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Abstract

Background: The Ccr4-Not complex is a key eukaryotic regulator of gene transcription and cytoplasmic mRNA degradation.
Whether this complex also affects aspects of post-transcriptional gene regulation, such as mRNA export, remains largely
unexplored. Human Caf1 (hCaf1), a Ccr4-Not complex member, interacts with and regulates the arginine methyltransferase
PRMT1, whose targets include RNA binding proteins involved in mRNA export. However, the functional significance of this
regulation is poorly understood.

Methodology/Principal Findings: Here we demonstrate using co-immunoprecipitation approaches that Ccr4-Not subunits
interact with Hmt1, the budding yeast ortholog of PRMT1. Furthermore, using genetic and biochemical approaches, we
demonstrate that Ccr4-Not physically and functionally interacts with the heterogenous nuclear ribonucleoproteins (hnRNPs)
Nab2 and Hrp1, and that the physical association depends on Hmt1 methyltransferase activity. Using mass spectrometry,
co-immunoprecipitation and genetic approaches, we also uncover physical and functional interactions between Ccr4-Not
subunits and components of the nuclear pore complex (NPC) and we provide evidence that these interactions impact
mRNA export.

Conclusions/Significance: Taken together, our findings suggest that Ccr4-Not has previously unrealized functional
connections to the mRNA processing/export pathway that are likely important for its role in gene expression. These results
shed further insight into the biological functions of Ccr4-Not and suggest that this complex is involved in all aspects of
mRNA biogenesis, from the regulation of transcription to mRNA export and turnover.
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Introduction

Gene expression is regulated at multiple levels, including at the

stages of transcriptional and post-transcriptional control, to

achieve correct levels and patterns of expression [1]. The nuclear

steps required for gene expression are highly integrated and are

controlled by evolutionarily conserved factors and mechanisms

which package an mRNA molecule into an export-competent

ribonucleoprotein (mRNP) complex [1,2,3]. There is mounting

evidence that the steps from transcription to mRNA export are not

only sequential, but in fact are highly coupled and interdependent,

whereby proteins involved in one step of mRNA biogenesis are

subsequently used as adaptor proteins to recruit other processing

or export factors [1,2,3,4,5,6]. Among these RNA binding proteins

are the historically defined heterogenous nuclear ribonucleopro-

teins (hnRNPs) which mediate multiple steps in the mRNA

lifecycle such as processing, nuclear export, and delivery to the

cytoplasm [7,8]. The budding yeast Saccharomyces cerevisiae has a

number of hnRNPs including Hrp1, which is required for proper

mRNA cleavage and polyadenylation [9], the poly(A) binding

protein, Nab2, required for mRNA export and proper poly(A) tail

length [10,11,12], and Npl3, which is involved in splicing,

transcription elongation, and export [13,14].

Following mRNA maturation and processing, the export-

competent mRNP must travel through the nuclear pore complex

(NPC) to reach the cytoplasm. The NPC is an evolutionarily

conserved structure comprised of approximately 30 protein

components called nucleoporins (Nups), which are present in at

least 8 copies per NPC and are arranged in 8-fold radial symmetry

to form channels that perforate the nuclear envelope and mediate

traffic between the nucleus and cytoplasm [15,16]. Some Nups are

asymmetrically localized across the NPC, giving the complex three

distinct substructures: a nuclear basket, a central core spanning the

nuclear envelope, and cytoplasmic fibrils [16]. In order for an
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mRNA to translocate through the NPC, mRNA export factors in

complex with the mRNA interface with a distinct class of Nups

called FG-Nups, which contain at least one domain of distinct

repeating patterns of phenylalanine (F) and glycine (G) residues

[5,16]. Mutations in many distinct Nups result in mRNA export

defects and mRNA accumulation in the nucleus [17,18,19,

20,21,22,23]. Interestingly, recent studies have uncovered a

physical link between transcriptionally active genes and the NPC

[24], reminiscent of Blobel’s gene gating hypothesis [25] and

further suggesting that every aspect of mRNA maturation may be

tightly coupled from biogenesis to nuclear export.

A significant contributor to the lifecycle of an mRNA molecule,

from mRNA biogenesis to eventual degradation, is the evolution-

arily conserved multi-subunit Ccr4-Not complex. The Ccr4-Not

complex is a large protein complex (,0.9–1.0 MDa), containing

nine core subunits (Ccr4, Caf1, Caf40, Caf130, and Not1-5) that

localizes to both the nucleus and cytoplasm [26,27]. The Caf1 and

Ccr4 subunits are mRNA deadenylases, responsible for the major

cytoplasmic deadenylase activity in budding yeast [28,29,30], The

Not4 subunit is a RING-domain containing ubiquitin ligase whose

only known substrates are the Egd1 and Egd2 proteins involved in

translation and the Jhd2 histone demethylase [31,32,33]. The

Ccr4-Not complex negatively and positively regulates both

transcription initiation and elongation, and it has been suggested

that the combined actions of Ccr4-Not members contribute to

transcriptional control of ,85% of the S. cerevisiae genome [34,35].

This regulation is achieved in part through physical interactions

between Ccr4-Not subunits and components of the basal

transcription apparatus and other accessory transcriptional co-

regulators, including the SAGA histone acetyltransferase complex,

the PAF transcription elongation complex, and the proteasome

[36,37,38,39,40].

Until recently, the known nuclear functions of Ccr4-Not were

confined to transcriptional regulation; however, new studies

suggest that Ccr4-Not contributes significantly to other nuclear

processes. Cells mutant for Ccr4-Not components show an

increase in the steady state levels of both snRNAs and snoRNAs

and accumulate a significant fraction of these RNAs as

polyadenylated species [41]. Ccr4-Not also interacts physically

and functionally with both the nuclear exosome and the TRAMP

complex, components of a nuclear surveillance pathway that

targets aberrantly processed RNAs for degradation [41]. These

results suggest that Ccr4-Not has a role in nuclear RNA turnover

through interactions with both the exosome and TRAMP. Ccr4-

Not also has been linked to other nuclear, RNA-based processes.

For example, one of the two human Caf1 orthologs, hCaf1,

associates with the arginine methyltransferase, PRMT1 [42]. Both

factors localize to nuclear speckles, which are sub-nuclear domains

enriched for small nuclear ribonucleoproteins and splicing factors.

hCAF1 interaction with PRMT1 regulates PRMT1-mediated

methylation of both histone H4 and the RNA binding protein

Sam68 in vitro and in vivo, suggesting that Ccr4-Not may play a

significant role in PRMT1-regulated biological processes, includ-

ing mRNA processing and export.

