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Abstract

Relationships of diversity, distribution and abundance of benthic decapods in intertidal and shallow subtidal waters to 10 m
depth are explored based on data obtained using a standardized protocol of globally-distributed samples. Results indicate
that decapod species richness overall is low within the nearshore, typically ranging from one to six taxa per site (mean = 4.5).
Regionally the Gulf of Alaska decapod crustacean community structure was distinguishable by depth, multivariate analysis
indicating increasing change with depth, where assemblages of the high and mid tide, low tide and 1 m, and 5 and 10 m
strata formed three distinct groups. Univariate analysis showed species richness increasing from the high intertidal zone to
1 m subtidally, with distinct depth preferences among the 23 species. A similar depth trend but with peak richness at 5 m
was observed when all global data were combined. Analysis of latitudinal trends, confined by data limitations, was
equivocal on a global scale. While significant latitudinal differences existed in community structure among ecoregions, a
semi-linear trend in changing community structure from the Arctic to lower latitudes did not hold when including tropical
results. Among boreal regions the Canadian Atlantic was relatively species poor compared to the Gulf of Alaska, whereas the
Caribbean and Sea of Japan appeared to be species hot spots. While species poor, samples from the Canadian Atlantic were
the most diverse at the higher infraordinal level. Linking 11 environmental variables available for all sites to the best fit
family-based biotic pattern showed a significant relationship, with the single best explanatory variable being the level of
organic pollution and the best combination overall being organic pollution and primary productivity. While data limitations
restrict conclusions in a global context, results are seen as a first-cut contribution useful in generating discussion and more
in-depth work in the still poorly understood field of biodiversity distribution.
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Introduction

With biological diversity generally recognized as providing the

variability essential to cope with changes in nature [1–2] and loss

of biodiversity impairing ecosystem goods and services [3–4], the

severe depletion in populations or entire loss of species in recent

decades has brought the importance of biodiversity to the forefront

[5–6]. While there is a growing body of literature on the subject,

estimates of the number of marine species still vary widely [7–8]

and large gaps remain in the understanding of how species are

distributed in space and time [9] or how they contribute to

ecosystem processes [10–11]. Thus one of the most important

objectives in ecology and biogeography remains the ‘‘development

of a markedly improved understanding of the global distribution of

biodiversity’’ [12].

Marine systems have for some time been regarded as less

impacted than freshwater or terrestrial counterparts because of

fewer documented losses of species and a perceived ‘‘extra

measure of resilience’’ because of larger geographic ranges [5]

and greater phyletic diversity [7,13]. However, not only may

marine extinctions be underestimated [14] but recent evidence

also indicates widespread changes in biodiversity in terms of the
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composition and abundance of species. This includes the severe

depletion of large fish populations [15–16] that amount to

ecological extinction [17], the decline of corals [18], and the

spread of invasive species [19] that are visible danger signs of

substantial changes occurring within the marine realm on a global

scale.

The understanding of biodiversity in coastal regions is of

particular importance as it is where the majority of the human

population now lives and where demographics project that 75% of

humanity, or 6.4 billion people, will reside within three decades

[20]. This represents more people than the current global

population. Loss of marine diversity is highest in the coastal zone

[21], where habitats have been and are being profoundly altered

[4,9], with more dramatic changes likely in the future. An

evaluation of the scale and consequences of these changes is

hampered by a lack of basic knowledge of the diversity, patterns

and processes that control the distribution and abundance of

organisms within coastal areas.

The intent of this paper is to compare and contrast diversity and

abundance of benthic crustacean decapods from intertidal and

shallow subtidal rocky shore sites at geographically widely

dispersed areas to ascertain if there are trends with depth and

latitude and what environmental drivers may explain patterns in

decapod assemblages.

Methods

Decapod diversity data were obtained based on specimens

collected using a standardized protocol [22] developed for the

Census of Marine Life NaGISA program (Natural Geography in

Shore Areas, www.coml.nagisa.org) for coastal hard substrate sites

with macroalgal cover, from here on referred to as rocky shores.

The protocol is based on the use of 30 m transect lines set parallel

to the shore, at three intertidal levels (high, mid and low) and three

subtidal depths (1, 5 and 10 m), using 25625 cm and 161 m

quadrats at each of 5 randomly selected replicate stations per

transect. The two quadrat sizes were employed to account for

possible scaling effects and to use as a comparable tool for a like-

with-like comparison, but not to estimate the maximum or actual

total diversity.

Data on decapod taxa and abundance were obtained from 36

sites (Supplementary Table S1) sampled once between 2005 and

2009, with the exception of earlier sampling of Alaska sites (2003)

and repeated sampling of two sites in the NW Atlantic Fundy

region (2007–2008). Generally field work was undertaken during

the season of highest diversity and abundance. Limitations within

the data set include the restricted number of sites, the absence of

data from certain critical regions, (e.g. Antarctic and Australia)

that were not covered and the limited and/or uneven number of

sites per ecoregion. These limitations prevented an in-depth global

scale analysis as originally intended, instead resulting in a

restricted comparison of point species richness of limited regions.

