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Abstract

Metabolic pathways for amino sugars (N-acetylglucosamine; GlcNAc and glucosamine; Gln) are essential and remain largely
conserved in all three kingdoms of life, i.e., microbes, plants and animals. Upon uptake, in the cytoplasm these amino sugars
undergo phosphorylation by phosphokinases and subsequently deacetylation by the enzyme N-acetylglucosamine 6-
phosphate deacetylase (nagA) to yield glucosamine-6-phosphate and acetate, the first committed step for both GlcNAc
assimilation and amino-sugar-nucleotides biosynthesis. Here we report the cloning of a DNA fragment encoding a partial
nagA gene and its implications with regard to amino sugar metabolism in the cellulose producing bacterium
Glucoacetobacter xylinus (formally known as Acetobacter xylinum). For this purpose, nagA was disrupted by inserting
tetracycline resistant gene (nagA::tetr; named as DnagA) via homologous recombination. When compared to glucose fed
conditions, the UDP-GlcNAc synthesis and bacterial growth (due to lack of GlcNAc utilization) was completely inhibited in
nagA mutants. Interestingly, that inhibition occured without compromising cellulose production efficiency and its molecular
composition under GlcNAc fed conditions. We conclude that nagA plays an essential role for GlcNAc assimilation by G.
xylinus thus is required for the growth and survival for the bacterium in presence of GlcNAc as carbon source. Additionally,
G. xylinus appears to possess the same molecular machinery for UDP-GlcNAc biosynthesis from GlcNAc precursors as other
related bacterial species.
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Introduction

N-acetylglucosamine (GlcNAc) is a major component of

structural polymers in bacteria, plants, and animals [1]. Chitin,

a homopolymer of GlcNAc, is a structural material in many

invertebrates, bacteria, fungi and algae (especially some diatoms)

[2]. However, both gram-positive and gram-negative bacteria

contain GlcNAc as a main constituent of their cell wall

peptidoglycan. Since GlcNAc is potentially a good energy and

nitrogen source, one might hypothesize that GlcNAc uptake is a

widespread phenotype among bacteria [3]. However, the

mechanism of GlcNAc uptake and subsequently its metabolism

machinery in the cytoplasm has been studied in only a few bacteria

such as Escherichia coli [4,5], Bacillus subtilis [6,7], Staphylococcus aureus

[8], Vibrio furnissii [9], and Caulobacter crescentus [10]. Upon uptake,

in the cytoplasm GlcNAc may take two metabolic routs i.e., (i)

phopshorylation to GlcNAc-6-phosphate followed by deacetyla-

tion by nagA and subsequently production of either fructose-6-

phosphate or UDP-GlcNAc; or (ii) it may directly enter in to cell

wall peptidoglycan biosynthesis pathway [9,11]. The product of

these pathways UDP-GlcNAc, is a ubiquitous and essential

metabolite and plays important roles in several metabolic

processes [12]. In bacteria, it is known as a major cytoplasmic

precursor of cell wall peptidoglycan and the disaccharide moiety of

some lipids [13]. In eukaryotes, it serves as the substrate for chitin

synthase, whose product chitin is a essential structural component

for fungal cell wall [14]. It is also used in the GlcNAc moiety of N-

linked glycosylation and the GPI-anchor of cellular membrane

proteins [15].

The enzyme N-acetylglucosamine-6-phosphate deacetylase

(nagA; EC 3.5.1.25) is a member of the amidohydrolase

superfamily and catalyzes the deacetylation of GlcNAc-6-phos-

phate to yield glucosamine 6-phosphate, the first committed step

in the biosynthetic pathway to amino-sugar-nucleotides and

GlcNAc utilization as a carbon source by the bacterium [16,17].

Additionally, the deacetylation of GlcNAc is also important in

lipopolysaccharide synthesis and cell wall recycling [18,19].

Importantly, unlike eukaryotes, bacteria lack the ability to convert

GlcNac-6-phosphate to GlcNac-1-phosphate directly as they lack

N-acetylglucosamine-phosphate mutase (AGM) and therefore

conversion to GlcN-6-phosphate is a prerequisite for conversion

to GlcN-1-phosphate by phosphoglucosamine mutase, which can

then be acetylated and uridylated to UDP-GlcNAc[20]. As a

result, nagA plays a critical role in the metabolic pathway and thus
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is essential for growth and survival of the bacterium on GlcNAc as

an alternative carbon source. The nagA structure has been

resolved in bacteria recently and it was found that the enzyme is a

tetramer and requires Zn2+ in the native protein [21,22].