To further define the interactions between Ccr4-Not and

processes regulated by arginine methylation, we used budding

yeast to determine whether Ccr4-Not members interact with the

yeast ortholog of PRMT1, the hnRNP methyltransferase Hmt1

[43]. In this study, we demonstrate that Ccr4-Not subunits

physically and functionally interact both with Hmt1 and the

hnRNPs, Hrp1 and Nab2, which are Hmt1 substrates [44,45]. We

also identify physical and functional interactions between Ccr4-

Not subunits and multiple NPC components, and implicate these

interactions in mRNA export. These studies suggest a novel

functional role for Ccr4-Not in the mRNA processing/export

pathway that likely depends on interactions with Hmt1, hnRNPs,

and the NPC.

Results

Hmt1 physically interacts with components of the
Ccr4-Not complex

A previous study identified one of the human homologs of yeast

Caf1, hCAF1, as a regulator of the arginine methyltransferase

PRMT1 [42]. To determine whether this functional relationship is

evolutionarily conserved in the yeast Saccharomyces cerevisiae, we

performed co-immunoprecipitation experiments to determine

whether Hmt1, the budding yeast ortholog of PRMT1 [43],

physically associates with components of the Ccr4-Not complex.

For this analysis, an HA-tag was integrated into the endogenous

HMT1 locus in cells also expressing Myc-tagged Ccr4-Not

subunits from their endogenous loci. We then performed co-

immunoprecipitation experiments from whole-cell lysates with a-

Myc antibody to precipitate individual Ccr4-Not subunits and

blotted with a-HA antibody to detect Hmt1 association. Hmt1

association is readily detectable with the Caf1 and Ccr4 subunits,

and is more weakly detected with the Not2 subunit (Figure 1A).

Interestingly, Hmt1-HA did not co-immunoprecipitate with Not5-

Myc, suggesting the possibility that differential interactions occur

between Hmt1 and the individual Ccr4-Not members or that

Not5 association is less stable than the other subunits. We

confirmed these results by performing the reciprocal co-immuno-

precipitations and obtained similar results (Figure 1B).

The Ccr4-Not complex physically interacts with hnRNPs
Among the major physiological targets of the Hmt1 methyl-

transferase are heterogeneous nuclear ribonucleoproteins

(hnRNPs) [43,44], which bind mRNAs during processing and

export from the nucleus [7,8]. In S. cerevisiae, hnRNPs include

Hrp1, Nab2, and Npl3 [43,44,45].

Given the physical association we identified between Hmt1 and

Ccr4-Not subunits, we hypothesized that Ccr4-Not might also

interact with hnRNPs. To investigate this possibility, we prepared

lysates from cells expressing Myc-tagged Ccr4-Not subunits,

performed a-Myc immunoprecipitations and then immunoblotted

with antibodies specific for either Nab2 or Hrp1 to determine if

they co-precipitated with Ccr4-Not members. Nab2 co-immuno-

precipitates with Caf1, Ccr4, and Not5, but not with Not1 or Not2

(Figure 2A). Similar to results for Nab2, we identified Hrp1 in co-

immunoprecipitates of Caf1, Ccr4, and Not5. Interestingly, in

contrast to the results for Nab2 association, we did detect Hrp1 in

the Not2 and Not1 immunoprecipitates (Figure 2B). As a control,

Nab2 and Hrp1 did not co-immunoprecipitate from cell lysates

that did not express Myc-tagged Ccr4-Not subunits. We also find

that Hrp1 co-immunoprecipitates with Not4 (Figure 2B). Given

the role of Ccr4-Not in transcriptional regulation, coupled with the

fact that Hrp1 and Nab2 are RNA binding proteins, interactions

between Ccr4-Not subunits and hnRNPs could be RNA-

mediated. We therefore repeated these immunoprecipitation

experiments after pretreating lysates with RNase. These experi-

ments reveal that these interactions do not depend on the presence

of RNA, as interactions between Caf1 and Hrp1 or Caf1 and

Nab2 were not reduced following RNase treatment (Figure 2C

and data not shown). These results suggest that interactions

between the Ccr4-Not complex and hnRNPs may be mediated by

either direct or indirect protein-protein interactions. Taken

together, these experiments reveal that multiple subunits of the

Ccr4-Not complex differentially associate with the hnRNPs Nab2

Ccr4-Not Interactions with mRNA Export Machinery
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and Hrp1, and they further suggest that Ccr4-Not may play a

functional role in the mRNA export pathway.

Physical interactions between the Ccr4-Not complex and
hnRNPs depend upon Hmt1 methyltransferase activity

To test whether the association between Ccr4-Not members

and hnRNPs is Hmt1-dependent, we deleted HMT1 in cells

expressing Caf1-Myc and tested for association with the hnRNP,

Hrp1. While we detected Hrp1 in the Caf1-Myc immunoprecip-

itates, the amount of Hrp1 co-immunoprecipitated with Caf1-Myc

was profoundly reduced in hmt1D cells relative to cells expressing

HMT1 (Figure 2D), suggesting that the interaction between Caf1

and Hrp1 is Hmt1-dependent. Furthermore, these interactions

depend upon the methyltransferase activity of Hmt1, as Caf1 does

not interact significantly with Hrp1 when the catalytically-inactive

hmt1-G68R mutant [46] is expressed in hmt1D cells, whereas

expression of wildtype HMT1 does restore these interactions.

These results support the hypothesis that Ccr4-Not members

associate both with Hmt1 and hnRNPs, and these associations are

dependent on Hmt1 methyltransferase activity. Using an antibody

specific to arginine-methylated Npl3 [47,48], we find no significant

differences in Hmt1-dependent methylation of Npl3 in Ccr4-Not

deletion mutants compared to wild-type cells (data not shown),

suggesting that perturbation of the Ccr4-Not complex does not

impact Hmt1 methyltransferase activity in vivo. Taken together,

these results suggest that methylation of Hrp1 and Nab2 by Hmt1

is required for interaction with the Ccr4-Not complex.

Previously, we TAP-purified individual Ccr4-Not subunits and

identified associated proteins by mass spectrometry [TAP purifica-

tion gels previously published in 41,49]. Among the proteins which

co-purified with multiple Ccr4-Not subunits and which were not

previously reported were the S-adenosylmethionine synthetases,

Sam1 and Sam2, ( 1, Table S1, Figure S1), enzymes that regulate

the cellular pool of S-adenosylmethionine (SAM) which is the

universal methyl donor required for numerous biochemical

reactions including Hmt1-dependent protein methylation [50].

This association between Ccr4-Not subunits and the Sam proteins is

consistent with a role for Ccr4-Not in Hmt1-mediated protein

methylation.

