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Abstract

Background: Transcription factors are important controllers of gene expression and mapping transcription factor binding
sites (TFBS) is key to inferring transcription factor regulatory networks. Several methods for predicting TFBS exist, but there
are no standard genome-wide datasets on which to assess the performance of these prediction methods. Also, it is believed
that information about sequence conservation across different genomes can generally improve accuracy of motif-based
predictors, but it is not clear under what circumstances use of conservation is most beneficial.

Results: Here we use published ChIP-seq data and an improved peak detection method to create comprehensive
benchmark datasets for prediction methods which use known descriptors or binding motifs to detect TFBS in genomic
sequences. We use this benchmark to assess the performance of five different prediction methods and find that the
methods that use information about sequence conservation generally perform better than simpler motif-scanning methods.
The difference is greater on high-affinity peaks and when using short and information-poor motifs. However, if the motifs
are specific and information-rich, we find that simple motif-scanning methods can perform better than conservation-based
methods.

Conclusions: Our benchmark provides a comprehensive test that can be used to rank the relative performance of
transcription factor binding site prediction methods. Moreover, our results show that, contrary to previous reports,
sequence conservation is better suited for predicting strong than weak transcription factor binding sites.
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Introduction

A classical but still unsolved problem in the field of bioinfor-

matics is to predict the genomic loci of transcription factor binding

sites (TFBS). The mapping of TFBS is important to infer the

regulatory networks of transcription factors (TF) which are key

controllers of gene expression. Experimental and computational

techniques are interdependent [1], and since traditional experi-

mental techniques for mapping TFBS can be laborious and new

high-throughput methods such as ChIP-seq are not readily

available or effective in all cell contexts [2], computational

prediction of binding sites is still a highly active area of research

in bioinformatics.

Most prediction methods are based on searching for known

sequence motifs, and though many different approaches have been

investigated to improve the apparent low specificity of predictions

[3], there is still a lack of a common reference dataset on which to

judge and compare a method’s prediction performance. While

benchmarking studies have been done for the related problem of

motif discovery [4–6], we are not aware of any attempts at creating a

benchmark for the motif search problem. Most methods have

therefore reported results on different, synthetic or somewhat small

datasets.

Chromatin immunoprecipitation followed by massively parallel

DNA sequencing (ChIP-seq) is a recent high-throughput technique

which can be used to map TFBS on a genome-wide scale [2]. The

technique has increased the available data on possible binding sites

enormously, and raised the opportunity of better evaluating the

prediction accuracy of the computational prediction methods.

The purpose of this study is two-fold. First, we create a common

benchmark for TFBS search methods, based on a large set of

publicly available human ChIP-seq data and explore the

challenges in doing so. Our focus for the benchmark is methods

which search for TFBS using known models of binding sites, not

ab initio TFBS discovery. Second, we test this benchmark on a

small set of methods to investigate the effects of using an

alternative to the common position-weight matrix (PWM) motif

representation, and of using sequence conservation across related

genomes to improve accuracy.

Traditionally, one of the approaches to improving TFBS

prediction accuracy has been to enhance the sequence motif

model with the goal of relaxing some of the constraints and
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assumptions of the de facto standard PWM model, such as the

assumption that nucleotide positions are independent. Recently,

protein binding microarray experiments have shown that the

sequence variety and position-interdependence between bases in

sequence motifs are even higher than previously expected, and

that TFs bind a rich spectrum of k-mers not fully captured even by

multiple PWMs [7]. MotifScan [8] is in this respect an interesting

alternative algorithm for scoring sequence motifs as it might be

better at scoring motifs where the k-mer sequences of the motif can

be clustered into several highly different subclusters. Whereas a

PWM approach packs all motif k-mers into a common sequence

distribution model and compares a candidate k-mer to this model

as a whole, MotifScan compares a candidate k-mer to the specific

k-mers in the motif in a nearest-neighbor approach. We expect this

to be an improvement over PWM scanning, and test both PWM

scanning and MotifScan with our benchmark.

Another approach to improving TFBS prediction accuracy has

been to incorporate information about sequence conservation. It

has been shown that the sequence in functional regulatory regions

of the DNA is more conserved than the surrounding non-

functional regions [9]. By using the genomic sequence of several

related genomes, it is possible to infer how conserved a potential

binding sites is, and thus to have a higher confidence in the

conserved predicted sites versus the non-conserved sites [3].