Additionally, given its position at the crossroads of these key

metabolic processes, nagA has warranted attention as a potential

drug target. Indeed, sugar deacetylation is a validated therapeutic

target in some other contexts [23,24].

Like E. coli and other bacteria, the cellulose producing gram

negative bacterium Glucoacetobacer xylinus can also metabolize

GlcNAc and glucosamine as a carbon source although the

preferred carbon source for G. xylinus is glucose. Metabolic

pathways related to GlcNAc assimilation is well studied in E. coli

and other bacteria [20,25] but the precise GlcNAc metabolic

cascade is not known in this commercially important bacterium. It

was believed that in G. xylinus, GlcNAc-6-phosphate is first

deacetylated to Gln-6-phosphate by nagA and subsequently

converted to either fructose-6-phosphate or UDP-GlcNAc through

a series of enzymatic steps. Prior to this report, there was no

experimental evidence for the existence of this pathway in G.

xylinus. Thus, we demonstrate here that like other bacteria, G.

xylinus also possesses a similar mechanism for GlcNAc assimilation

as an alternative sugar source. This is essential information with

regards to our related work with the production of a GlcNAc-

glucose heteropolymer from metabolically engineered G. xyli-

nus[26]. In present work, we elucidate the GlcNAc metabolic

machinery in G. xylinus strain10245 and demonstrated the role of

nagA in GlcNAc metabolism by cloning a DNA fragment

encoding a nagA and subsequently generating a nagA-deficient

mutant by homologous recombination. The resulting knockout

strain (nagA::tetr) was examined for growth, cytoplasmic UDP-

GlcNAc pool, and overall cellulose productivity with glucose and/

or GlcNAc as a carbon source. The successful deletion of this gene

and the subsequent analysis provides a clearer picture of the

related metabolic pathways of this potentially important biosyn-

thetic pathway.

Materials and Methods

Bacterial strains, culture media and growth conditions
All bacterial strains, plasmids used in this study are listed in

Table 1. The cellulose producing bacterium G. xylinus (ATCC

strain 10245) and the nagA homolog-deficient mutant strain

(DnagA; generated in this study) were used throughout this work.

For cloning purposes, E. coli Top10 cells (Invitrogen) were used as

a cloning host. Transformants of Top10 strains harboring various

plasmids were cultivated at 37uC in LB medium containing either

kanamycin (50 mg/ml) or ampicillin (50 mg/ml) or both. Unless

otherwise mentioned, G. xylinus was cultured in Hestrin and

Schramm (HS) medium (0.5% yeast extract, 0.5% peptone, 0.27%

Na2HPO4, 0.15% citric acid, pH 4.5) supplemented with 2%

sugar (glucose, unless otherwise noted) and grown at 30uC shaking

Table 1. Bacterial Strains and plasmids used in this study.

Strains or plasmid Relevant genotype or description Source and purpose

Strains

G xylinus 10245 Wild type (wt) Laboratory collection, This study

G xylinusDNAgA ATCC10245 NagA::tetr This study

E coli TOP10 F- mcrA D(mrr-hsdRMS-mcrBC) w80lacZDM15 DlacX74 nupG recA1 araD139 D(ara-leu)7697
galE15 galK16 rpsL(StrR) endA1 l2

Invitrogen; Cloning

Plasmids

pTOPO-ZeroH blunt Ampr and Kanr; PCR cloning vector Invitrogen; Cloning

pTOPO-NagA Ampr and Kanr; recombinant plasmid harboring nagA This study

pT7-BlueH Ampr; cloning vector Novagen; Cloning

pT7-blue-NagA Ampr; recombinant plasmid harboring NagA This study

pT7-blue-NagA-tet-NagA AmprandTetr; recombinant plasmid harboring tetracycline flanked by nagA This study

Ampr, ampicillin resistance; Kanr, Kanamycin resistance; Tetr, tetracycline resistance.
doi:10.1371/journal.pone.0018099.t001

Table 2. Primers used in this study.