Components of Ccr4-Not physically and functionally
interact with the nuclear pore complex and mRNA
processing and export factors

In multiple independent TAP purifications of Ccr4-Not

subunits analyzed on SDS-PAGE or native gels followed by either

one of two different mass spec analyses we identified the Mlp1,

Mlp2, Nup2, and Nup60 components of the inner nuclear basket

of the NPC [51,52,53]. We also identified the mRNA processing

and export factors Dbp5, Mft1, and Yra1 [54,55,56,57,58].

Tables 1 and 2 present the list of proteins or peptides identified as

co-purifying with Ccr4-Not subunits and their MASCOT scores.

Identified peptides for each purification are presented in Tables 2

and S1, and representative gel images are presented in Figure S1.

Though many of the MASCOT scores in the first analysis (Table 1)

are relatively low, these scores are similar to the scores obtained for

some of the Ccr4-Not subunits isolated in the purifications and

thus most likely reflect the richness and complexity of the

individual purifications. Furthermore, the analyses performed

subsequently with a more powerful machine identified with 100%

confidence the indicated co-purifying proteins (Table 2). To

further validate the association of Ccr4-Not members specifically

with the NPC, we performed co-immunoprecipitation experiments

from cell extracts containing Not1-Myc and Mlp1-HA epitope

tags. Immunoprecipitation of Mlp1 readily co-precipitated Not1 in

these experiments, thus further confirming our mass spectrometry

results and supporting the observation that Ccr4-Not associates

with the NPC (Figure 3).

As Mlp1, Mlp2, and Nup60 are all nuclear NPC components,

their co-purification with Ccr4-Not subunits suggests that

interactions between Ccr4-Not and the NPC may occur on the

nuclear face of the NPC, a subnuclear domain that has critical

roles in mRNA export [4,5]. Moreover, the identification of the

Figure 1. Ccr4-Not subunits associate with the arginine methyltransferase Hmt1. (A) Cells expressing the indicated Myc-tagged Ccr4-Not
subunit as well as HA-tagged Hmt1 were used to examine the interaction between the Ccr4-Not complex and Hmt1. Cells were grown and lysates
prepared as described in Materials and Methods. Ccr4-Not subunits were immunoprecipitated with a-Myc antibody (a-Myc IP) and the co-
immunoprecipitation of Hmt1 was assessed by immunoblotting with an a-HA antibody (a-HA). The efficiency of immunoprecipitation was assessed
by probing the same blots with a-Myc antibody (a-Myc). Input samples (30 mg total lysate) were probed with a-HA antibody to detect HA-tagged
Hmt1 (a-HA). As controls, cells expressing no tagged protein (Control) or only Hmt1-HA show no co-immunoprecipitation. (B) The same samples in
(A) were subjected to immunoprecipitation with a-HA antibody (a-HA IP) to detect co-immunoprecipitation with the Myc-tagged Ccr4-Not subunits.
Immunoblots were probed with a-Myc antibody (a-Myc) to detect Ccr4-Not subunits or a-HA antibody (a-HA) to assess the level of Hmt1
precipitated. Input samples (30 mg total lysate) were probed with a-Myc to detect Ccr4-Not subunits (a-Myc). As controls, cells expressing no tagged
protein (Control) or only Hmt1-HA show no co-immunoprecipitation.
doi:10.1371/journal.pone.0018302.g001
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THO complex subunit, Mft1, as well as Yra1 and Dbp5, provide

additional evidence for a link between Ccr4-Not and mRNA

processing and export. Given the role of the Mlp proteins in

mRNA export and quality control and their interactions with

mRNA binding proteins [59,60,61], we tested whether interac-

tions between the Mlp proteins and Ccr4-Not subunits may be

RNA-dependent. However, RNase treatment did not decrease the

interactions between Mlp1 and Caf1 (data not shown), indicating

that these interactions are not mediated by RNA.

To determine the functional relevance of Ccr4-Not association

with the NPC, we tested for genetic interactions between the

catalytically active Ccr4-Not subunits: the major deadenylase,

Ccr4, and the E3 ubiquitin ligase, Not4, and various NPC

components. Gene deletions of several Ccr4-Not complex

members result in profound growth defects [26,27]; therefore,

we assayed for genetic interactions by overexpressing these Ccr4-

Not subunits in cells deleted for NUP116, a NPC component

implicated in mRNA export [62]. Interestingly, these experiments

revealed that overexpression of NOT4, but not CCR4, impairs

growth of nup116D cells (Figure 4A). This differential effect is not

due to differences in overexpression levels between Not4 and

Ccr4, as immunoblotting confirms that both proteins are

overexpressed to similar levels (Figure 4B). As a control,

overexpression of Ccr4-Not subunits has no effect on the growth

of wild type cells (Figure 4A).

Not4 encodes a ubiquitin E3 ligase whose in vivo substrates remain

largely unknown [31,32,33,63]. To determine if the Not4 ligase

function is important for the overexpression phenotype in nup116D

Figure 2. Association of the hnRNP proteins Hrp1 and Nab2 with Ccr4-Not subunits depends on Hmt1 arginine methyltransferase
activity. (A) Nab2 associates with Caf1, Ccr4, and Not5. Cells expressing the indicated Myc-tagged Ccr4-Not subunit were used in co-
immunoprecipitation experiments as described in the Methods to examine the interaction between the Ccr4-Not complex and Nab2. As a control,
cells expressing no tagged protein (Control) show no co-immunoprecipitation. Nab2 co-immunoprecipitation and input levels (30 mg) were detected
by a-Nab2 immunoblotting while Ccr4-Not subunits detected by a-Myc immunoblotting. (B) Hrp1 associates with Caf1, Ccr4, Not1, Not2 and Not5.
Experiments were performed as in (A) and the co-immunoprecipitation of Hrp1 was assessed by immunoblotting with a-Hrp1 antibody (a- Hrp1). C,
The interaction between Hrp1 and Caf1 is not RNase-sensitive. Cells expressing Caf1-Myc were grown and lysed as described in Materials and
Methods. Lysate was divided into two samples and one aliquot was treated with RNase A prior to immunoprecipitation with a-Myc antibody as
described in the Methods. Fold change in co-immunoprecipitation was determined using reverse image scanning densitometry as described in the
Methods. D, Caf1 association with Hrp1 depends on Hmt1-mediated arginine methylation. CAF1-MYC hmt1D cells were transformed with empty
vector, HMT1 or hmt1G68R expression vectors, and cells were grown in SC-Ura media to select for plasmid maintenance. Lysates were prepared as
described in Materials and Methods. Caf1-Myc was immunoprecipitated with a-Myc antibody (a-Myc IP) and the co-immunoprecipitation of Hrp1 was
assessed by immunoblotting with a-Hrp1 antibody (a-Hrp1). Efficiency of immunoprecipitation was assessed by probing the same blots with a-Myc
antibody. Input samples (30 mg total lysate) were probed with a-Myc and a-Hrp1 antibody. Fold change in co-immunoprecipitation was determined
using reverse image scanning densitometry as described in Methods.
doi:10.1371/journal.pone.0018302.g002

Table 1. Ccr4-Not TAP purifications identify Mlp1/2 and
Sam1/2.

