 post injection, B.) Day 2, C.)
Day 3, D.) Day 4, and dissecting microscope images of embryos E.) Day
8, F.) Day 12 post injection. Zebrafish cell membranes are outlined in
green, with red autofluorescent bacteria visible in cells throughout the
embryo, including the eye (yellow arrows) and brain (white arrows). Red
autofluorescence gradually decreased over the course of experimental
observations, but remained visible in the brain of the young zebrafish
even after 12 days.
doi:10.1371/journal.pone.0018877.g002
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requires little external metabolic input and grows at a relatively

fast rate at intracellular carbon dioxide concentrations (one

division every 8–12 hours). In addition, as we have shown (above)

S. elongatus has a special relationship to eukaryotic antimicrobial

systems as it is able to peacefully coexist with animal cells. As such,

it is expected that S. elongatus engineered with listeriolysin O will be

able to divide in the mammalian cytoplasm.

In the dark, S. elongatus phogocytosed by macrophages will

rapidly lose red channel autofluorescence over the course of

12 hours, indicating death (figure 6A). In the light, wild type S.

elongatus autofluorescence will more slowly decrease in intensity

over several days (figure 6B, top row). S. elongatus engineered with

invasin and listeriolysin, able to escape lysosome digestion, showed

marked increase in autofluorescence in the first two days post-

infection, with the number of autofluorescent bacteria decreasing

only after 3 days (figure 6B, bottom row).

The rate of division in the macrophage cytoplasm was

quantified for varying densities of S. elongatus in 96 well plates.

Mean, background subtracted fluorescence was averaged for

triplicate infections. At similar starting density of approximately

2 bacteria per macrophage, there is marked contrast between

empty vector (blue) and +inv+llo (red) S. elongatus (figure 6C).

Rates of division in the engineered strain were correlated to S.

elongatus infection densities. At the lowest concentrations, with

fewer than one bacterial cell per macrophage, the engineered

strain is digested more slowly than wild type S. elongatus, but

does not show large-scale evidence of division, but as infection

density is doubled, the rate of growth increases and begins to

level off at the highest density (1–4 bacteria per macrophage,

figure 6D). Differences in S. elongatus growth did not correlate

with decrease in macrophage cell counts over time, which

remained variable but consistent between wells at different

infection densities over time (figure 6E). Even at the lowest

infection density, +inv+llo S. elongatus division was observed in

approximately 1% of cells tracked with time-lapse microscopy

(figure 6F).

Figure 5. E. coli and S. elongatus lead to differential effects when phagocytosed by macrophages. Large scale granulation is observed
when macrophages take up E. coli that is A.) not expressing llo and to an even greater extent with B.) E. coli expressing llo off of the inducible lac
promoter of the pNS3 vector. In contrast, macrophages displayed similar morphology two days after infection with C.) empty vector S. elongatus, D.)
S. elongatus expressing inv and llo, and E.) macrophages untreated with bacteria but maintained at 30uC in bright light for two days.
doi:10.1371/journal.pone.0018877.g005
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Discussion

Complex relationships between many different species of

organisms characterize the biological world, but the details of

these symbiotic relationships have proven difficult to untangle

through reductionist experimentation. Simplified, engineered

multi-species relationships can provide a framework for studying

natural symbiotic relationships [35]. We show that photosynthetic

bacteria can be engineered to invade and divide inside

mammalian cells for use as a platform for further engineering or

study of evolutionary dynamics of endosymbiosis.

A synthetic approach to photosynthetic mutualism in animal

tissue culture has been attempted previously many years ago, with

mixed populations of algae and animal cells showing gas and

Figure 6. S. elongatus can grow inside the macrophage cytoplasm. A.) Time lapse microscopy of macrophages infected with +inv+llo S.
elongatus kept in the dark shows the gradual decrease in red autofluorescence over the course of 12 hours. In contrast, when kept in the light, B.)
empty vector S. elongatus autofluorescence is observed to gradually decrease over the course of several days (top row), while a significant increase in
red S. elongatus autofluorescence was observed in macrophages infected with inv llo S. elongatus for two days post-infection (bottom row). This
fluorescence was observed to decrease after the third day of infection. C.) This change in fluorescence over time can be quantified as a change in
background subtracted mean fluorescence in ImageJ and averaged over triplicate experiments. Empty vector (blue line) and +inv+llo S. elongatus (red
line) show marked differences in growth when infected at similar densities of 1–2 bacterial cells per macrophage. D.) +inv+llo S. elongatus displayed
infection density dependent growth rates in macrophages. Each line shows change in mean fluorescence in cells infected at a single starting density,
ranging in multiples of two from fewer than one cell per macrophage to approximately 4 bacteria per macrophage. E.) Macrophage cell counts were
variable across replicates and over the course of the experiment but displayed no significant difference between macrophages infected with empty
vector S. elongatus at low (green line) or high density (blue line), or +inv+llo S. elongatus at low (red line) or high (yellow line) density. F.) When
infected at low density of fewer than one bacteria per macrophage, S. elongatus division was observed during 18 hour time-lapse fluorescent
microscopy in approximately 1% of macrophages observed, in particular those cells that contained more than one bacterial cell due to stochastic
fluctuations.
doi:10.1371/journal.pone.0018877.g006
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nutrient exchange in culture [27,28,36]. More recently, amoeba