With only three of 36 sites from the southern hemisphere

(Argentina and Africa) that sector could not be analyzed separately

from the northern hemisphere, leading to the restriction of the

latitudinal analysis to the northern hemisphere even though there

is some indication of symmetrical hemisphere distribution of

decapods [23]. For a considerable number of sampled sites

decapod data were not recorded, or only at a coarser than species

taxonomic level. Other regions were unable to obtain data for

some tidal levels or not at the full level of replication. Sampled

decapods fell into large and small size groups. While these were

represented in 1 m2 and 0.0625 m2 quadrats, respectively, certain

regions were predominated by one (e.g. small hermit crabs in Gulf

of Alaska) or the other (e.g. large brachyuran crabs in Canadian

Atlantic). This, and not all regions having sampled with both

quadrat sizes, precluded intersite comparisons for each quadrat

size, requiring adjustment of abundance data from the smaller to

larger quadrat for analyses that included an abundance compo-

nent. Alternatively, data were analyzed based on absence/

presence.

Statistical analyses were undertaken using PRIMER 6 v. 6.1.13

(PRIMER-E Ltd.) with PERMANOVA+ for PRIMER and

Statgraphics Centurion XV (StatPoint Inc.) for multi- and

univariate components, respectively. Both classic univariate

techniques and non-metric multivariate methods, which better

cope with our specific data short comings, were employed for

analysis. In order to mitigate the various limitations for

comparative use globally, replicates of samples were averaged

for a particular site and depth. For multivariate analysis this was

followed by standardizing the pooled samples by their totals,

resulting in totals that add up to 100 across a set of species and

therefore indicating how percent composition changes by locality

or depth. To balance contributions of abundant and rarer taxa,

data were moderately (square root) transformed given the modest

presence of rare species, followed by calculation of the Bray-Curtis

coefficient to summarize the overall similarity between any

samples (by taking all taxa and their relative abundance into

consideration) for use in multivariate non-metric MDS ordination

analysis.

From the composition of taxa it was apparent that, other than

for adjacent sites, few taxa are shared between geographically

widely separated sites, resulting in degenerate artefactual solutions

[24] of the MDS analysis, as evidenced by collapsed Shepard plots.

This was handled in two ways, one being the analysis of subsets of

species data from restricted geographic areas, but thereby limiting

analysis to few ecoregions, such as the Gulf of Alaska.

Alternatively, to enable a wider scale comparison, data were

brought onto a more common footing. This was undertaken in two

ways, firstly by aggregating data to the higher taxonomic family

level where, in contrast to species and genera, families are shared

in common amongst more widely separated regions. Recognizing

that use of the three depths groups, as per Alaska depth results,

generated degenerate plots, site data were also averaged for depth,

allowing the use of sites as the replication level. While this resulted

in non-degenerate plots the results may be compromised by the

fact that depth ranges are not equally represented at each site.

However, depth effects were deemed small in comparison to

region effects (see results).

Secondly, a taxonomic dissimilarity measure based on the

taxonomic distinctness concept, that incorporates relative related-

ness of species and avoids aggregating to higher taxonomic levels,

was employed. The dissimilarity coefficient Gamma+ [25] was

produced for ordinating samples based instead on presence/

absence data that mitigate a possible abundance scaling issue due

to two different quadrat sizes used. This procedure is deemed of

particular use where data are from widely separated regions that

have few species in common. By way of including the different

depth strata, this approach also permitted two-way ANOSIM

testing in a crossed layout with six depths and eleven regions as

factors to ascertain relative contributions of these two factors and

to discern possible depth groupings.

Latitudinal trends analysis of species richness and interaction

with other factors involved the use of PERMANOVA analysis of

variance permutation testing using Euclidean distance, i.e. a

standard ANOVA table but testing carried out by permutation

rather than normality assumptions [26]. This is based on

(univariate) species richness per individual quadrat, averaged over
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replicates for each site by depth combination and then log

transformed to avoid the standard problem that pooling unequal

numbers of replicates will strongly bias the resulting richness

values. A second analysis used average taxonomic distance (D+)

from species lists in pooled replicates since, unlike S, values of D+
are independent of sample size, so pooling unequal numbers of

samples before its calculation will not bias the outcome [27].

Linking of community assemblage to environmental measures

was undertaken to find the best match between the multivariate

among-sample patterns and environmental variables, where the

extent of pattern matching reflects the degree to which

environmental data ‘explain’ the biotic pattern using both BEST

and RELATE analyses [28]. Among a data set of 15 environ-

mental variables [29], 11 with complete information were used in

the global BEST analysis (Table 1). These 11 variables included a

set of three natural environmental drivers, consisting of sea surface

temperature (SST [30]), chlorophyll-a density (CHA [31]), and

primary productivity (PP [32]), derived as per Benedetti-Cecchi

et al. [29]. The remaining eight indices of anthropogenic variables

included inorganic pollution (INP), organic pollution (ORP),

nutrient contamination (NUTC), marine-derived pollution

(MARP), acidification (AC), invasive species incidence (INV),

human coastal population density (HUM), and shipping activity

(SH), taken from 1 km resolution global models of human impacts

on marine ecosystems [33]. Gulf of Alaska samples were taken at

all depth strata so these depths (scaled as 1–6 for high intertidal to

the 10 m stratum) were utilized separately in the RELATE

regional analysis for those samples.