Name 59-39 Sequence Purpose and restriction sites

NagA-For CGCATGGCGTCSGTYACGAACAGCAG Cloning

NagA-Rev CATYCATGGCGCCATCTGGAAGG Cloning

NagA-DisF AGAAGCTTCATCCATGGCGCGCATCTGGAAG Cloning; HindIII

NagA-DisR TAGGATCCCGCATGGCGTCCGTTACGAACAG Cloning; BamHI

Tetfor TACATATGACTCATGTTTGACAGCTTATC tetr insertion in NagA; NdeI

Tetrev ATCCATATGCCGGCTTCCATTCAGGTCGAG tetr insertion in NagA, NdeI

NagApcrF TTGGCGCGCATCTGGAAGGGGCCGT PCR confirmation

NagApcrR TGGCGTCCGTTACGAACAGCAGCCGC PCR confirmation

doi:10.1371/journal.pone.0018099.t002
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at 200 rpm or statically [27]. The modified HS medium

supplemented with micro-filtered celluclast cellulase (Sigma) to a

concentration of 0.1% (v/v) was employed to culture G. xylinus

without cellulose.

Amplification, cloning and sequence analysis of the nagA
All primers used in this study are outlined in Table 2.

Chromosomal DNA from strain 10245 grown on HS medium

was extracted by using a PureLinkTM genomic DNA extraction

kit (Invitrogen). Degenerate PCR primers for amplification of a

partial region of nagA were designed based on the nucleotide

sequence comparison among bacteria belonging to the proteo-

bacteria: G. oxydans 621H (nagA, GenBank YP_191872) and G.

diazotrophicus PAl5 (nagA, GenBank NC_010125). After selecting

the conserved regions utilizing the ClustalW algorithm (http://

www.ebi.ac.uk/Tools/clustalw2/index.html), degenerate prim-

ers NagA-For and NagA-Rev were designed. PCR was

performed according to standard procedures with 50 ng

genomic DNA as template and 3Units of pfu taq polymerase

(Invitrogen). The PCR program used was as follows: 95uC for

3 min (1 cycle); 95uC for 30 sec, 63uC for 30 sec, 72uC for

1 min (30 cycles) and 72uC for 5 min (1 cycle). The resulting

amplified DNA fragments of approximately 0.5 kb were gel

extracted (Qiagen). The purified DNA fragment was then

ligated into pTOPO-ZeroH blunt plasmid (Invitrogen) and was

introduced into E. coli strain top10 by electroporation. The

resulting plasmid pTOPO-NagA was extracted and sequenced.

A homologous protein search was performed using pblastx

algorithm (http://blast.ncbi.nlm.nih.gov/Blast). The deduced

amino acid alignment of nagA from G. xylinus and other bacteria

was performed using CLC-main workbench (version 5.5)

algorithm (http://www.clcbio.com) The DNA sequence of the

nagA homolog from strain 10245 was deposited into GenBank

(accession number GU220906).

Disruption of nagA
For nagA disruption, pT7-Blue plasmid (Navogen) was used as

this plasmid had been reported to be used to successfully knock

out a glucose dehydrogenase gene (gdh) from G. xylinus [28].

Initially, nagA was amplified by PCR with sequence specific

primers (NagA-DisF and NagA-DisR) and inserted between the

HindIII and BamHI sites in plasmid pT7-Blue. The resulting

plasmid pT7-blue-NagA was further modified by the insertion of

a tetracycline resistance cassette (tetr) into the NdeI site in

between nagA sequence. For this, the tetracycline resistant gene

was amplified using Tet-for and Tet-rev primers followed by

digestion with NdeI. The NdeI digested tetracycline gene was

finally ligated into NdeI digested pT7-blue-NagA plasmid. The

resulting plasmid pT7blue-NagA-Tet-NagA was then introduced

into G. xylinus by electroporation [29] and screened on HS agar

plate containing 50 mg/ml tetracycline. In order to confirm the

disruption of the nagA homolog, chromosomal DNA was

extracted from potent recombinant colonies followed by PCR

using primers (NagApcrF and NagApcrR). For the final

confirmation, the resulting PCR amplified DNA fragment was

sequenced and analyzed.

Growth studies (DnagA v/s wild type)
Wild type and DnagA G. xylinus strains were cultured in 50 ml

HS (+cellulase) medium supplemented with either glucose or

GlcNAc. Initial optical density of the cell cultures was adjusted to

A600 0.0160.005 and kept at 30uC with 200 rpm constant

Figure 1.Multiple-amino-acid alignment of nagA proteins from G. xylinus and from other bacteria. Putative amino acid sequence of nagA
homolog of G. xylinus, nagA of G.intermedius (Genbank access. no. BAI39462), nagA of G. diazotrophicus Pal 5 (YP_001602823), nagA of G. oxydans 621
H (YP_001602823).
doi:10.1371/journal.pone.0018099.g001

Table 3. GlcNAc-6-phosphate deacetylase (NagA) homology
between G. xylinus and other bacteria.