infected with a naturally occurring parasitic bacteria and carefully

cultivated over several years eventually became dependent on the

bacterial symbiont, showing that endosymbiosis can be established

quite rapidly under the right conditions [37].

Natural endosymbiosis between photosynthetic organisms and

animal species occurs in many marine species such as corals and

sponges, whose simple body plans and high surface-to-volume

ratios make such associations valuable [38]. While these marine

photosymbioses have been studied for many years, the first

evidence of a facultative photosynthetic endosymbiosis in verte-

brates was only recently discovered between the embryo of the

spotted salamander and green algae [39]. Algal-salamander

associations had previously been observed extracellularly [40],

with gas exchange between the algae and salamander shown to be

beneficial but not required for the developing embryo [41]. These

newly discovered intracellular interactions occur only in the

embryo, with algae dying by the time the larvae begins to feed and

no evidence of vertical transmission from the underground-

dwelling adult salamander.

Such natural events show how rare bacterial-vertebrate

endosymbiosis is, as well as how benign photosynthetic associa-

tions can be when they are established. We used a synthetic

approach to developing photosynthetic associations with animal

cells, finding that injecting S. elongatus into the zebrafish embryo

does not affect fish development. As in the natural endosymbiosis,

the photosynthetic cells slowly died, but remained in the animal

for several weeks.

There are no known mammalian endosymbioses, and the

mammalian cytoplasmic environment also remains poorly studied,

with little understood about virulence factors that promote

pathogenic intracellular growth in the handful of bacterial species

able to replicate in the mammalian cytoplasm or mammalian

factors that prevent growth and target bacterial pathogens for

destruction [24]. Furthermore, while our understanding of

microbial metabolism in isolated pure cultures is deep for

commonly studied organisms, the metabolism of bacterial

communities is currently probed primarily through metagenomics

techniques that remain limited [42]. The metabolism of symbiotic

bacteria or pathogens living in vivo is likewise poorly characterized,

with evidence that in vivo metabolism differs significantly from that

in pure laboratory culture [43].

Intracellular pathogens and symbionts alike must be able to take

nutrients from their cellular hosts. Genes such as Hpt, the glucose-

6-phosphate translocase from L. monocytogenes, allow for assimila-

tion of host sugars [44]. Studies with auxotrophic strains of L.

monocytogenes show the extent of the external metabolic requirement

for intracellular division [43,45,46]. In contrast, S. elongatus

requires very little input from its external environment besides

light, carbon dioxide, and a small number of salts and minerals

[31]. This minimal requirement may be central to our observation

that photosynthetic bacteria can replicate inside the macrophage.

Indeed, non-pathogenic photosynthetic autotrophs seem to have a

privileged relationship with eukaryotic cells, able to coexist and

even grow inside with relatively little damage to the host cell

compared to even non-virulent E. coli.

Engineering a mutualistic metabolic endosymbiosis remains

extremely difficult due to the sheer metabolic requirement of

immortalized cells in culture. Based on concentrations of glucose

and fructose secreted by engineered strains of S. elongatus [30] we

estimate that each CHO cell would require on the order of 25

cyanobacterial cells to sustain growth, and J774 macrophages

would require approximately 14,000 bacteria per cell to provide

adequate glucose supply, numbers significantly higher than those

observed in our experimental analysis. Relationships based on

other secreted metabolites, small molecules, or enzymes may prove

to be adequate for establishing an engineered mutualism.

Additionally, improvements in the secretion of essential nutrients

by Synechococcus will further aid this approach.

Just as synthetic biology can be used to query the principles

underlying complex signaling or transcriptional networks, a

synthetic approach can be used to uncover the complex dynamics

underlying symbiotic relationships. Engineering of microbial

communities and (endo)symbioses between different species has

tremendous potential as a tool for synthetic biology [47], where

growth is limited by the complexity of combining modular genetic

devices in a cellular context [48]. Communities of cells working

together can achieve results that pure cultures cannot. An

engineerable photosynthetic symbiont can provide a light-

controlled, orthogonal platform for engineering animal cells.
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