Based on an assessment of pair-wise scatter plots of all variables

for global analysis, eight of 11 variables (AC, CHA, INP, INV,

NUTC, ORP, PP, SH) were selectively log transformed (log (0.1 +
y)) to approximate a symmetric and linear distribution of data

points, with all variables then normalized (value less mean, divided

by standard deviation for each variable) to bring values of the

various variables onto a common and comparable dimensionless

measurement scale. Examination for correlation prior to analysis

using Spearman Rank correlations revealed that none of the

variables were correlated at rho $0.95 and thus all variables were

maintained in the analysis.

Community structure data, used for comparison with

environmental results, were based on family-level aggregation

of original species data that were standardized, square root

transformed and depth averaged for all sites. The environ-

mental and biotic matrices were analyzed using the BEST

routine, based on Euclidian distance and Bray-Curtis dissim-

ilarity measures, respectively, to find the best match environ-

mental variables using the Spearman rank correlation method

that measures agreement between the two matrices. The

results are then listed in terms of the best combination for a

fixed number of explanatory variables, up to the point at

which the values of the Spearman correlation start to fall

below that for the optimum combination. This gives an

indication of which are the most important environmental

variables implicated in the (correlative) ‘explanation’ of the

biotic structure. A major concern of this biological-environ-

mental comparison was that both data sets were collected at

different spatial resolution, especially with satellite-derived data

that were obtained on a much coarser scale. Other environ-

mental data were collected at a 1 km resolution but from

global models that do not capture the particularly high

variability of the nearshore system from where our biological

data originated. Hence, for global comparison, biological and

environmental data were averaged by ecoregions for the

analysis to minimize small-scale biological variability and to

scale up to the coarser resolution of environmental data (see

[34] for more details). This procedure could potentially

introduce some aggregation error, and that possibility is

addressed in the interpretation of results.

Table 1. List of natural and anthropogenic environmental variables used in global (*) and Gulf of Alaska (+) regional analyses.

Variable Short Description Reference

Natural

Sea-surface temperature* SST Climatological summer mean value, averaged between 1985
and 2001, derived from the 4 km resolution AVHRR
Pathfinder Project version 5.0 by the NOAA NODC

[30]

Chlorophyll-a* CHA SeaWiFS reprocessing 5.2 by the NASA GSFC Ocean
Color Group, averaged 1997–2009, 9 km resolution

[31]

Primary productivity* PP mg carbon m22 d21, Vertically Generalized Production Model
(VGPM) for SeaWiFS, averaged 1997–2007, 18 km resolution

[32]

Depth+ D High intertidal to 10 m NaGISA data

Anthropogenic

Inorganic pollution* INP Urban runoff estimated from land-use categories, US
Geologic Survey (http://edcsns17.cr.usgs.gov/glcc/)

[33]

Organic pollution* ORP FAO national pesticides statistics (1992–2002),
(http://faostat.fao.org)

[33]

Nutrient contamination* NUTC FAO national fertilizers statistics (1992–2002),
(http://faostat.fao.org)

[33]

Marine-derived pollution* MARP Port data 1999–2005, proportional to commercial shipping traffic [31]

Acidification* AC Aragonite saturation state 1870–2000/2009 [33]

Invasive species incidence* INV Cargo traffic 1999–2003 [31]

human coastal population density* HUM LandScan 30 arc-second population data of 2005 [33]

shipping activity* SH Commercial ship traffic 2004–2005 [33]

doi:10.1371/journal.pone.0018606.t001
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Results

A total of 82 decapod taxa were identified from 293 sample

quadrats analyzed for 36 sites from approximately 70uN to 38uS
latitude (Fig. 1.), broadly representing eleven zoogeographic

provinces (Supplementary Table S1), that, with few exceptions,

are similar to the ecoregions of Iken et al. [32], or some of the 64

large marine ecosystems (LME) of Sherman et al. [35]. In general

decapod diversity was quite low, ranging from one to 13 species

per site (mean = 4.5), with a typical range of one to six species for

two thirds of all sites.

Depth trends
Multivariate analysis of regional data subset samples from the

Gulf of Alaska, all based on 25625 cm quadrats, showed a distinct

and quasi-linear depth trend with an increasingly changing

assemblage structure from the high tide level to 10 m subtidally

(Fig. 2). Matching ANOSIM testing confirms this with higher R

statistics the further apart two depth groups are (Table 2), with

high and mid tide, low tide and 1m, and 5 and 10m representing

levels that are not significantly different among each pair (p .