A particular successful example used genomes of 12 Drosophila

species [10] with a scoring scheme which measures the total branch

length in the phylogenetic subtree covering the genomes that harbor

the motif. In their ‘‘MotifMap’’ article [11], Xie et al. test this

approach using a multiple alignment of 18 placental mammals and

further improve it by considering the uncertainty of the motif

occurrences when calculating the branch length. Their ‘‘Bayesian

branch length score’’ (BBLS) method is one of the latest algorithms

for conserved TFBS search and is tested here with our benchmark.

We also test a simpler method based on sequence conservation,

which we name ‘‘Weighted sum’’ (WS), where we simply sum a

weighted average of the motif score in the mouse and rat genome in

addition to human. The WS method can be thought of as a baseline

conservation-based method, and serves to illustrate how much

performance can be gained with a basic conservation scheme versus

a more refined approach such as the bayesian branch length score.

Although ‘‘phylogenetic footprinting’’ has the potential to filter

out non-conserved sites and increase specificity, not all functional

sites are conserved [12,13]. It is therefore uncertain how

conservation methods perform with respect to sensitivity, though

it has been suggested that they are more sensitive than PWM

scanning at detecting binding sites with weak affinity for the TF

[14]. Here, we test if there are differences between conservation-

based methods and PWM scanning on weak and strong binding

sites and find the difference in performance to be greater on the

stronger binding sites. Thus, contrary to previous reports, our

results indicate that conservation-based methods are better at

predicting strong than weak binding sites.

Methods

Creating a ChIP-seq based benchmark for TFBS
predictors

Our primary goal was to create a performance test which would

be used to rank several methods for predicting transcription factor

binding sites. To do this, we used a set of ChIP-seq peak regions as

a ‘‘positive’’ set of binding sites, and larger regions surrounding

each peak region as ‘‘negative’’ regions. We reasoned that a good

prediction method will score the positive regions higher than the

surrounding non-binding regions.

TFBS prediction can roughly be divided into the following two

problems: 1) given a region with a known binding site, identify the

specific binding site region and 2) identify the genes regulated by a

given transcription factor. We therefore made two types of

benchmarks based on published transcription factor ChIP-seq data

to emulate these problems (Tables 1 and 2). The first, which we

refer to as the site benchmark, used all available ChIP-seq peak

regions and included a 20,000 bp randomly placed region

surrounding each peak. We used 20,000 bp regions to keep the

benchmark close to a genome-wide search situation; the regions

were roughly 100 and 2000 times larger than the average peak

region and TFBS. To avoid making the site benchmark

exceedingly difficult and to be better able to compare score

distributions in positive and negative regions, we further divided

the large negative regions into subregions of 200 bp such that

positive and negative regions were of approximately equal length.

The second (promoter) benchmark emulated the problem of

mapping TF to target genes. Here, we used RefSeq gene

annotations as basis and created two test regions per gene; the

first region consisted of 2000 bp upstream and 200 bp down-

stream of the TSS, whereas the second region was the first intron

of the gene. The intron region was limited to maximum 3000 bp.

We then mapped the ChIP-seq peak regions to these test regions.

The promoter benchmark represents the typical gene-based way of

using transcription factor binding site prediction methods, as

traditionally the methods are used over relatively small intervals in

the vicinity of gene transcription start sites to map their regulatory

candidate TFs.

All prediction methods tested in this study output one score per

genomic position and DNA strand. This score represents the

method’s belief that a binding site motif starts at the position. As

peak regions represent TFBS, we were interested in testing

whether a peak region is scored higher than a non-peak region. To

measure the performance of a method, we therefore used the

maximum score of all positions inside each ChIP-seq peak region

as the score for the peak. Similarly, the maximum scores in the

negative region intervals upstream, downstream, or between the

peak regions were kept and annotated as scores for the negative

regions; see Figure 1.

The peak prediction method we used as basis for our

benchmark datasets is a meta-approach that is more strict and

specific than the single methods which it is based on [15]. With

this additional stringency for peak calling, it could be that the

negative regions as defined by this meta approach harbor enriched

Table 1. ChIP-seq peak dataset.

TF Cell-type
Peaks in
total

Peaks in
promoter set

Avg peak
length

NRSF K562 4329 507 (12%) 154

c-Fos K562 9781 2697 (28%) 165

c-Jun K562 12588 1915 (15%) 177

c-Myc K562 10901 4514 (41%) 184

Max K562 6688 2564 (38%) 173

GATA1 K562 2548 398 (16%) 180

YY1 K562 3360 2380 (71%) 157

E2F4 K562 8678 5825 (67%) 201

NFKB GM12878 4555 211 (5%) 223

This table shows the ChIP-seq peak datasets from which the benchmark
datasets are generated.
doi:10.1371/journal.pone.0018430.t001

ChIP-Seq Benchmark of TFBS Predictors
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regions that could possibly represent true binding sites of lesser

affinity to the TF. To help avoid any interference of possible false

negative binding sites by these ‘‘lesser’’ peaks in the benchmark,

we further limited the negative regions by ignoring regions that

was defined as a peak by any of the peak calling methods in any of

the replicates.