Ccr4-Not TAP Purification Co-purified protein

CAF40-TT Mlp1 (6)a, Mlp2 (14), Sam1 (27), Sam2 (27)

CAF40-TT caf130D Mlp1 (27), Mlp2 (11), Nup60 (13), Mft1 (30)

CAF40-TT not3D Mft1 (23), Sam1 (27)

CAF130-TT Mlp1 (39)

NOT1-TT caf40D Mlp1 (45)

NOT2-TT Mlp1 (26), Mft1 (30) Sam1 (29)

NOT2-TT caf40D Mft1 (42)

NOT3-TT caf40D Mft1 (36)

NOT4-TT Mlp2 (27), Sam1 (35), Sam2 (20)

aMASCOT scores are presented in parentheses next to each identified protein.
doi:10.1371/journal.pone.0018302.t001
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cells and to extend our functional analysis to other NPC subunits,

we overexpressed NOT4 and the not4L35A mutant in nup116D cells

and a variety of other temperature sensitive NPC gene deletions or

mutants. The not4L35A mutation disrupts interactions between

Not4 and its two known E2 ubiquitin-conjugating enzymes, Ubc4

and Ubc5, thus compromising its ubiquitin ligase function [63].

NOT4 overexpression causes significant growth defects in cells

individually mutated or deleted for several NPC components,

including nup1D, nup116D, nup120-1, and nup133-1 mutant cells

(Figure 4C). In contrast, NOT4 overexpression only modestly

affected nup49-313 mutant cells and showed no effect on wild-type

cells. Interestingly, overexpression of not4L35A mostly mirrored the

effect of NOT4 overexpression except that it had a slightly less

negative effect on growth in nup1D and nup120-1 cells and no

detectable effect in nup49-313 cells (Figure 4C). These effects are not

due to differences in the level of overexpression between Not4 and

not4L35A, as immunoblotting confirms that both proteins are

overexpressed to similar levels (Figure 4B). The differences in the

effects of NOT4 and not4L35A overexpression in the nup1D, nup120-

1, and nup49-313 cells are not completely surprising as not4D and

not4L35A mutants have both overlapping and distinct phenotypic

effects [63]. Taken together, these results suggest that altered

stoichiometry of the Not4 ligase is detrimental for cells with

compromised NPCs, and that these negative growth effects are only

partially dependent on Not4 interactions with Ubc4 and/or Ubc5.

Not4 functionally interacts with hnRNPs
Given the importance of Hmt1-mediated methylation of

hnRNPs for efficient hnRNP nuclear export [44,64], and the

critical role of the NPC in mRNA export, we next examined

whether Ccr4-Not associations with hnRNPs and NPC compo-

nents might have functional implications for mRNA nuclear

export. To investigate this question, we tested for genetic

interactions between Not4 and various hnRNPs by overexpressing

NOT4 and not4L35A in a variety of hnRNP mutants, some of

which have mRNA export defects [19,20,21,22]. Intriguingly, this

analysis revealed that overexpression of NOT4 is deleterious to

cells expressing mutant versions of Nab2 and Hrp1 but not to

wild-type cells (Figure 5). In sharp contrast, overexpression of

NOT4 weakly suppresses the severe temperature-sensitive growth

phenotype of the npl3-1 mutant (Figure 5). Similar to results in

NPC mutants, overexpression of not4L35A had different effects on

growth in different hnRNP mutants. Overexpression of not4L35A

had deleterious effects on Nab2 and Hrp1 mutants similar to

effects of wildtype NOT4 overexpression, whereas not4L35A

overexpression did not suppress the temperature sensitivity of

the Npl3 mutant (Figure 5). These results suggest that the Not4

ubiquitin ligase has both ligase-dependent and independent

interactions with hnRNPs and NPC mutants essential for mRNA

export.

NOT4 overexpression exacerbates the poly(A) export
defect in a nuclear pore mutant

The results presented above suggest that Ccr4-Not may have an

unrealized role in the nuclear mRNA processing and export

pathway. This hypothesis is supported through the physical

Figure 3. Not1 co-associates with the nuclear basket subunit
Mlp1. (A) Whole-cell extracts from cells individually expressing NOT1-
Myc or MLP1-HA or from cells expressing both tagged alleles were used
in a-HA immunoprecipitation experiments to pull-down Mlp1. Co-
associated Not1 was detected by a-Myc immunoblot which was
subsequently stripped and reprobed with a-HA to detect immunopre-
cipitated Mlp1. (B) Input samples (30 mg) were initially probed with a-
Myc to detect Not1 levels and then the membrane was stripped and
reprobed with a-HA to detect Mlp1.
doi:10.1371/journal.pone.0018302.g003

Table 2. Ccr4-Not TAP purifications identify Mlp2 and mRNA processing and export factors.

Ccr4-Not TAP
Purification Co-purified protein

Protein identification
probability Peptide sequence

Best peptide
identification
probability

Best MASCOT
ion score

Best MASCOT
identity

NOT2-TT caf130D Yra1

Nup2

Dbp5

100%

100%

99.8%

AVERFNGSPIDGGR
EFFASQVGGVQR
LNLIVDPNQRPVK
SLDEIIGSNKAGSNR
ALNLQFK
KTETNAKPFSFSSATSTTEQTK
MAFKPFGSAKSDETK
SKVLITTNVLAR
VLITTNVLAR