Organism Class % Homology

G. xylinum Alphaproteobacteria 100

G. intermedius Alphaproteobacteria 97

G. diazotrophicus Alphaproteobacteria 80

D. geothermalis Deinococci 62

D. radiodurans Deinococci 57

S. thermophilum Clostridiales 60

M. tuberculosis Actinobacteridae 59

S. coelicolor Actinobacteridae 55

doi:10.1371/journal.pone.0018099.t003
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shaking. For growth, A600 was monitored at different time intervals

up to 60 hrs. The obtained A600 values were plotted against

respective culture time. For growth on solid media, HS-agar plates

supplemented with either 2% glucose or 2% GlcNAc or 2%

glucosamine were used. Both DnagA and wild type G. xylinus was

streaked with sterile loop on the surface on agar plates. Plates were

analyzed after 5 days and photographs were taken.

Measurements of cytoplasmic UDP-GlcNAc and
UDP-glucose

The cytoplasmic UDP-GlcNAc and UDP-glucose pools were

measured by standard procedures [30]. Both DnagA and wild type

cells were grown to mid logarithmic phase in the presence of either

2% glucose or 2% GlcNAc. Cultures were harvested at 3000 g for

10 min and the resulting cell pellets were mixed in 2 ml sonication

buffer (100 mMKCl, 1 mM, EDTA, 50 mM KH2PO4, pH 7.5)

followed by cell lysis using sonicator at 4uC. For sonication, 10

pulses (each pulse 60 sec) were applied to each sample with a

1 min gap between adjacent pulses. After sonication, samples were

de-proteinized by addition of 1 volume of 0.1 M perchloric acid

and subsequent centrifugation for 30 min at 16000 gat 4 uC for

30 min. The resulting supernatants were diluted with 10 volumes

of 10 mM KH2PO4 (pH 2.5) and the final pH was adjusted to 2.5

for each sample. Samples were applied to 3-ml Supelclean LC-

SAX solid-phase extraction columns (Supelco, USA). After the

columns were washed with 5 ml of 10 mM KH2PO4 (pH 2.5) and

2.5 ml of 50 mM KH2PO4 (pH 2.5), the UDP-sugars were eluted

with 1 ml of 150 mM KH2PO4 (pH 7.5). UDP-sugars were

separated and quantified by HPLC (Waters), using two LC-18T

columns in series (25 cm 64.6 mm, 5 mm bead size; Supelco,

USA) and ultraviolet detection at 254 nm (2487 Dual l
Absorbance Detector; Waters). The mobile phase, at a flow of

1 ml/min, was a 0.1 M KH2PO4 buffer containing 2 mM

tetrabutylammonium phosphate, pH 6.2. For the quantification

purpose, five calibrators (0, 10, 25, 50, 100 mM) of UDP-sugars

(UDP-glucose and UDP-GlcNAc) were analyzed before and after

each set of run. All unknowns were quantified using these

calibration curves and individual samples were normalized with

the A600 of the cultures at the time of harvesting.

Cellulose production, purification and yield
For cellulose mass production, cell suspension of DNagA and

wild type cells were cultured separately in 10-cm Petri dishes

containing 20 ml HS medium supplemented with either 2%

glucose or 2% GlcNAc or a mixture of 1.5% glucose 0.5%

GlcNAc and kept at 30uC for one week. The cellulose pellicles

were purified by treating twice with a solution containing 2% SDS

and 0.1% NaOH at 70uC for 4 hrs to remove the entrapped G.

xylinus cells followed by several washes with de-ionized water [31].

Purified cellulose mats were used to assess the cellulose production

efficiency by drying at 70uC for 30 hrs and dry weights were

normalized with culture volume.

Atomic force microscopy (AFM)
For AFM, gelatin treated mica disks (,1 cm diameter) were

used to immobilize the bacterium on it [32]. Samples of both

mutant and wild type G. xylinus were prepared by scraping-off a

small quantity of the bacteria from a culture plate with a sterile

loop and transferred into a micro-centrifuge tube containing

500 ml of PBS (pH 7.4). After mixing, a 5 ml cell aliquot was

spotted onto a gelatin treated mica disk and spread to a diameter

of 4-6 mm. The sample was allowed to stand for 30 min, rinsed

with deionized water, and allowed to dry for imaging. Cell

morphology was observed by AFM (Veeco, Nanoscope III) in air.