Defining peaks and promoter regions
The benchmarks were based on public genome-wide ChIP-seq

datasets from the ENCODE project [16], available from the

UCSC Genome Browser Yale TFBS and HAIB TFBS tracks

[17,18]. The raw tag-count data were then processed by our own

peak detection method [15] which we briefly describe here:

ChIP-seq peaks were identified in sample and replicate data by

two different peak-finder programs, MACS [19] and SISSRs [20].

Both programs were run using independent background samples

to correct for biases in the background tag distribution. To reduce

the number of false and spurious peaks identified, only peaks

identified by both programs, and in a separate independent

replicate sample for MACS, were used in the benchmark. Peak

regions were then shortened to 100-400 bp by a peak-trimming

procedure to reflect the resolution in ChIP-seq data.

With the peak regions defined, we created the two benchmarks.

For the site benchmark we used all available peak data; for each

peak we annotated a 20.000 bp region randomly around the peak

region as the test region. Any overlapping test regions were

iteratively merged by creating a new region containing all of the

peaks and with length equal to the sum of the merged regions.

This way the ratio between peak and non-peak region were kept

constant. The vast majority of test regions only contained one peak

region. See Table 1 for an overview of ChIP-seq data used and the

peak count for each dataset.

The promoter benchmark was based on the RefSeq gene

annotations taken from the RefGene table of the hg18 genome

assembly downloaded from the UCSC Genome Browser on

October 22, 2009. We only used genes from standard chromo-

somes (no genes from random or haplotype-specific chromo-

somes). Two test regions were made from each gene; (1) the

promoter region, defined to be 2000 bp upstream and 200 bp

downstream of the transcription start site, and (2) the first intron

region, which was limited to a maximum length of 3000 bp

downstream from the start of the first intron. We only kept one

region of any genes that had overlapping promoter or intron

regions. Our set of peaks were then mapped to these test regions. If

an overlapping peak region was only partially contained within a

test region, the test region was extended to fully encompass the

peak region. Table 1 shows how many of the total set of genome-

wide peaks lie in the promoter and first intron region of a gene and

thus were incorporated into the promoter benchmark datasets.

Performance calculation by ROC score
The prediction methods score each position in the test region on

both strands. When calculating prediction performance, we

labeled the maximum score inside each ChIP-seq peak region

with a positive label and labeled the maximum scores for the

negative regions upstream/downstream/between the peak regions

with negative labels (Figure 1). After sorting the labels according to

descending score, we plotted the receiver operating characteristic

(ROC) curve and calculated the area under the curve (AUC or

ROC score) [21]. If some regions had the same maximum score,

the negatives were counted before the positives. In addition to the

ROC curve, we also plotted the ROC-50 curve, where we stopped

counting positives after passing 50 negatives.

Selection of sequence motifs
The motifs were taken from the Jaspar 2009 [22] and Transfac

Professional [23] databases. Our only selection bias was that the

motifs should have the k-mer sequences available. We did not test

several different motifs for each TF. The following motifs were

used (given as TF:Motif): NRSF: V$NRSF_Q4, c-Fos and c-Jun:

MA0099.2, Max: MA0058.1, GATA1: MA0036.1, YY1:

V$YY1_01, E2F4: V$E2F_Q2, NFKB: MA0105.1. See Table 2

for details about the motifs.

Prediction methods tested in study
We tested our benchmark on five methods, three of which use

sequence conservation to improve prediction accuracy.

PWM search
Position-weight matrices [24] were made from the nucleotide

frequency count data in the selected motifs from the Transfac and

Jaspar databases together with a standard background model made

by counting the number of each nucleotide in the human genome.

The PWM was then scored at all positions on both strands.

MotifScan
The MotifScan method is an alternative to PWM scanning [8].

Instead of making one model for all the known binding sequences

Table 2. Motifs used in benchmark.