95%
95%
95%
95%
95%
95%
95%
95%
95%

41.6
60.3
42
69.1
42.8
55.1
32.2
31.6
65

25.5
24.6
16.7
22.3
23.2
21.5
22.9
13.8
18.3

NOT5-TT caf130D Mlp2 100% DAIIELENINAK
FLDQNSDASTLEPTLRK
LLASTEENKANTNSVTSMEAAR

95%
95%
95%

37.9
33.6
63.2

22.9
23.6
21.1

doi:10.1371/journal.pone.0018302.t002
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associations between Ccr4-Not members and both hnRNPs and

the NPC and also by the functional interactions between Not4 and

many of the temperature sensitive NPC mutants (see Figure 4C)

that have poly(A) RNA export defects at the nonpermissive

temperature [19,20,21,22]. We initially assayed for defects in

global mRNA export in wild-type and various Ccr4-Not deletion

mutants by fluorescence in situ hybridization (FISH), but did not

detect significant mRNA nuclear accumulation in any of these

mutants (data not shown). Because the mRNA export pathway is

highly robust and redundant, we speculated that inhibition of

Ccr4-Not alone may not result in a detectable defect in global

mRNA export. Deletion of NUP116 results in nuclear accumula-

tion of bulk poly(A) RNA at 37uC [22]. The growth defects we

observed in nup116D cells overexpressing NOT4 (see Figure 4A)

suggested the possibility that NOT4 overexpression might

exacerbate the mRNA export defect in these cells. To investigate

this possibility, we conducted FISH analysis to detect bulk poly(A)

mRNA localization in cells deleted for NUP116 and overexpress-

ing the NOT4 gene. This analysis revealed a modest but

statistically significant increase (p = 0.05) in nuclear poly(A) RNA

accumulation in nup116D cells overexpressing NOT4 (29.84

62.70%) compared to nup116D carrying control plasmid

(19.0066.16%) (Figure 6A, 6B). As controls, wild-type cells

overexpressing NOT4 showed no increase in nuclear poly(A)

RNA signal whereas the nab2-1 mutant results in significant

accumulation of poly(A) RNA (73.1762.79%), consistent with

previous reports [45].

In order to determine whether this nuclear RNA accumulation

is due to a general defect in nucleocytoplasmic transport, we

expressed a GFP reporter fused to a nuclear localization signal

(NLS) and a nuclear export signal (NES) (NLS-NES-GFP) [65] in

nup116D overexpressing NOT4. This analysis revealed no apparent

difference in the localization of the NLS-NES-GFP construct in

nup116D cells overexpressing NOT4 compared to control cells

containing empty vector (Figure 6C). Wildtype cells overexpress-

ing NOT4 also show no apparent difference in NLS-NES-GFP

localization compared to cells containing empty vector. As

controls, cells mutant for the export factor, Crm1 (crm1-3) [66],

display nuclear accumulation of NLS-NES-GFP, whereas cells

mutant for the import factor, Srp1 (srp1-31) [67,68], show a

cytoplasmic distribution of NLS-NES-GFP compared to wildtype

cells. These results indicate that the nuclear RNA accumulation

observed in nup116D cells overexpressing NOT4 is not due to a

general disruption in nucleocytoplasmic trafficking. Taken togeth-

er, these results suggest a functional relationship between Ccr4-

Not, components of the mRNA export pathway, and the NPC.

Moreover, these results demonstrate that steady-state mRNA

export is susceptible to alterations in Ccr4-Not when combined

with NPC mutants.

Discussion

Our results identify new connections between the Ccr4-Not

complex and the mRNA processing and export machinery

Figure 4. Not4 and not4L35A overexpression cause differential growth effects in NPC mutant cells. (A) Wild-type and nup116D cells
were transformed with empty vector, CCR4 or NOT4 overexpression constructs. Cells were grown to saturation in SC-Ura media, ten-fold serially
diluted, and spotted onto SC-Ura plates. Plates were incubated at 25uC or 30uC. (B) Whole cell extracts of cells transformed with empty vector, CCR4,
NOT4, or not4L35A were analyzed by immunoblotting and probed with a-FLAG antibody. Blots were probed with a-PGK1 antibody as a loading
control. (C) Wildtype, nup1D, nup116D, nup120-1, nup133-1, and nup49-313 cells were transformed with empty vector, NOT4, or not4L35A
overexpression constructs. Cells were grown to saturation in SC-Ura media, ten-fold serially diluted, and spotted onto SC-Ura plates. Plates were
incubated 25uC or 35uC.
doi:10.1371/journal.pone.0018302.g004
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through physical and functional interactions both with hnRNPs

and the NPC. The identification of Sam1 and Sam2 in our Ccr4-

Not TAP-purifications further supports the hypothesis that Ccr4-

Not likely plays an important role in protein methylation. This

effect most likely does not involve global regulation of Hmt1-

dependent methylation, however, since no effect on Npl3

methylation was detected in Ccr4-Not mutant cells. We also

present the novel finding that altered stoichiometry of the Ccr4-

Not complex, specifically by increased expression of the Not4

ubiquitin ligase, causes significant growth defects in cells mutant

for Nab2, Hrp1, and NPC subunits. In stark contrast, we find that

Not4 overexpression rescues growth of the npl3-1 mutant at the

non-permissive temperature. Furthermore, we demonstrate that

increased Not4 expression modestly exacerbates the mRNA

export defect seen in nup116D cells, further suggesting that the

Ccr4-Not complex plays a functional role in mRNA processing

and export. This point is further supported by the co-purification

of Mlp1 and Mlp2 proteins with Ccr4-Not members, including

Not4. These results significantly extend previous findings from

high throughput screens which identified a putative physical

interaction between the Ccr4-Not complex and the mRNA export

factor Yra1 and a putative genetic interaction between the Ccr4-

Not complex and Nup116 [69,70]. Recently, the human Ccr4-Not

complex was purified and a number of mRNA export and nuclear

pore proteins were found to co-purify with the complex [71]. Our

results, in combination with the analysis of human Ccr4-Not

strongly suggest that associations between Ccr4-Not and compo-

nents of the mRNA export pathway and nuclear pore are

evolutionarily conserved and functionally relevant. Taken togeth-

er, these results expand the functions of the Ccr4-Not complex in

the lifecycle of an mRNA from its known roles in transcriptional

regulation and mRNA degradation to newly identified connections

to mRNA export.

The initial report demonstrating that hCaf1 interacts with

PRMT1 and regulates its methyltransferase activity suggested that

Ccr4-Not plays a role in PRMT1-dependent processes [42].

However, the in vivo relevance of these interactions was not

explored in detail. We augment these preliminary findings by

demonstrating that multiple components of the budding yeast

Ccr4-Not complex associate with the PRMT1 homolog, Hmt1,

and that Ccr4-Not also associates with the Hmt1 substrates, Hrp1

and Nab2 in an Hmt1 methyltransferase-dependent fashion

[44,45]. The finding that interactions between Ccr4-Not compo-

nents and these hnRNPs depend on Hmt1 methyltransferase

activity strongly suggests that Ccr4-Not predominantly interacts

with methylated, export-competent hnRNPs in an RNA-indepen-

dent manner.