A 100 mm long silicon cantilever with a spring constant of 0.6 N/

m was used in tapping mode with scan speed of 0.8–1.2 Hz at 256

pixels per line [32].

Acid hydrolysis of cellulose and quantitative analysis by
LC-MS/MS

Both DnagA and wild type G. xylinus cells were grown in 10 cm

Petri dishes containing 20 ml HS medium supplemented with

either 2% glucose or 2% GlcNAc. After one week, cellulose

pellicles produced from both wild type and mutant cells were de-

cellularized by treating twice with 2% SDS at 70uC for 4 hrs

followed by several washings with deionized water. The purified

cellulose mates were acid hydrolyzed with 77% H2SO4 at 4uC for

one hour with gentle agitation followed by neutralization with

Ba(OH)2 and final pH was adjusted between 5–6 [33]. The acid

hydrolysates were subjected to liquid chromatographic separation

on a Waters Atlantis dC18 column (15062.1 mm, 5 mm, Waters,

Milford, MA) by Agilent HPLC 1200 system (Agilent, Santa Clara

CA). Mass spectrometric detection was performed on an API 3200

triple quadrupole instrument (Applied Biosystems) using multiple

reaction monitoring (MRM). A TurboSpray interface with

negative ionization mode was used. The precursor-to-product

ion transitions m/z 220 R 119 for GlcNAc and 179 R 89 for

glucose. The main MS working parameters were listed in Table
S1. A linear calibration standard curve for glucose and GlcNAc

ranging up to 100 mg/ml was set up for the quantification purpose

(Figure S1).

Statistical analysis
Comparisons between two experimental groups were performed

using one-way ANOVA (GraphPad, InStat Software, La Jolla,

CA). Group means were deemed to be statistically significantly

when p,0.001. Plasmid maps were drawn using pDRAW32

software (http://www.acaclone.com).

Results

Cloning and sequence analysis of nagA
A 460 bp DNA fragment was amplified by PCR from genomic

DNA isolated from G. xylinus strain 10425 and sequenced. The

deduced amino acid sequence showed significant similarities to

nagA of several other proteobacteria (Fig. 1). The closest

homology was the nagA of G. intermedius with a 97% amino acid

sequence identity compare to other Gluconacetobacer sp. (Table 3).

Given that our goal was to disrupt the gene to interrogate its effect

on GlcNAc metabolism in G. xylinus, we did not require the full

gene sequence. Therefore our research focus shifted to the

disruption of the nagA gene and its consequential impacts in G.

xylinus.

Figure 2. Disruption strategy and screening of G. xylinus nagA mutants. (A) pT7Blue-Nag-Tet-Nag was introduced in to G. xylinus strain
10245. Homologous recombination between the nagA homolog-flanking sequences in the plasmid and chromosomal DNA of strain 10245 occurred.
(B) PCR screening of positive mutants using gene specific primers. These primers amplify 450 bp of wild-type genomic copies of nagA (wt, C1, C4 and
C6) while in mutants nagA was efficiently disrupted (C2, C3, C5 and C7) gives a single 1.7Kb band as PCR product. Top pictures showing the possible
genome organization of nagA in mutant (DnagA) and wild type cells (wt-nagA) to explain PCR data.
doi:10.1371/journal.pone.0018099.g002
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Figure 3. UDP sugar in wild type and DnagA cells. (A) HPLC elution profile for DnagA cells fed with either glucose or (B) GlcNAc. (C) HPLC
elution profile for wild type cells fed with either glucose or (D) GlcNAc. (E) HPLC elution profile for purified UDP-glucose and UDP-GlcNAc as reference
to evaluate the elution time for both. (F) Quantification of cytosolic level of UDP-glucose and UDP-GlcNAc in both nagA mutant and wild type G.
xylinus cells fed either GlcNAc or (G) glucose fed conditions. Error bar represent s.d. of three replicates (p,0.001).
doi:10.1371/journal.pone.0018099.g003
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Disruption of nagA
In order to generate a nagA-deficient strain we employed an

insertional disruption technique. Initially the nagA sequence

was cloned into the pT7-Blue plasmid between the BamHI and

HindIII sites followed by insertion of a tetracycline resistance

cassette in nagA sequence at the NdeI site. The resulting

plasmid, pT7blue-NagA-Tetr-NagA is incapable of replicating

in G. xylinus. Plasmids were introduced into strain 10245 by

electroporation as previously described [29]. Since the plasmid

lacks the Ori sequence (origin of replication) from G. xylinus and

therefore cannot be maintained in G. xylinus, resistance to

tetracycline will be present only after homologous recombina-

tion into the chromosome, presumably resulting in an

insertional inactivation of the nagA gene (nagA :: tetR; DnagA).