TF Motif ID PWM length
Total info
content

Avg info
content

NRSF V$NRSF_Q4 19 13.58 0.71

c-Fos MA0099.2 7 5.65 0.81

c-Jun MA0099.2 7 5.65 0.81

c-Myc V$MYC_Q2 7 6.90 0.99

Max MA0058.1 10 7.55 0.75

GATA1 MA0036.1 5 4.65 0.93

YY1 V$YY1_01 17 5.17 0.30

E2F4 V$E2F_Q2 6 4.78 0.80

NFKB MA0105.1 11 9.50 0.86

This table shows the motifs used in the benchmark study. Motifs starting with
‘‘V$’’ are from the Transfac database [23], the others are from Jaspar [22].
doi:10.1371/journal.pone.0018430.t002

Figure 1. Defining positive and negative regions for the site
benchmark. The maximum score in each region is used to calculate
the ROC curve. In the site benchmark, the negative regions around a
peak are further divided into smaller regions of length 200 bp (not
shown). The promoter benchmark is based on the same principle as the
site benchmark, but the test regions are then derived from regions
surrounding gene transcription start sites and from first introns, and the
negative regions are not further divided into smaller regions.
doi:10.1371/journal.pone.0018430.g001

ChIP-Seq Benchmark of TFBS Predictors
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(k-mers) of a TF, MotifScan scores a sequence against each k-mer

explicitly. The score depends on the number of similar k-mers and

the number of differing nucleotides, and in addition a substitution

matrix is used for each differing nucleotide. The MotifScan

method was implemented by us after the instructions in the

original article [8] and the substitution matrix was made from all

Transfac and Jaspar sequence motifs. The method was run with

original parameter settings.

Weighted sum
The weighted sum (WS) method is the most straight forward

of the methods we tested that use sequence conservation to

improve accuracy. The method takes as input the multiple

alignment files from UCSC Genome Browser Multiz 28-way

alignment. A PWM is used and for each position in the human

(hg18) genome, the mouse (mm8) and rat (rn4) genomes (with

gaps removed) are also scored in a window reaching 15 bp

upstream and 15 bp downstream from the current hg18 position.

The maximum score in the window region is multiplied by 1=2
and added to the human score. The method will score motifs

conserved in mouse and rat higher than non-conserved

motifs.

Bayesian branch length score
Branch length conservation methods use a phylogenetic tree as

input in addition to a sequence alignment to quantify the

conservation level of a motif. The total branch length score is

defined as the sum of the branch lengths on the phylogenetic

subtree spanned by the nodes containing the motif. The

Bayesian branch length score (BBLS) [11] differs from the

original branch length method [25] in that it weights each

branch length by the probability that the branch is under

negative selection.

Our implementation of the BBLS is similar to the original; the

code for calculating the BBLS score from motif sequence scores

was obtained from the authors. 18 placental mammals from the

Multiz 28-way multiple alignment was used as input. The BBLS

requires a cutoff value where leaf nodes with sequence motif scores

above the cutoff are used in the BBLS calculation. We obtained

the best cutoff (95 percentile) by calculating the ROC and ROC-

50 score on the c-Myc, NRSF and Max datasets using a series of

different percentile thresholds.

We introduced a minor novelty, by basically running the BBLS

method with MotifScan scores instead of PWM scores as input.

The justification for this was that as genomic sequences diverge,

the sequence variation span in binding sites under negative

selection might not be fully captured by a PWM, which focuses on

the ‘‘center’’ of the nucleotide distribution. Our hypothesis was

that the BBLS MS method should better tolerate evolutionary

sequence drift and outperform the BBLS PWM method. The same

cutoff (95 percentile) turned out to be the best and was also used

for the BBLS MS method.

Method implementation
All methods were implemented to be run on a supercomputer

cluster, in order to speed up motif search. Python was primarily

used, with some extensions written in C for the PWM scanning.

The parallell implementation was not strictly necessary, but made

it much more feasible to run the methods on all the relatively large

datasets.

Availability
The benchmarks are available as Dataset S2 and S3.

Results

Conservation generally improves binding site predictions
Previous studies have shown that information about sequence

conservation can improve transcription factor binding site

predictions [3,11], but we wanted to better understand how

conservation improves accuracy. We therefore compared standard

PWM scanning with two conservation-based methods: the first, a

simple conservation method that used the weighted average of the

PWM score in homologous regions in the mouse, rat, and human

genomes (weighted sum; WS); the second, the more elaborate

Bayesian branch length method (BBLS) [11]. In addition, we

wanted to test an alternative k-mer-based motif scoring method

(MotifScan [8]) and evaluate if it could be used as a basis for an

improved conservation-based method. We therefore also tested

MotifScan on its own and within the Bayesian branch length

framework.