The Ccr4-Not complex has recently been implicated in nuclear

RNA quality control through interactions with the TRAMP

complex and nuclear exosome [41]. In addition, we demonstrate

that Ccr4-Not co-purifies with components of the NPC nuclear

basket including Mlp1 and Mlp2, which have a well established

role in mRNA export quality control [59,60] as well as Mft1,

Yra1, and Dbp5 which play different roles in mRNA processing

and export. These results extend the previous findings of physical

and functional interactions between the Ccr4 subunit of Ccr4-Not

and the Hpr1 subunit of the THO complex [38]. The observation

that Ccr4-Not interacts both with methylated, export-competent

hnRNPs and NPC nuclear basket components is consistent with a

model in which Ccr4-Not selectively interacts with methylated

hnRNPs as they chaperone their mRNA cargoes through the

NPC. The demonstration that Hmt1 methyltransferase activity is

required for Ccr4-Not to associate with hnRNPs, coupled with the

identification of Mft1, Yra1, Sam1, and Sam2 as Ccr4-Not co-

purifying factors, suggests that Ccr4-Not may act to physically

position these factors at the NPC to facilitate methylation and

subsequent nuclear mRNA export. Our genetic analysis demon-

strating that increased expression of the Not4 ubiquitin ligase

results in synthetic growth defects in cells mutant for Nab2, Hrp1,

and NPC subunits suggests that Ccr4-Not also may have other, as

yet undefined roles in the mRNA export pathway that become

dysregulated when Not4 exists in excess. This hypothesis is

supported by our results demonstrating that Not4 overexpression

exacerbates the mRNA export defect in nup116D cells. Interest-

ingly, Not4 overexpression is not universally detrimental to

hnRNP mutants, as it rescues the extreme temperature sensitivity

of npl3-1 cells which also display mRNA processing and export

phenotypes [14,72,73]. These differential effects of Not4 overex-

pression suggest a complex and nuanced interaction between

different components of the mRNA export pathway. As

ubiquitination has been implicated in control of mRNA processing

and export [74,75,76], our experiments raise the possibility that

some of these factors may be targets of the Not4 ubiquitin ligase.

This potential activity of Not4 toward mRNA processing and

export factors may regulate modification of their function through

mono-ubiquitination or target them for degradation through poly-

ubiquitination.

We demonstrate that the Not4L35A mutant, which blocks

interaction with the ubiquitin conjugating enzymes Ubc4 and

Ubc5 (Ubc4/5) [63], has differential effects with different hnRNP

and NPC mutants relative to wild-type Not4. These effects suggest

the possibility that Ccr4-Not may be part of a complex regulatory

cascade that partially depends on interactions between Not4 and

Ubc4/5. Interestingly, Ubc4/5 also interact with the Tom1

ubiquitin ligase, a HECT-domain ligase [77] whose E3 ligase

function is implicated in mRNA export [74]. One possible

mechanism by which Ccr4-Not might regulate mRNA export is

Figure 5. Not4 and not4L35A overexpression cause differential
growth effects in hnRNP mutant cells. Wildtype, Nab2-C437S,
Hrp1-P531A and npl3-1 cells were transformed with empty vector, NOT4
or not4L35A overexpression constructs. Cells were grown to saturation
in SC-Ura media, ten-fold serially diluted, and spotted onto SC-Ura
plates. Plates were incubated at 25uC for the permissive temperature or
39uC (for Nab2-C437S) 37uC (for Hrp1-P531A), or 30uC (for npl3-1) for
the elevated temperature.
doi:10.1371/journal.pone.0018302.g005
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through interactions with Ubc4/5, which might reduce or prevent

Ubc4/5 interactions with Tom1 and thus prevent Tom1-mediated

ubiquitination of downstream targets. In addition, it is possible

that as yet unidentified targets of Not4 may play a role in mRNA

export control. This possibility is consistent with the fact that

deletion of NOT4 results in significant growth defects that are not

phenocopied by deletion of known substrates [32,33], suggesting

that a number of important Not4 targets remain to be identified.

In addition to its activity as a ubiquitin ligase, Not4 also contains a

putative RNA recognition motif (RRM), that has significant

sequence similarity to characterized RNA binding domains

[26,78]. Although the in vivo significance of this domain is

unknown, it is possible that Ccr4-Not may bind RNA via the

Not4 subunit as part of its role in mRNA export. One speculative

possibility is that the Not4 overexpression phenotype in cells

mutant for hnRNPs and NPC subunits may result from

dysregulated interactions of Not4 with specific mRNA classes.

This possibility could explain the modest mRNA export

Figure 6. Not4 overexpression exacerbates the poly(A) RNA export defect in nup116D cells. Wildtype and nup116D cells were transformed
with empty vector or a NOT4 overexpression construct. Cells were grown to log phase at 30uC and subjected to FISH. (A) FISH was performed on cells
as described in Materials and Methods. Panels are shown for poly(A) RNA and DAPI to visualize chromatin. (B) Quantification of cells showing nuclear
accumulation of poly(A) RNA. Images were analyzed blind, and a minimum of 50 cells were analyzed in triplicate for each condition. Student’s t-test
was used to determine statistical significance. (C) Wildtype and nup116D cells were transformed with empty vector or a NOT4 overexpression
construct and an NLS-NES-GFP construct. Cells were grown to log phase and analyzed by live cell microscopy for GFP localization.
doi:10.1371/journal.pone.0018302.g006

Ccr4-Not Interactions with mRNA Export Machinery

PLoS ONE | www.plosone.org 8 March 2011 | Volume 6 | Issue 3 | e18302



phenotype seen in nup116D cells since only a sub-population of

mRNAs may be preferentially retained in the nucleus under these

conditions. However, whether Not4 binds RNA in vivo, and the

detailed mechanism by which it affects the mRNA processing and

export machinery to impact mRNA export, remain to be

addressed in future studies. As the Ccr4-Not complex and the

nuclear pore are both large complexes with many subunits, it will

take significantly greater understanding of the architecture of each

complex in order to analyze the molecular details underlying their

physical and functional interactions.

Materials and Methods

Strains, Plasmids, and Chemicals
All DNA manipulations were performed according to standard

methods [79] and all media were prepared by standard procedures

[80]. All S. cerevisiae strains and plasmids used are described in

Table 3. Plasmid pAC2668 was generated by using the

QuikChange Site-Directed Mutagenesis (Stratagene, La Jolla,

CA) approach and plasmid pAC2492 (NOT4) as template. The

resulting mutation was confirmed by sequence analysis. All

chemicals were obtained from Ambion (Austin, TX), Sigma

Chemical Co. (St. Louis, MO), US Biological (Swampscott, MA)

or Fisher Scientific (Pittsburgh, PA) unless otherwise noted.