The complete procedure is outlined in Fig. 2A. After screening

on tetracycline containing HS-agar plate, approximately two

thirds of colonies were found to be sensitive to ampicillin (this

means plasmid is no longer present in the cells) but resistant to

tetracycline, thus suggesting that these recombinant strains were

generated by a double crossover event. Disruption of the nagA

homolog in the recombinant strains was confirmed by PCR with

selected colonies. PCR analysis indicated that the DnagA strain

generated a 1.7 kb amplicon (0.46 kb of nagA +1.25 kb of tetr)

while the wild type strain generated a 0.46 kb amplicon in

agarose gel (Fig. 2B). Sequence analysis of these PCR-amplified

DNA fragments further confirmed the insertion of thetetrcas-

Figure 4. Growth and morphology of wild type and DNagA mutants. (A) growth on HS-agar plate supplemented with either glucose; or (B)
glucosamine or (C) GlcNAc. (D) Time dependent growth curve of wild type and mutant cells in the presence of glucose or GlcNAc as carbon source.
(E) AFM imaging of wild type and (F) nagA mutant cells.
doi:10.1371/journal.pone.0018099.g004
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sette into the NagA gene. While several disrupted clones were

generated, a single strain was designated as a nagA deficient

mutant (DnagA) and utilized for further studies.

Measurements of cytoplasmic UDP-GlcNAc and
UDP-glucose

To determine whether DnagA cells are able to metabolize

GlcNAc, cytoplasmic UDP-GlcNAc and UDP-glucose were

assessed by HPLC in DnagA (Fig. 3A, 3B) and (Fig. 3C, 3D)

and normalized with relative cell numbers by measuring A600 of

cultures at the time of harvesting (Fig. 3E for DnagA and Fig. 3F

for wild type sells respectively). Purified UDP-glucose and UDP-

GlcNAc were used as standard (Fig. 3E). In the presence of

GlcNAc, wild type cells contains significant level of UDP-GlcNAc

(2.1260.45 mM/A600) compare to mutant cells having almost

undetectable level of UDP-GlcNAc (Fig. 3F). Under glucose fed

conditions, levels of UDP-glucose observed in wild type cells

(6.360.4 mM/A600) were slightly higher than DnagA cells

(4.2461.16 mM/A600) (Fig. 3G).

Growth studies and phenotypic appearance
To determine whether nagA is essential for growth of the

bacterium, both DnagA and wild type G. xylinus were grown

for five days on HS agar plate supplemented with either

glucose, GlcNAc, or glucosamine. On glucose and glucos-

amine supplemented plates, both mutant and wild type grew

well (Fig. 4A and Fig. 4B) while on GlcNAc supplemented

plates, mutant cells did not grow (Fig. 4C). To confirm these

data, the growth of both wild type and mutant cells was

monitored in liquid HS media supplemented with glucose or

GlcNAc. In glucose-supplemented media, both mutant and

wild type cells exhibited a typical sigmoidal growth pattern

whereas in the presence of GlcNAc, growth of mutant cells

was completely inhibited while wild type cells grew slowly

(short log phase) as expected due to the fact that GlcNAc is

not a preferred carbon source for G. xylinus (Fig. 4D).