Based on previous studies, we expected the conservation-based

methods to clearly have superior performance compared to the

other methods. However, the results varied more than expected

and there were greater differences between benchmarks and

scoring methods. On the site benchmark, the MS method had the

best median ROC score, followed by PWM. All three of the

conservation-based methods were better than PWM and MS on

only four of the nine datasets (Fig. 2). Among these methods, the

simpler WS method had best median ROC score. This was also

the only method that had significantly better ROC score than any

other method (p-values 0.0098 and 0.0059 on one-sided Wilcoxon

signed-rank test when compared against BBLS PWM and BBLS

MS; see Dataset S1 for individual scores and p-values).

The conservation-based methods showed better specificity,

however, and the BBLS methods were the only methods that

achieved a median ROC-50 score higher than zero (Table 3).

Ignoring the results on NRSF, the conservation-based methods

were orders of magnitude better, though the absolute ROC-50

scores were still very low. On most datasets, only the conservation-

based methods could score some positives higher than the 50

highest scoring negatives; PWM and MotifScan failed to find any

positives at this threshold in 7 and 6 TF sets.

Although the MotifScan method was better than PWM

scanning on five of the nine datasets, the overall differences were

not significant (p-value 0.213 on one-sided Wilcoxon signed-rank

test). Similarly, the novel MotifScan-based BBLS method, BBLS

MS, did generally not outperform the PWM-based BBLS. This

result suggests that PWMs may be sufficient to model binding sites

for most of the transcription factors in this study, whereas perhaps

other transcription factors may require more complex binding site

models.

Among the conservation-based methods, it is interesting to note

that the simple WS method achieved both higher median and

average ROC score than the BBLS methods. Weighted sum

actually had better ROC score than PWM-based BBLS on seven

of the data sets, the difference being significant. The BBLS

methods had much better ROC-50 scores though; BBLS MS was

better than PWM, MS, and WS (p-values 0.007, 0.092, and 0.007)

and BBLS PWM was also better than these three methods, though

the differences were borderline significant (all p-values 0.065).

The differences between the methods were greater in the

promoter benchmark (Fig. 2, Table 4). The conservation-based

methods were significantly better than PWM and MS in all

comparisons (see Dataset S1 for p-values). The BBLS PWM

method had the best median ROC score, whereas the BBLS MS

had a slightly better average ROC score. BBLS PWM was here

significantly better than WS (p-value 0.002). Again, the branch

ChIP-Seq Benchmark of TFBS Predictors
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length methods also demonstrated superior ability to discern true

binding sites from false positives as measured by the stricter ROC-

50 score, but the scores were in the same low range as on the site

benchmark.

The top performing method varied from one dataset to another.

This shows the importance of using multiple datasets for testing to

get a fair comparison between methods; for example, WS had a

better average ROC-50 score than PWM-based BBLS due to the

good score on NRSF, but overall, BBLS PWM is slightly better

than WS (p-value 0.064).

Conservation has most effect on short and information-
poor motifs

The differences between conservation-based methods and pure

motif-based methods varied between different TFs and between

the two benchmarks. There were some notable exceptions, such as

NRSF where the motif-based methods showed better or

comparable performance. We noted that NRSF was the best

scored dataset overall and also had the longest motif, and therefore

hypothesized that PWM scanning performance was generally

related to motif length or the motif’s specificity. Indeed, PWM

ROC scores on the site benchmark were correlated with motif

length (Spearman correlation coefficient 0.24) and even more

strongly correlated with motif information content [24] (0.49)

(Fig. 3).

We also found that the difference in ROC score between PWM

and BBLS PWM correlated with motif information content

(Spearman 0.62, two-sided p-value 0.075), meaning that the

differences between the conservation-based BBLS PWM and the

simpler PWM method were smallest for the information-rich

motifs. The four TFs with the largest score difference on the

promoter benchmark where either short motifs (c-Myc, GATA-1,

E2F4) or had on average low information content (YY1). The

short motifs for c-Myc, GATA-1, and E2F4 were also the motifs

that apparently had the highest amount of noise around the peak

regions, as these motifs showed the least distinct association with

the peak center (Figure 4). The figure also shows that the center of

the peak regions, where most of the best scoring motifs are located,

had stronger sequence conservation compared to its immediate

surroundings.