10.4%) but the three pairs forming significantly different groups

(p,2.8%). Univariate results indicate that diversity changed in

terms of depth, with lowest species richness at the high intertidal

substratum, increasing to a peak at 1 m, then decreasing to 10 m

(Fig. 3). Depth preferences among the 23 species of anomuran,

brachyuran and caridean decapods were also discernible (Table 3)

as follows: (1) no single species occurred at all strata, (2) unlike

brachyuran and anomuran taxa, all six shrimp species were

restricted to the subtidal zone, with the exception of a single record

of one species, (3), the hermit crab Pagurus hirsutiusculus showed a

strong preference for the intertidal zone, with peak abundance at

the high intertidal stratum, where no other decapods were found,

(4) while four taxa, the anomurans Pagurus beringanus, P. caurinus and

brachyurans Cancer oregonensis and Pugettia gracilis, occured in five of

the six depth strata, depth preferences could be discerned in terms

of abundance peaks at 1 and 5 m strata, and (5) all but one of the

eight remaining anomuran pagurids were restricted to the subtidal

with peak abundances at 5 m for all but two species.

A similarly clear depth trend was not detected for other

ecoregions but when samples from all regions were combined

diversity peaked at 5 rather than 1 m (data not shown), otherwise

agreeing with the depth pattern of the Gulf of Alaska. Lack of shared

taxa did not permit a global taxonomic depth characterization.

Latitudinal trends
Multivariate analysis, based on the Gamma+ resemblance

measure, showed no distinct latitudinal pattern when separated

into three depth groups as per depth analysis (Supplementary Fig.

S1). Two-way ANISOM testing of all data in a crossed layout,

with all depths and regions as factors, yielded significant global R

statistics (p,0.1%) that indicate differences among regions and

depth strata. However, the global R value of 0.645 for regions was

substantially higher than 0.213 for depths, indicating that

assemblages by regions are much more separated, and therefore

different from each other, than are depth groups. This is supported

by Gamma+ plots, showing that while assemblages tended to

cluster by region (Supplementary Fig. S2A), they did not form

groups by depths strata (Supplementary Fig. S2B).

With depth differences in assemblage structure deemed smaller

than those between regions, averaging depths was deemed justified

to allow use of sites as the replication level, thus maximizing

available site data. Consequential analysis with depth averaged

data aggregated to family level, based on the Bray-Curtis similarity

measure, showed that significant latitudinal differences existed in

community structure among geographic regions (global test

R = 0.16, p,0.8%). As indicated by mean values of latitude

intervals (Fig. 4), a semi-linear trend of increasingly changing

assemblages was evident from polar latitudes to the 30-49u
temperate interval, with significant differences between assem-

blages of subpolar and temperate regions (p,0.7%). However, this

trend did not apply to tropical results, shown to be significantly

different from subpolar (p,0.4%) but not from temperate regions

Figure 1. Global distribution of sampling sites with decapod crustacean assemblages within the NaGISA Census of Marine Life
program. Sites that overlap at this scale are shown in red over green; see supplementary Table S1 for more details.
doi:10.1371/journal.pone.0018606.g001

Rocky Shore Decapod Diversity

PLoS ONE | www.plosone.org 4 April 2011 | Volume 6 | Issue 4 | e18606



Figure 2. Multivariate analysis nMDS plot of depth-related decapod crustacean assemblage structure from the nearshore Alaskan
Pacific. Based on species abundance data and Bray-Curtis similarity measure; individual sites (solid symbols, each representing five replicates) and
mean of all sites (open symbols) are displayed by six depth intervals; line indicates progression from high intertidal to 10 m subtidal stratum.
doi:10.1371/journal.pone.0018606.g002

Table 2. Analysis of similarity for Gulf of Alaska decapod assemblage structure depth pattern based on site data and depth
groupings as per Figure 2.

Global test

Sample statistic (Global R): 0.388

Significance level of sample statistic: 0.01%

Number of permutations: 9999 (Random sample from a large number)

Number of permuted statistics greater than or equal to Global R: 0

Pairwise Tests

R Significance Possible Actual Number . =

Groups Statistic Level % Permutations Permutations Observed

H, M 0.055 10.4 24310 9999 1043

H,L 0.474 0.1 24310 9999 9

H, 1 0.680 0.04 24310 9999 3

H, 5 0.752 0.03 6435 6435 2

H, 10 0.604 0.05 24310 9999 4

M, L 0.340 0.1 24310 9999 13

M, 1 0.586 0.03 24310 9999 2

M, 5 0.703 0.02 24310 9999 1

M, 10 0.567 0.01 24310 9999 0

L, 1 0.045 20.9 24310 9999 2086

L, 5 0.366 0.6 24310 9999 63

L, 10 0.341 0.1 24310 9999 11

1, 5 0.228 2.8 24310 9999 279

1, 10 0.271 0.3 24310 9999 30

5, 10 20.052 72.7 24310 9999 7270

doi:10.1371/journal.pone.0018606.t002
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(p = 18.8%). R statistics of pairwise tests indicated the strongest

separation between the 30–49u and 50–69u latitude groups.