Additionally, in presence of glucosamine, growth of both wild

type and DnagA mutant was similar to the growth of wild type

in GlcNAc fed conditions (data not shown). These findings

together with agar plate growth studies demonstrated that

nagA disruption prevents G. xylinus from metabolizing GlcNAc

as an alternative carbon source for growth. Similar findings

were also observed in Gluconacetobacter intermedius where

disruption of nagA decreased the growth rate in the

exponential growth phase [34]. Nevertheless, a steady sate

growth curve of mutant cells with GlcNAc feed also revealed

that nagA disruption does not cause any lethal impact (lysis or

death) on the bacterial cells and as a result it only impairs the

growth. To conform the mutant cells (grown in presence of

GlcNAc) were sub-cultured in the presence of glucose and

Figure 5. Cellulose production and pellicle morphology. (a) Morphological appearance of cellulose pellicles produce after one week by wild
type and DNagA G. xylinus in the presence of either (A) glucose; or (B) GlcNAc as carbon source. (C) Cellulose production efficiency of wild type and
DNagA G. xylinus supplemented with either glucose, GlcNAc or both as carbon source. Error bar represent s.d. of three replicates (*p,0.001); (D)
Quantitative LC-MS/MS for quantification and relative weight percent (wt%) of glucose and GlcNAcin acid hydrolyzed cellulose extruded from wild
type or DNagA fed with either glucose or GlcNAc. Error bar represent s.d. of three replicates (*p,0.001). (E) Linear regression curve for known
glucose; and (F) for known GlcNAc to quantify glucose and GlcNAc in acid hydrolyzed cellulose samples by LC-MS/MS.
doi:10.1371/journal.pone.0018099.g005
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found that bacterium regains its normal growth (data not

shown). This reveals that mutant cells do not die in the

presence of GlcNAc and only their growth has been inhibited.

Atomic force microscopy was employed to analyze cell

morphology and no significant changes were observed

between wild type (Fig. 4E) and mutant cells (Fig. 4F).

Cellulose Productivity and chemical composition
The gross morphology of cellulose pellicles produced by wild

type or DnagA cells was not noticeably different (Fig. 5A and

Fig. 5B). To completely assess cellulose production efficiency in

the mutant strain, the cellulose yield was determined by

measuring dry weight of pellicles and compared with cellulose

dry weight from wild type cells. The cellulose yield in presence

of glucose was found to be 3.160.4 mg/ml-culture media for

wild type and 3.060.6 mg/ml-culture media for DNagA. In the

presence of GlcNAc media supplement, cellulose yields were

0.3160.1 mg/ml-culture media for wild type and

0.5260.1 mg/ml-culture media for DNagA. Moreover, as we

increased glucose content in culture medium, the cellulose yield

also increased accordingly for both wild type and mutants. To

conclude these findings, we did not observe any loss of cellulose

productivity in mutant cells when compared to the wild type

strain (Fig. 5C). This is extremely important for further

exploration of the nagA mutant strain in studies where cellulose

productivity cannot be compromised. The cellulose composition

was determined by acid hydrolysis followed by LC-MS/MS

(Fig. 5D). Under glucose fed conditions, cellulose produced from

either wild type or DnagA was essentially pure and was made-up

of glucose moieties only while in presence of GlcNAc, mutant

cells produces pure cellulose (99.9 weight% glucose) but

cellulose from wild type cells contains 1.3 weight% GlcNAc as

previously reported [35]. Additionally, our MS data showed that

there were no significant changes in enzymatic digestion pattern

as mass spectra for cellulase-digested cellulose from DnagA is

identical to wild type cellulose. This indicates that deletion of

NagA alone does not alter the molecular composition of

cellulose.

Discussion

In the present study, we report a genomic DNA fragment

belonging to N-acetylglucosamine 6-phosphate deacetylase (nagA)

from cellulose producing bacterium G. xylinus. In E. coli and other

prokaryotes, nagA is demonstrated to be involved in GlcNAc

metabolisms by deacetylating GlcNAc-6-P to Gln-6-P

[6,22,36,37]. Therefore we sought to investigate the role of nagA

in N-acetylglucosamine assimilation in G. xylinus by disrupting

nagA. Since nagA mutants were able to grow on glucosamine, this

clearly indicates that deacetylase is not involved in glucosamine

degradation. Due to the fact that UDP-GlcNAc was almost

undetectable in DnagA cells under either glucose or GlcNAc feed,

we not only conclude that nagA is essential for conversion of

GlcNAc supplements in to UDP-GlcNAc but also that G. xylinus

lacks the enzyme AGM, as in presence AGM bacteria would be

able to synthesize UDP-GlcNAc even in the absence of nagA.