Considered together with the ROC curves of short motifs such

as V$E2F_Q2 in Figure 3C and longer information-rich motifs

such as V$NRSF_Q4 in Figure 3D, this explains when the benefit

of using conservation is greatest; namely when the motif does not

contain enough information to distinguish between the random

high-scoring sequences and the real binding sites. The conserva-

tion methods will less often achieve high motif scores for all aligned

genomes in the same loci, and this conservation filtering can

therefore make them better at distinguishing between functional

Figure 2. Cumulative ROC score on site and promoter benchmarks. The cumulative number of TF datasets for which a method has a ROC
AUC of more than a given value on the A) site and B) promoter benchmark. Each line represents a method and shows for each point along the y-axis
how many datasets that have at least the ROC score given on the x-axis. The ROC score, or area under the ROC curve (AUC), is a measure of accuracy
that summarizes the true-positive and false-positive rate and the implied trade-offs at all score thresholds.
doi:10.1371/journal.pone.0018430.g002

Table 3. Median and median absolute deviation (MAD) ROC
scores on site benchmarks.

Method Median ROC MAD ROC
Median
ROC-50 MAD ROC-50

PWM 0.7246 0.0955 0.0000 0.0000

MS 0.7251 0.0874 0.0000 0.0000

WS 0.7195 0.0338 0.0000 0.0000

BBLS PWM 0.7047 0.0343 0.0050 0.0031

BBLS MS 0.7001 0.0275 0.0068 0.0041

doi:10.1371/journal.pone.0018430.t003

Table 4. Median and median absolute deviation (MAD) ROC
scores on promoter benchmark.

Method Median ROC MAD ROC
Median
ROC-50 MAD ROC-50

PWM 0.3373 0.1357 0.0000 0.0000

MS 0.3425 0.1480 0.0000 0.0000

WS 0.4785 0.0907 0.0000 0.0000

BBLS PWM 0.5121 0.1232 0.0074 0.0042

BBLS MS 0.4572 0.1469 0.0063 0.0050

doi:10.1371/journal.pone.0018430.t004

ChIP-Seq Benchmark of TFBS Predictors
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(and conserved) motifs and false positives, compared to PWM

scanning.

A complex motif model has most effect on diverse and
information-poor motifs

In the comparisons, MotifScan was better than PWM scan on

six of nine site datasets and four of nine promoter datasets. One of

the TFs with the largest score difference was YY1 where

MotifScan had a 20% better ROC score on the promoter dataset

compared with PWM scan. The V$YY1_01 sequence motif used

on the YY1 dataset is long, but has a low information content with

much sequence variation outside of the core of the motif. For

example, the average Hamming distance between the YY1 k-mers

is 10.3 whereas the average among the other motifs in our

benchmark is a mere 2.6.

In theory, MotifScan should be better on motifs with low

information content compared to PWMs as its motif representa-

tion and scoring is better than a PWM when the binding k-mer-

sequences have a lot of variation. In accordance with this

hypothesis, we found that the difference between the MotifScan

and PWM ROC scores on the site benchmark was negatively

correlated with average motif information content (information

content divided by motif length; Spearman correlation coefficient

-0.69; p-value 0.03 with two-sided corr. test) and positively

correlated with k-mer diversity as measured by average k-mer

Hamming distance (correlation coefficient 0.64; p-value 0.061); see

data in Dataset S1. Thus, MotifScan can give better predictions

than PWM scanning for factors where a simple PWM model

would ‘‘average out’’ the sequence variation in the k-mers bound

by the factor. This likely explains the large difference between

PWM and MotifScan on the YY1 dataset.

Conservation has more effect on detecting strong than
weak sites

Others working on assessing performance of prediction methods

in the yeast model organism have previously hypothesized that

Figure 3. ROC score correlates with motif length and information content. A) ROC score for PWM scanning as a function of motif length. B)
ROC score for PWM scanning as a function of motif information content. Longer, information-rich motif achieve better scores. Note that YY1 has the
second longest motif (V$YY1_01), but this motif also has the second lowest information content, which likely explains its lower score compared to the
most information rich motif (V$NRSF_Q4). C) ROC curves for all methods on the E2F4 dataset in the promoter benchmark. The V$E2F_Q2 motif is one
of the least informative motifs and the performance of the prediction methods on the E2F4 dataset is relatively low. D) ROC curves for all methods on
the NRSF dataset in the promoter benchmark. The V$NRSF_Q4 motif is the most informative motif and the NRSF dataset is among the highest scoring
datasets.
doi:10.1371/journal.pone.0018430.g003
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conservation-based methods might be more sensitive than PWM

scanning and better at detecting motifs of binding sites that have

low affinity for the transcription factor [14]. To test this

hypothesis, we divided the ChIP-seq peaks into sets according to

peak tag count. In one set, we kept only the sites with peak height

higher than the 90 percentile and in another set we kept the sites

with peak height lower than the 10 percentile.