While skewed and high in variance, a plot of species richness

against latitude for all data combined suggests a positive relationship

of richness to latitude (Fig. 5). Analysis of covariance factor

permutation testing to ascertain whether richness was a function of

depth and/or latitude, indicated a significant relationship between

richness and latitude, and an intertidal versus subtidal effect

(Table 4). The order of inclusion of terms did not materially change

these conclusions since there was little relation between depth and

latitude. Resulting separate intertidal and subtidal plots (Supple-

mentary Fig. S3) indicate this by a difference in intercept and the

same slope, respectively. An analogous covariance analysis using

average taxonomic distance (D+) showed only a marginal

relationship of D+ to latitude (p = 6.7%) but an interaction between

latitude and differences between intertidal and subtidal divisions

(F = 15.2, p = 0.2%, Table 5). When intertidal and subtidal zones

were analyzed separately (Table 6) this was manifested by a

significant relationship between D+ diversity and the intertidal

(F = 16.6, p = 0.2%) but not with the subtidal (p = 31%).

Four major groups of decapods were represented among the

entire data set (Table 7), with anomuran and brachyuran crabs

being represented in most, and caridean shrimps at about half of

the regions, while lobsters were recorded only from the Canadian

Atlantic. The latter ecoregion was the only one with representation

from all four groups. However, in terms of lower taxa this region is

relatively depauperate, despite the largest number of samples

taken amongst all regions (incl. consecutive years). In comparison,

the even more northerly American west coast Gulf of Alaska

ecoregion is represented by three times as many decapods than the

Canadian Atlantic coast, with lithodid and pagurid anomurans

comprising the majority of decapods. Other decapod hot spots

appear to be the Caribbean Sea and waters surrounding Japan,

the latter despite a relatively low number of samples. Results from

other ecoregions should be considered as preliminary as they may

not be indicative due to a relatively low number of samples or sites.

Correlation with environmental drivers
The BEST procedure, used to link 11 environmental variables

available for all sites (Table 8) to the family-based biotic pattern,

showed a significant relationship between the community structure

and environmental variables (Rho = 0.70; p,3%) on the global

scale. The best correlation match (Rho = 0.70) consists of just two

variables, organic pollution and primary productivity (Table 8),

with the highest individual contributor being the former

(Rho = 0.45). Three other combinations involving up to three

additional variables result in lower than optimal (Rho = 0.65–0.68)

but similar correlation values (Table 8). Regionally, within the

Gulf of Alaska, the RELATE test showed depth to be significantly

related to the biotic pattern (Rho = 0.53; p,0.01%).

Discussion

In a global context this study encountered data limitations

primarily in terms of geographical coverage, small sample sizes

and uneven sampling effort in general. For example, four similar

studies based on NaGISA samples [29,34,36–37], including

different faunal and macroalgal components, were based on about

twice the number of sampling sites as in the present study. Thus,

while this restricted analysis and results should be considered

preliminary on a global scale, they lend themselves to discussion

and comparisons with other work in this field and as a stimulus to

Figure 3. Decapod species richness on rocky shore in the Gulf
of Alaska. Mean and 95% confidence intervals per 0.0625 m2 at high
intertidal to 10 m subtidal strata; diversity at the high intertidal stratum
is significantly lower than all other strata, as is the 10 m stratum
compared to low tide and 1 m strata (P,5%); n = 45 quadrat records
per depth stratum.
doi:10.1371/journal.pone.0018606.g003

Table 3. Relative abundance of 23 decapod species among
six depth strata recorded from nine Gulf of Alaska ecoregion
sites in 2003.

Species
High
tide

Mid
tide

Low
tide 1 m 5 m 10 m

Anomura, Paguridae:

Pagurus hirsutiusculus 109 91 64 12 0 0

Pagurus beringanus 0 35 31 39 20 6

Pagurus caurinus 0 1 6 17 32 20

Pagurus granosimanus 0 2 0 0 0 0

Elassochirus gilli 0 2 0 3 5 2

Elassochirus cavimanus 0 0 0 1 2 0

Elassochirus tenuimanus 0 0 0 0 7 2

Pagurus dalli 0 0 0 0 1 3

Pagurus kennerlyi 0 0 0 0 6 8

Pagurus sp. A 0 0 0 0 1 0

Discopagurus schmitti 0 0 0 0 2 0

Anomura, Lithodidae:

Cryptolithodes sp. 0 1 2 4 1 0

Brachyura, Atelecyclidae:

Telmessus cheiragonus 0 0 3 1 0 1

Brachyura, Majidea:

Pugettia gracilis 0 27 113 199 14 14

Oregonia gracilis 0 0 7 1 0 0

Brachyura, Cancridae: 0

Cancer oregonensis 0 12 8 24 3 2

Caridea, Hippolytidae:

Eualus sp. 0 0 0 0 0 2

Heptacarpus herdmani 0 0 0 0 1 0

Heptacarpus puggettensis 0 0 0 3 0 0

Heptacarpus sitchensis 0 0 0 0 0 1

Hippolyte clarki 0 1 0 0 0 1

Lebbeus grandimana 0 0 0 0 0 1

Spirontocaris snyderi 0 0 0 0 3 5

doi:10.1371/journal.pone.0018606.t003
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generate more in-depth work anticipated as more sampling occurs

at existing and additional NaGISA sites.