Tandem-affinity purification (TAP)
TAP-purifications listed in Tables 1 and 2, Figure S1 and

Table S1 were performed and analyzed as previously described

[41,49]. Briefly, yeast strains expressing TAP-tagged subunits

were grown to log phase and whole cell extracts were prepared.

Purified proteins were resolved on 4-12% SDS-PAGE or 3–12%

native (Invitrogen) gradient gels and stained with Coomassie.

Detectable bands were excised from the gel, and MALDI-TOF

mass spectrometry analysis of the excised bands was performed

for the initial SDS-PAGE gels, or NanoLC-ESI-MS/MS for the

native gel and subsequent SDS-PAGE bands, at the Proteomics

Core Facility of the Faculty of Medicine, University of Geneva.

For the MALDI-TOF analysis, the spectra obtained were

analyzed using the DATA EXPLORER program and proteins

identified using the MASCOT SEARCH website. Table S1 lists

the different Ccr4-Not subunits TAP-purified, the co-purified

NPC factors, and both the peptide amino acid sequences and

their respective positions in the identified proteins. For the

NanoLC-ESI-MS/MS, the analysis was done with the Mascot

program (Matrix Science, London, UK; version Mascot). Mascot

was set up to search the uniprot_sptr_15.10-03-Nov-2009

database (selected for Saccharomyces cerevisiae, 34911 entries)

assuming the digestion enzyme trypsin. Mascot was searched

with a fragment ion mass tolerance of 0.60 Da and a parent ion

tolerance of 10.0 ppm. Iodoacetamide derivative of cysteine and

oxidation of methionine were specified as fixed and variable

modifications, respectively. Scaffold program (version Scaffold

03, Proteome Software, Inc., Portland, OR) was used to validate

the MS/MS based peptide and protein identifications. Peptide

identifications were accepted if they could be established at

greater than 95.0% probability as specified by the Peptide

Prophet algorithm [81]. Protein identifications were accepted if

they could be established at greater than 95.0% probability and

contained at least 2 identified peptides. Protein probabilities were

assigned by the Protein Prophet algorithm [82]. Proteins that

contained similar peptides and could not be differentiated based

on MS/MS analysis alone were grouped to satisfy the principles

of parsimony.

Co-immunoprecipitation experiments
Asynchronous cell cultures were grown to log phase before

pelleting and lysing cells in immunoprecipitation buffer (10 mM

Tris, pH 8.0, 150 mM NaCl, 0.1% Nonidet P-40, 10% glycerol

containing protease and phosphatase inhibitors, 1 mM DTT)

using bead beating as previously described [37]. Immunoprecip-

itations were performed using 1 mg of whole-cell extract (for

experiments detecting Hmt1 or NPC associations) or 500 mg (for

Hrp1 and Nab2 associations) and 2–3 mL of a-Myc or a-HA

antibody (Santa Cruz Biotechnology). Immunoprecipitations were

rotated 2 hours to overnight at 4uC before immune complexes

were captured using Protein A-conjugated agarose (Santa Cruz

Biotechnology). Samples were washed 3 times with 0.5–1 mL

immunoprecipitation buffer and then resolved by SDS-PAGE and

detected by immunoblot analysis. Nab2 and Hrp1 were detected

by a-Nab2 and a-Hrp1 specific antibodies [[45] and gift from M.

Swanson]. Bands were quantitated using reverse image scanning

densitometry (Photoshop CS2, Adobe) by normalizing the band

intensity of the co-immunoprecipitated protein to the band

intensity of the immunoprecipitated protein. For RNase experi-

ments, cell extracts from no tag control or cells expressing Caf1-

Myc were prepared as described above. Extracts were either mock

treated or treated with RNase A (0.105 U/mL) in 400 mL IP

buffer for 10 min at 37uC before antibody addition. IP samples

were rotated overnight at 4uC and the IP performed as described

above.

Fitness analysis
For serial dilution spotting assays, single colonies of wildtype or

mutant cells expressing plasmid-borne CCR4, NOT4, not4L35A, or

empty vector were grown to saturation in selective liquid culture

lacking uracil (ura-), normalized to equal starting concentrations as

assayed by optical density or cell counting by hemocytometer, and

then serially diluted (1:10) in dH2O and spotted onto selective ura-

plates. Plates were incubated at 25, 30, 33, 35 or 37uC for 2–4

days as indicated.

Microscopy
All microscopy was carried out using filters from Chroma

Technology and an Olympus BX60 epifluorescence microscopy

equipped with a Photometrics Quantix digital camera. For live cell

microscopy, cells expressing NLS-NES-GFP [65] were grown to

early log phase and GFP signal was detected through a GFP-

optimized filter. Images were captured using IP Lab Spectrum

software.

Fluorescence in situ hybridization (FISH)
The intracellular localization of poly(A) RNA was assayed

essentially as described [45,83]. Briefly, cells were grown to

saturation overnight at 25uC and subsequently diluted and

incubated for 2 h to allow cells to re-enter growth phase. Cells

were then shifted to 30uC for 2–4 h. Cells were fixed with 4.2%

formaldehyde. The cell wall was digested with 0.5 mg/mL

zymolase, and cells were applied to multi-well slides (Thermo

Electron Corporation) pre-treated with 0.1% polylysine. Cells

were then permeabilized with 0.5% NP-40, equilibrated with

0.1 M triethanolamine, pH 8.0, and incubated with 0.25% acetic

anhydride to block polar groups. Cells were then incubated in

prehybridization buffer (50% deionized formamide, 10% dextran

sulfate, 4X Sodium Chloride-Sodium Citrate buffer (SSC), 1X

Denhardt’s solution, 125 mg/mL tRNA) and hybridized overnight

with digoxigenin-labeled 50-mer oligo(dT) probe (IDT DNA).

Wells were washed several times and blocked in 0.1 M Tris
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Table 3. Strains and plasmids used in this study.