Figure 5 shows the ROC scores on the promoter benchmark for

PWM and BBLS PWM when the ROC curve is recalculated after

only keeping the highest or lowest peaks. For all datasets except c-

Fos, sub-datasets consisting of high peaks have better scores than

sub-datasets of low peaks. This means that higher peaks correlate

better with the sequence motifs than lower peaks and this is

consistent with the high peaks being strong binding sites.

According to the previous hypothesis in yeast, we expected the

difference in scores between conservation-based methods and

PWM scan to be bigger on the low peaks as these represent weak

binding events. On the contrary, as seen in Figure 5, the difference

in scores between BBLS PWM and simple PWM scanning was

generally greater on the high peaks. Except for Max, all the

datasets tested show greater score differences in favor of BBLS

PWM on higher peaks (above 90 percentile) than on lower peaks

(below 10 percentile); see Dataset S1. For NRSF, the PWM

performs better than the conservation-based BBLS PWM on the

lower peaks.

One explanation for this result could be that the motifs in the

higher peaks are more conserved than in the lower peaks. Indeed,

by looking at average phyloP conservation scores [26] in the low

Figure 4. Max PWM score and phyloP values correlate with center of peak regions. The figures show a region of 500 bp surrounding each
peak region. On the left is shown for each of the 500 positions the number of times that position has the maximum PWM score in the 500 bp region.
On the right is the average phyloP score. The grey lines show the average peak width. Both max PWM score and higher phyloP values tend to be
clustered in the center of the peak regions, but the clustering varies for each TF.
doi:10.1371/journal.pone.0018430.g004

Figure 5. ROC scores for PWM and BBLS PWM on low and high
peaks. ROC scores on each TF promoter dataset for PWM and BBLS
PWM methods on the lowest peaks (v10 percentile), and highest peaks
(w90 percentile). The difference between PWM and the conservation-
based BBLS PWM method is generally greater, and in favor of BBLS
PWM, on the higher peaks more than the lower peaks.
doi:10.1371/journal.pone.0018430.g005
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and high promoter peak regions of all TFs, we found that high

peak regions have 7.5% higher conservation scores than low

peaks; see also Figure 6. Considering how short the sequence motif

is compared to the whole peak region, this is a significant

difference, and contributes to explaining the difference in scores

between PWM and BBLS PWM methods.

This result shows that strong binding sites are generally more

highly conserved than weak binding sites are. Consequently,

although including conservation information can help in detecting

weak binding sites, conservation information does apparently not

give an increased sensitivity at recognizing weak sites, but an

increased specificity at recognizing strong sites.

ChIP-seq data from another cell-line validates the
benchmark results

The binding of a TF to DNA depends on many factors, which

will vary from one context to another. This can, for example, yield

differences in binding sites between different cell-types. To test

whether our benchmark results were cell-type dependent, we ran

the same peak detection method on datasets from the HeLa-S3 cell

line for TFs c-Myc, c-Fos, E2F4, and Max and created additional

site datasets on which we ran all of the methods. The results using

HeLa-S3 data mainly showed the same trend as the original results

obtained using the K562 data in the benchmark (see Dataset S1),

but with some exceptions. c-Fos was scored higher in HeLa-S3 than

in K562 by all methods, with PWM and MS giving best results. For

the other datasets, the scores in HeLa-S3 were in the same range as

for K562, and expect for Max, the method ranks were mostly

similar. Only the conservation-based methods had ROC-50 score

greater than zero. The overall results suggest that the benchmark

gives a fair judgement of the relative performance of the methods,

but the score variations again demonstrate the importance of

evaluating methods on many different datasets.

Discussion

In this article we have described a benchmark for testing

methods that predict transcription factor binding sites. Our

positive set of binding sites is based on ChIP-seq data and

computationally predicted ChIP-seq peak regions. Although

ChIP-seq is considered state-of-the-art technology for mapping

transcription factor binding sites, there are at least four concerns in

using such data for creating a fair and unbiased benchmark. First,

ChIP-seq is cell-context specific, whereas motif detection is not.

Which of the potential binding sites a transcription factor actually

binds depends on the state of the cells, whereas computational

prediction based on sequence motifs will not have this kind of bias.

We assume that any bias due to the cell-context of the ChIP-seq

peak regions have the same effect on the performance of the

methods tested and only work to reduce the methods’ overall

performance. Based on our tests with ChIP-seq data from two

different cell lines, this assumption seems to hold.

Second, using ChIP-seq data means that we cannot separate

between direct and indirect binding. Because a transcription factor

can bind via cofactors and without a sequence-specific motif, this

indirect binding can introduce false positive peaks that results in

more false negatives in the predicted sites of all methods.