Depth stratification
A comparable global analysis of macroalgae [36] with overlap

for sites of the present study shows mean taxonomic richness

similarly increasing, progressing from the high intertidal to the

sea and peaking at the 1 m stratum, but at a higher diversity

level. Biomass also peaked at the 1 m stratum for macroalgae. A

different rocky shore study that was restricted to the Gulf of

Alaska [38] and included macroalgae, polychaetes, echinoderms

and molluscs, concluded that, while these groups as a whole

showed greatest richness at the low intertidal and 1 m depth

strata, regional variation within and among different taxa

prevented a generalization of trends for each of the four

taxonomic groups across the region.

Latitudinal trends (global)
While the dearth of comparable data in this study is a likely

factor in not uncovering clear trends, standard multivariate

Figure 4. Non-parametric multivariate analysis MDS plot of global-scale decapod assemblage structure. Based on family-level
aggregation of depth-averaged species data, in terms of latitudinal distribution for individual sites (closed symbols) and mean of all sites (open
symbols) per latitudinal interval.
doi:10.1371/journal.pone.0018606.g004

Figure 5. Regression plot of decapod species richness against latitude for data from all sites and depths. Loge(S) = 20.003+0.0063 x
latitude (F = 8.6, p = 0.4%).
doi:10.1371/journal.pone.0018606.g005
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ordination analysis was also complicated by the fact that few

species were shared among widely separated regions on a global

scale, creating a special case scenario requiring further manipu-

lations, each with certain compromises (see methods). Most

revealing was multivariate analysis using family level aggregation

that indicated a progressive change in community structure from

the Arctic to temperate latitudes, with significant differences

between populations of subpolar and temperate regions. However,

this trend did not continue for the tropical latitude interval.

Univariate analysis showed no clear correlative latitudinal trend in

species richness, with an indication of a possible increase in

diversity with higher latitudes that is contrary to expectations ([23],

see below). Small sample sizes and limited coverage precludes our

results from being sufficient evidence one way or another for a

latitudinal gradient. Clearly additional data points are needed to

investigate this aspect further that, as pointed out by Gray [39], is

a weakness inherent in a number of similar studies.

Surprisingly, while a gradient of decreasing species diversity with

increasing latitude is well-established in terrestrial plant and animal

communities, evidence in the sea is equivocal [39–42]. For example,

no clear trend is evident among encrusting Bryozoa [43]. While an

Arctic to tropics cline of decreasing species richness is evident for

isopods, bivalves and gastropods from the deep-sea [44–45], there is

evidence for at least two different trends among some shallow-water

taxa: seaweeds indicate higher algal diversity in temperate areas,

both from the NaGISA study [36] and other research [46–47], as do

intertidal echinoderms collected in 25625 cm quadrats [34]. In

contrast, gastropod and bivalve molluscs, foraminiferans and reef-

building corals exhibit greater species richness in the tropics [42], as

is the case for most terrestrial communities. Interestingly, when

NaGISA data on entire rocky shore communities were analyzed, no

latitudinal trends were found [37], indicating that different taxa

likely have different latitudinal responses that may be obscured in

whole community analyses. This illustrates the importance of

analyzing both individual taxonomic groups, as done for macro-

algae, polychaetes, echinoderms and now decapods in the NaGISA

program, as well as whole macroinvertebrate communities in

specific habitats to gain a better understanding of latitudinal

diversity patterns and drivers.

It has been postulated that marine animal groups with

calcareous skeletons exhibit higher diversity at low latitudes,

leading to the speculation that this latitudinal trend may be the

result of an increasing thermodynamic cost in producing a calcium

carbonate skeleton at decreasing temperatures of higher latitudes

[48], and that this latitudinal cline of increasing diversity towards

lower latitudes may be limited to taxa with calcareous skeletons.

However, NaGISA results on echinoderms [34], that heavily

depend on calcareous skeletal structures, appear to contravene this

supposition.

Decapods, like all crustaceans, have an exoskeleton of chitin

that also requires calcium for hardening, achieved by deposition of

calcium salts in the organic matrix of the cuticle [49]. Evidence for

latitudinal trends within that group indicates that within Pacific

and Atlantic coastal waters (0–200 m) of the Americas [23] the

distribution of decapods shows a larger diversity of species in

tropical regions, decreasing gradually toward higher latitudes, a

trend observed both among brachyurans and the rest of the

decapods. However, a similar analysis of coastal (0–100 m)

decapods in the western and eastern Atlantic [50] shows that

gradients of benthic decapods are not symmetric for both

coastlines, instead showing a single western diversity peak in the

Caribbean at about 25uN, compared to two eastern peaks near the

equator and at 35uN, the latter encompassing the Mediterranean.

These differences are primarily attributed to coastal hydrographic

processes.