Based on our results and the GlcNAc metabolic pathway from

both prokaryotes and eukaryotes, we believed that following steps

occurred in G. xylinus: i) conversion of GlcNAc-6-phosphate into

glucosamine-6-phosphate (GlcN-6-P) by NagA; ii) conversion of

GlcN-6-P into glucosamine-1-phosphate (GlcN-1-P); iii) acetyla-

tion of GlcN-1-P to produce N-acetylglucosamine-1-phosphate

(GlcNAc-1-P); and iv) synthesis of UDP-GlcNAc from GlcNAc-1-

P and UTP. The overall pathway is illustrated in Fig. 6. The

growth characteristics of deacetylaseless mutants confirm the

catabolic routes for glucosamine and GlcNAc in G. xylinus. The

inhibited growth of mutants in presence of GlcNAc was due to lack

of adequate UDP-GlcNAc in cytoplasm for peptidoglycan cell wall

synthesis; as a result the bacteria could not multiply.

Earlier studies have shown that G. xylinus is able to incorporate

GlcNAc in cellulose while grown under GlcNAc fed conditions

[31,35]. Therefore we sought to evaluate the chemical composi-

tion of cellulose produced by both wild type and mutant cells and

the role of nagA in this procedure. We did not observe any

GlcNAc content in cellulose produced by mutant cells while a

small fraction of GlcNAc was observed in wild type cells as

reported earlier [35]. The absence of UDP-GlcNAc in nagA

mutant cells translates into the absence of GlcNAc residues in

cellulose produced from DnagA cells even under GlcNAc fed

conditions.

Bacterial cellulose (BC) produced by G. xylinus into long, non-

aggregated, essentially pure nanofibrils and is a versatile

biomaterial due to its unique nanostructure and properties that

closely resemble the structure of native extracellular matrices

[5,38,39]. Despite the excellent biocompatibility and mechanical

properties of BC, the lack of cellulose hydrolyzing enzymes in the

human body and the high crystallinity restricts its utility [40].

Therefore, cellulose with controllable crystallinity and degrad-

ability (in the human body) could be a next generation polymer for

tissue engineering applications. Nonetheless the widespread

presence of lysozyme in human body warrants its exploitation to

degrade a biopolymer containing GlcNAc as one of its constituent

[41,42]. Since the cellulose synthase of G. xylinus can utilize both

UDP-glucose and UDP-GlcNAc as substrate further genetic

alteration can be carried out in G. xylinus to elevate the UDP-

GlcNAc pool. This would make UDP-GlcNAc accessible for

cellulose synthase and as a result such cells may produce a

lysozyme degradable cellulosic heteropolymer consisting of both

glucose and GlcNAc. In this regard, our group has published a

Figure 6. UDP-GlcNAc biosynthetic pathway in bacteria
(including G. xylinus) and eukaryotes. Reactions with open arrows
occur in bacteria and reactions with filled arrow occur in eukaryotes
while dotted arrow reactions are common in both bacteria and animals.
Enzymes involved are as follows; 1: N-acetylglucosamine kinase; 2: N-
acetylglucosamine-6-phosphate deacetylase; 3: Glucosamine kinase; 4:
Phosphoglucosamine mutase; 5: Glucosamine-6-phosphate N-acetyl-
transferees; 6: UDP-N-acetylglucosamine pyrophosphorylase; 7: Phos-
phoacetylglucosamine mutase.
doi:10.1371/journal.pone.0018099.g006
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report on the production of cellulose chitin copolymer from

metabolically engineered G. xylinus [26].Though we were able to

incorporate GlcNAc (21% GlcNAc/dry weight) in cellulose

produced from metabolically engineered cells but still we believe

that elevated cytoplasmic UDP-GlcNAc (as its high level could

harm G. xylinus cells) could allosterically activate nagA to

circumvent the GlcNAc-6-phosphate into other metabolic path-

ways thereby reducing the level of cytoplasmic UDP-GlcNAc pool.

Although disruption of NagA neither induces incorporationof

GlcNAc into cellulose nor changes cellulose composition,

simultaneous disruption of NagA and heterologous expression of

UDP-GlcNac synthesis machinery would likely increase the

cytoplasmic UDP-GlcNAc pool. Based on that context, the

amount of GlcNac incorporated into cellulose would likely be

higher than what was previously achieved [26]. We anticipate that

this would lead to the production of a cellulosic heteropolymer

consisting of both glucose and GlcNAc as its constituents thereby

producing a tailorable (due to presence of polar GlcNAc) chimeric

cellulosic biopolymer degradable in human body. This could

overcome the longstanding limitations associated with the in vivo

cellulose degradability.
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