Third, a major concern is the quality and correctness of the

peak regions. We use ChIP-seq data from the highly standardized

ENCODE project [16] so we expect minimal noise in the source

data due to differences in experimental procedures between the

cell line datasets. Also, our peak detection method has been shown

to be highly accurate when tested against other common methods

of peak detection [15]. As described in Methods, the set of derived

binding sites are not necessarily complete, but are thought to

represent the sites with the highest affinity for the transcription

factor and should therefore be correlated with TF sequence motifs.

In the benchmarks, we removed from consideration any regions of

lesser affinity that are predicted to be peaks by MACS or SISSR

alone, but that are not called as peaks with our stricter meta-

approach. Given that we found similar relative performance

between methods when using data from different cell-lines, we

believe the benchmark gives a fair ranking of the methods. For

now, ChIP-seq is probably the best technique available for

genome-wide mapping of transcription factor binding sites in

mammals.

Fourth, an issue which complicates performance comparison

and which also explains some of the performance difference

between the methods tested, is that many PWM models obtain

their maximum score so frequently that it becomes impossible to

sort the relatively large predicted regions according to score. In

our benchmark, we take a conservative approach when calculating

the ROC curve and add all negatives prior to adding positives

when scores are equal. This favors the conservation-based

methods, whose scoring depends on several genomes and therefore

less often achieve maximum scores but give more fine-grained

predictions compared to for example PWM scanning which is

more penalized, especially on the shorter motifs. This can perhaps

to some degree explain why conservation-based methods are so

much better relative to PWM scanning on the promoter

benchmark than they are on the site benchmark.

Another likely reason for the superiority of the conservation-

based methods on the promoter benchmark, as compared to the

site benchmark, concern the peak regions themselves. The

promoter peaks are higher than the non-promoter peaks (on

average 2.7 times higher, p-value 0.129 on a one-sided Wilcoxon

signed-rank test across TFs), and importantly, the promoter peaks

have more conserved sequence as measured by phyloP score (p-

value 4 � 10{5). We therefore expect the motifs to be better

conserved in the promoter peaks as well.

In sum, we have created comprehensive benchmarks for

methods which predict the location of transcription factor binding

Figure 6. Distribution of phyloP scores in lowest and highest
peaks. Boxplot showing for each TF the averaged phyloP scores in
promoter peak regions on lowest peaks (v10 percentile), and highest
peaks (w90 percentile). The higher peaks generally show higher
sequence conservation across genomes.
doi:10.1371/journal.pone.0018430.g006
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sites and have used the benchmark to evaluate the effects of using

different motif representations and of using comparative genomics

in predictions. We found that the methods that use conservation

generally achieve better performance than methods that only use a

single genome as input, especially on high-affinity binding sites.

For good information-rich motifs, however, it might not be

necessary or even beneficial to use conservation to predict binding

sites.

The benchmarking has shown that the methods for TFBS

prediction can and should be improved. As more genomes are

made available, comparative genomics approaches, such as the

branch length methods and phylogenetic shadowing [27], can be

very valuable for improving TFBS prediction. However, given the

relatively small performance differences between elaborate and

simpler conservation methods in our study, it is likely that new

methods also could benefit from integrating more biological data

to improve accuracy [28]. We also suspect that the full benefit of

more elaborate motif models will be seen as more binding site

sequences are made available and incorporated into the motifs.

Supporting Information

Dataset S1 ROC scores and results. Scores pr TF and

additional results. The file is in Microsoft Excel format.

(XLS)

Dataset S2 Site benchmark peak regions. Genomic loci of

the test regions and peak regions for the site benchmark dataset.

Each line gives the test region (chromosome, start, stop) and the

transcription factor used in the test (either cfoshela, cfos, cjun,

cmychela, cmyc, e2f4hela, e2f4, gata1, maxhela, max, nfkb, or

nrsf; the ‘‘hela’’ suffix indicates peaks in HeLa-S3), followed by any

peak regions therein (if applicable) separated by semi-colons. The

peaks predicted by MACS and SISSR in either replicate are

available from http://www.bigr.medisin.ntnu.no/data/tfbs-chip-

seq-benchmark/macssissr.zip. These are the regions ignored in

our benchmark studies, as long as they do not overlap with peaks

as given in the benchmark datasets.

(TXT)

Dataset S3 Promoter benchmark peak regions. Genomic

loci of the test regions and peak regions for the promoter

benchmark dataset; see the description of Dataset S2 for details.

(TXT)
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