A difficulty in understanding latitudinal trends is evidence that

in general the Southern Ocean is strikingly more diverse in species

Table 4. PERMANOVA analysis of covariance permutation testing using Euclidean distance, showing results of log(S) correlation
with latitude, intertidal versus subtidal difference (IT vs ST), depth differences within IT or ST (De (IT vs ST)), latitude interaction
within intertidal or subtidal (La x IT vs ST)), and latitude interaction within the six depth strata (La x De (IT vs ST)).

Source df SS MS F P value
Unique per-
mutations

Latitude 1 1.4975 1.4975 10.078 0.006 996

IT vs ST 1 1.1358 1.1358 7.644 0.009 998

De (IT vs ST) 6 0.96431 0.16072 1.0816 0.365 998

La x IT vs ST 1 1.42E-02 1.42E-02 9.59E-02 0.788 998

La x De (IT vs ST) 5 0.7993 0.15986 1.0758 0.338 999

Residual 104 15.453 0.14859

Total 118 19.865

Significant differences (p,0.05) are in bold.
doi:10.1371/journal.pone.0018606.t004

Table 5. Results of PERMANOVA to test for taxonomic
distinctness (D+) relation with latitude, intertidal versus
subtidal difference (IT vs ST), depth differences within IT or ST
(De (IT vs ST)), latitude interaction within intertidal or subtidal
(La x IT vs ST)), and latitude interaction within the six depth
strata (La x De (IT vs ST)).

Source df SS MS F P value
Unique
perms

Latitude 1 988.5 988.5 3.2481 0.067 997

IT vs ST 1 56.694 56.694 0.1863 0.673 997

De (IT vs IT) 5 2148.2 429.63 1.4117 0.238 998

La x IT vs ST 1 4637.5 4637.5 15.238 0.002 997

La x De (IT vs ST) 5 1985.6 397.13 1.3049 0.274 999

Residual 47 14304 304.33

Total 60 24120

Significant differences (p,5%) are in bold.
doi:10.1371/journal.pone.0018606.t005
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than Arctic waters [51], differences in evolutionary history, climate

and oceanography indicating that latitudinal trends differ in the

northern and southern hemisphere at least in terms of polar

diversity. This is contrary to evidence for a symmetrical trend of

decapods in the two hemispheres for the Americas [23], which

included an Arctic but no Antarctic component. However,

Antarctic decapod species diversity is strikingly low compared to

other groups [52], with brachyuran crabs and lobsters completely

absent. Thus the trend of decreasing diversity with higher latitudes

in the southern hemisphere may hold for decapods in particular.

Even though substantially different depth ranges are involved,

results on relative taxonomic richness of the present study (Table 7)

are consistent with those of Boschi [23] for coastal waters to 200–

300 m depth in the Americas. Both studies found the lowest

decapod species diversity was in the Arctic, followed by the

‘‘boreal Atlantic province’’, equivalent to the Canadian Atlantic

herein, with the diversity of the equivalent NE Pacific Gulf of

Alaska ‘‘Aleutian province’’ being markedly higher than the boreal

Atlantic counterpart. Similarly, the Caribbean is a decapod hot

spot in both studies, as it is for terrestrial plants and vertebrates

[53]. This region apparently is also a hot spot for echinoderms

[34]. Taken together, ‘‘the assumption of a simple and universal

latitudinal diversity cline in the sea is, on present evidence,

probably unwarranted’’ [42] but also in need of much more

investigation.

Environmental variables
Based on an analysis of fishes and invertebrates from benthic

and pelagic habitats Macpherson [50] concluded that no single

primary ‘‘cause’’ or factor explains the pattern of marine species

on a large spatial scale. In general, more than a single mechanism

is likely involved that may vary with spatial scale [12].

Nevertheless, on a regional scale, a substantial proportion of

species richness can apparently be explained statistically in terms

of a few environmental variables [54], but not in the form of a

predictive theory [12].

Results in our study indicate that on a regional scale depth is a

significant factor explaining the community assemblage of benthic

Table 6. Results of PERMANOVA to test for taxonomic distinctness (D+) relation with latitude and depth, and their interaction,
carried out separately for intertidal and subtidal samples.

IT only

Source df SS MS F P(perm) Unique perms

La 1 3958.6 3958.6 16.652 0.002 996

De 3 1639.8 546.58 2.2992 0.139 999

La x De 3 1459.4 486.48 2.0464 0.215 998

Residual 16 3803.6 237.72

Total 23 10861

ST only

Source df SS MS F P(perm) Unique perms

La 1 368.14 368.14 1.0869 0.314 996

De 2 1850.6 925.3 2.7318 0.089 999

La x De 2 526.2 263.1 0.77677 0.478 999

Residual 31 10500 338.71

Total 36 13245

Significant differences (p,5%) are in bold. Abbreviations as per table 4.
doi:10.1371/journal.pone.0018606.t006

Table 7. Number of species1 recorded among four major decapod groups for 11 sampled eco-regions.