Strain Description Reference/Source

FY23 (ACY192) MATa ura3 leu2 trp1 [84]

BY4741 (ACY402) MAT a his3 leu2 met15 ura3 Open Biosystems

LDY561 (ACY786) MAT a nup1D::LEU2 ura3 leu2 trp1 his3 ade3 [85]

SWY27 (ACY542) MAT a nup116D::HIS3 ura3 leu2 trp1 his3 ade2 can1 [22]

Dat4-2 (ACY1136) MAT a nup120-1 ura3 leu2 trp1 [86]

Dat3-2 (ACY1135) MAT a nup133-1 ura3 leu2 trp1 [86]

ACY1903 nup49D::KANMX4 ura3 his3 leu2 (pUN90-LEU2-nup49-313) This study

ACY427 MAT a nab2D::HIS3 ura3 leu2 his3 (pAC636) [87]

SVL182/PSY1224 (ACY1571) hrp1D HIS3 ura3 his3 [HRP1 CEN URA3] S.R. Valentini

ACY71 MATa npl3-1 trp1 ura3 leu2 M. Henry

H3247 Mat a his3 leu2 met15 ura3 CAF1-MYC13::HIS3 MX6 [88]

H3239 Mat a his3 leu2 met15 ura3 CCR4-MYC13::HIS3 MX6 [88]

H2341 Mat a his3 leu2 met15 ura3 NOT2-MYC13::HIS3 MX6 [88]

H3245 Mat a his3 leu2 met15 ura3 NOT5-MYC13::HIS3 MX6 [88]

YNL052 Mat a his3 leu2 met15 ura3 NOT1-MYC13::HIS3 MX6 This study

YNL068 Mat a his3 leu2 met15 ura3 HMT1-6XHA::KANMX4 This study

YNL069 Mat a his3 leu2 met15 ura3 CCR4-MYC13::HIS MX6 HMT1-6XHA::KANMX4 This study

YNL070 Mat a his3 leu2 met15 ura3 NOT2-MYC13::HIS MX6 HMT1-6XHA::KANMX4 This study

YNL071 Mat a his3 leu2 met15 ura3 NOT5-MYC13::HIS MX6 HMT1-6XHA::KANMX4 This study

YNL081 Mat a his3 leu2 met15 ura3 NOT1-9XMYC::hphNT1 This study

YNL138 Mat a his3 leu2 met15 ura3 MLP1-6XHA::KANMX4 This study

YNL139 Mat a his3 leu2 met15 ura3 MLP1-6XHA::KANMX4 NOT1-9XMYC::HPHNT1 This study

YNL179 Mat a his3 leu2 met15 ura3 CAF1-MYC13::HIS3 MX6 hmt1D::KANMX4 This study

PSY1221 (ACY339) Mat a ade2 ade3 his3 trp1 ura3 leu2 crm1-3 [66]

ACY1561 Mat a ura3 leu2 trip1 his3 lys2 spr1-31 [68]

MY4858 MAT a leu2 ura3 met15 his3 caf40::CAF40-TAP-URA3 [49]

MY4985 MAT a leu2 ura3 met15 his3 caf40::CAF40-TAP-URA3 caf130D::HIS3 [35]

MY4980 MAT a leu2 ura3 met15 his3 caf40::CAF40-TAP-URA3 not3D::HIS3 [35]

MY4857 MAT a leu2 ura3 met15 his3 not4::NOT4-TAP-URA3 [41]

MY5218 MAT a leu2 ura3 met15 his3 caf130::CAF130-TAP-KANMX4 This study

MY5026 MAT a leu2 ura3 met15 his3 not2::NOT2-TAP-KANMX4 [41]

MY5711 MAT a leu2 ura3 met15 his3 not2::NOT2-TAP-KANMX4 caf40D::HIS3 [41]

MY5273 MAT a leu2 ura3 met15 his3 not2::NOT2-TAP-KANMX4 caf130D::HIS3 This study

MY7079 MAT a leu2 ura3 met15 his3 not1::NOT1-TAP-URA3 caf40D::HIS3 This study

MY6013 MAT a leu2 ura3 met15 his3 not3::NOT3-TAP-KANMX4 caf40D::HIS3 This study

MY5892 MAT a leu2 ura3 met15 his3 not5::NOT5-TAP-KANMX4 caf130D:: KANMX4 This study

Plasmids Description Reference/Source

pN827 pADH1 CEN URA3 [89]

pAC2492 pADH1-NOT4-FLAG CEN URA3 [37]

pAC2494 pADH1-CCR4-FLAG CEN URA3 This Study

pAC2668 pADH1-not4-L35A-FLAG CEN URA This Study

pUN90-LEU2-nup49-313 nup49-313 CEN LEU2 [19]

pAC636 NAB2 CEN URA3 [45]

pSW3298 (pAC2307) nab2-C437S CEN LEU2 [90]

pAC2539 hrp1-P531A CEN LEU2 [87]

pPS1750 (pAC2813) hmt1-G68R CEN URA3 [46]

pPS1307 (pAC2811) HMT1 CEN URA3 [43]

pRS306 (pAC4) CEN URA3 [91]

pAC212 pADH1-NLS-NES-GFP 2 mm TRP1 [65]

doi:10.1371/journal.pone.0018302.t003
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pH 9.0, 0.15 M NaCl, 5% heat-inactivated fetal calf serum, and

0.3% Triton X-100. Cells were incubated 2 h with fluorescein

isothiocyanate (FITC)-conjugated a-digoxigenin antibody (1:200,

Roche). Wells were then washed several times and stained with

1 mg/mL 49,6-diamidino-2-phenylindole-dihydrochlorine (DAPI)

to detect chromatin. Cells were mounted in antifade medium

(0.1% p-phenylenediamine, 90% glycerol in phosphate-buffered

saline). Slides were stored at 220uC until visualization by

microscopy. For quantification of results, blinded images were

analyzed for poly(A) nuclear signal using the ImageJ Cell Counter

plugin. A minimum of 50 cells were analyzed in triplicate for each

condition. Unpaired Student’s t-test assuming unequal variance

was used to determine statistical significance.

Supporting Information

Figure S1 NPC components and mRNA processing and
export factors co-purify with Ccr4-Not subunits. (A) Total

protein extract from wildtype or caf130D cells expressing Tap-

tagged Caf40, Not4, Caf130, or Not2 were subjected to tandem

affinity purification. After separation by SDS-PAGE followed by

Coomassie staining, the purified proteins were identified by mass

spectrometry analysis as described in Materials and Methods (see

Table S1). Identified co-purifying proteins are indicated to the

right of the gel lanes. Molecular weight markers (MW) are

indicated to the left of the gels in kDa. MASCOT scores for

identified co-precipitating proteins are identified in the table below

the gel images. (B) Total protein extract from caf130D cells

expressing Tap-tagged Not2, or Not5 were subjected to tandem

affinity purification. After separation by SDS-PAGE, excised

protein bands were analyzed at the Proteomics Core Facility of the

Faculty of Medicine, University of Geneva as described in

Materials and Methods (See Table 2 and Table S1). Identified

co-purifying proteins are indicated to the right of the gel lanes.

Protein identification probability scores for identified co-precipi-

tating proteins are indicated in the table below the gel images.

(TIF)

Table S1 Peptide sequences of Ccr4-Not co-purified
factors.
(DOCX)
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