Arctic Alaska BC* UK Can. Atl. Med. Argen-tina Africa{ Japan Vietnam Carib-bean

Latitude (approx.) 70 60 50 50 45 40 240 235, 26 30 15 15

N samples 25 270 50 60 360 40 50 30 25 6 200

Anomura (false crabs) 1 12 1 0 1 3 1 0 2 0 13

Brachyura (true crabs) 0 4 2 3 3 3 2 3 7 2 5

Caridea (shrimps) 0 7 0 0 2 3 0 0 4 0 1

Astacidea (lobsters) 0 0 0 0 1 0 0 0 0 0 0

Total species1 1 23 3 3 7 9 3 3 13 2 19

BC = British Columbia; Can. Atl. = Canadian Atlantic; UK, United Kingdom; Med. = Mediterranean.
*, often considered the southern limit of ‘‘Alaska’’ ecoregion;
{, data from two sites at zoogeographically disjunct regions combined for inclusion purposes only;
1, for some ecoregions may include specimens originally identified to a shared higher taxon, but here assumed to represent distinct species among ecoregions.
doi:10.1371/journal.pone.0018606.t007
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decapods in the nearshore environment. The need for depth

averaging of assemblage data did not allow for a similar evaluation

on a global scale, where primary productivity was the most

important natural variable but a more anthropogenic measure of

organic loading was the best single explanatory variable (Table 8).

While aggregation error could confound conclusions drawn from

such comparisons, a related NaGISA study on polychaetes [29]

similarly found evidence that nutrient contamination and pollution

can have an effect on such an assemblage at continental and

intercontinental scales. Nevertheless, our results should be viewed

with care given the biological and environmental data constraints

(see methods) but may serve as a first approximation of which

variables may be particularly important in decapod diversity. A

lack of major depth effect would not be in conflict for the wider

global picture, where some of the environmental variables may

take very different ranges of values, and the more subtle, local

depth effects become minor on that scale, as other results indicate

in this study. Also, unlike the other environmental variables used

in the global analysis, depth differs in representing more of an

integrative measure that includes and reflects effects of several

variables such as temperature, light intensity, salinity etc., thus

preventing a straight comparison with other factors.

Presently the use of biodiversity in investigating ecosystem

functional diversity is primarily in terms of relative taxon

composition and trophic group analysis [55]. However, biological

traits analysis [56] is a relatively new tool, where species diversity

and biomass data are used in combination with information on key

biological traits in ordination analysis to describe ecological

functioning that should lead to new perspectives and would be a

natural extension of studies such as the present one.

Legacy and lessons learned
The use of a standardized protocol simple enough to be employed

by diverse participant groups with varying expertise in different parts

of the world has been the principle driving force in the realization of

the NaGISA program. This is clear from continuing activities and the

emergence of new sampling sites beyond the present study and by the

fact that regional programs will continue beyond the present Census

of Marine Life program. In the long term this may address the need

for representation of unsampled regions and to obtain sample sizes

appropriate for global comparison. Two primary procedural

challenges emerged during the present study that should be better

addressed in the future: one is the need for all of the components of

the protocol to be completed at all sites, particularly sampling of all

depth strata, replicates and target organisms. The other challenge is

the need for taxonomic expertise that was not available in several

regions. The former may be improved with better logistical support,

the latter by having a central authority undertaking and/or

coordinating identification-related activities rather than making this

a regional responsibility. Without a doubt the primary lesson learned

in terms of results is that much more comparable biological and

environmental data are needed to establish clear patterns of

distribution and environmental effects over large geographic scales

and that one must be careful in generalizing trends as such

simplifications invariably do not apply in the marine realm when

considering different organismal groups in their specific habitats.

Supporting Information

Figure S1 nMDS plots of global-scale decapod community

structure. Based on presence/absence data and Gamma+ similarity

measure, displayed for (A) high and mid intertidal, (B) low intertidal

and 1 m, and (C) 5 and 10 m depth intervals at individual sites.

(EPS)

Figure S2 nMDS plots of global-scale decapod community

structure. Based on presence/absence data and Gamma+
similarity measure, displayed by (A) region, and (B) six depth

strata at individual sites.

(EPS)

Figure S3 Plots of log transformed decapod species richness

against absolute latitude. (A) intertidal: loge(S) = 20.090+0.006 x

latitude, r2 = 0.10, p = 2%; (B) subtidal: loge(S) = 0.067+0.007 x

latitude, r2 = 0.08, p = 3%.

(EPS)

Table S1 Summary information on decapod collection sites

among identified ecoregions. Tidal region indicates the sector that

was sampled (intertidal and/or subtidal); quadrat sizes used are

100x = 1 m2 and 16x = 0.0625 m2, those listed without brackets

with decapod records.

(DOCX)
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Table 8. Results of BEST Bio-Env global analysis indicating which environmental variables amongst a set of 11 best-match
decapod assemblage structure similarity matrices.

Number of variables Rho correlation Best variable combination

1
2
3
4
5

0.452
0.700
0 .680
0.663
0.646

Organic pollution
Organic pollution, primary productivity
Organic pollution, primary productivity, shipping
Organic pollution, primary productivity,inorganic pollution,
invasivesprimary productivity, inorganic pollution, invasives, shipping

doi:10.1371/journal.pone.0018606.t008
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