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Abstract

Background: Metabolic and endocrine environment during early life is crucial for metabolic imprinting. When dams were
fed a high fat diet (HF diet), rat offspring developed hypothalamic leptin resistance with lean phenotype when weaned on a
normal diet. Interestingly, when grown on the HF diet, they appeared to be protected against the effects of HF diet as
compared to offspring of normally fed dams. The mechanisms involved in the protective effect of maternal HF diet are
unclear.

Methodology/Principal Findings: We thus investigated the impact of maternal high fat diet on offspring subjected to
normal or high palatable diet (P diet) on metabolic and endocrine parameters. We compared offspring born to dams fed P
or HF diet. Offspring born to dams fed control or P diet, when fed P diet exhibited a higher body weight, altered
hypothalamic leptin sensitivity and metabolic parameters suggesting that maternal P diet has no protective effect on
offspring. Whereas, maternal HF diet reduces body weight gain and circulating triglycerides, and ameliorates corpulence
index of offspring, even when subjected to P diet. Interestingly, this protective effect is differently expressed in male and
female offspring. Male offspring exhibited higher energy expenditure as mirrored by increased hypothalamic UCP-2 and
liver AdipoR1/R2 expression, and a profound change in the arcuate nucleus astrocytic organization. In female offspring, the
most striking impact of maternal HF diet is the reduced hypothalamic expression of NPY and POMC.

Conclusions/Significance: HF diet given during gestation and lactation protects, at least partially, offspring from excessive
weight gain through several mechanisms depending upon gender including changes in arcuate nucleus astrocytic
organization and increased hypothalamic UCP-2 and liver AdipoR1/2 expression in males and reduced hypothalamic
expression of NPY and POMC in females. Taken together our results reveal new mechanisms involved in the protective
effect of maternal HF diet.
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Introduction

Obesity has been considered to result from both a genetic

prevalence and inadequate nutrition due to lifestyle, and more

recently epidemiological evidence raised the notion of a develop-

mental origin of this pathology and associated diseases [1].

According to the «thrifty phenotype» hypothesis [2], a poor fetal

nutrition leads to programming of an adult phenotype that is

adapted to poor nutrition, but a mismatch between predicted and

postnatal environment then promotes a persistent dysregulation of

the body weight control [3]. Thus, low-birth-weight babies due to

adverse foetal conditions often display an increased susceptibility

to develop a metabolic syndrome when submitted to plentiful

conditions later in life [4,5]. Such a developmental programming,

reproduced in animal models by maternal undernutrition [6], is in

part attributed to a relative lack of leptin during crucial time

windows in the developmental neuronal plasticity, since a normal

adult phenotype may be restaured after treatment of either

pregnant dams [7] or suckling pups [8,9] by exogenous leptin.

This pleiotropic adipocyte-derived cytokine acts as an essential

neurotrophic factor along the development of the hypothalamic

circuits regulating metabolic homeostasis [10]. Later in life, leptin

through its binding to specific ObRb receptors (long isoform of

leptin receptor) especially abundant in the arcuate nucleus triggers

the concerted signalling pathways leading to reduce appetite and

increase energy expenditure [11]. Moreover, the growing

proportion of women that are overweight before and during

pregnancy and lactation [12] raised the question of the impact of

leptin excess during critical perinatal periods on the risk of

becoming obese in adulthood. Indeed this risk has been shown to
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be increased in pups issued from dams treated with leptin before

weaning [13] or overfed by suckling in small litters [14]. While

maternal high-fat diets have been often reported to program

obesity in offspring [15–19], discrepant results obtained in rodents

may be related to the choice of the strain, the litter size and the

composition of the inappropriate diet promoting maternal obesity,

mimicking the features of hypercaloric foods available in modern

societies [20,21].

In a previous study carried in Wistar rats [22], pups reared in

large litters and born to dams fed a high-fat (HF) diet, from before

conception and throughout gestation and lactation, displayed a

lower weaning body weight as compared to their counterparts

born to control dams. Their growth retardation was related to the

abnormal fall in body weight observed in lactating dams. After 6

weeks feeding a control diet from weaning, these pups were

characterized by a defect of leptin signaling in hypothalamus

despite a lean phenotype and normal leptin, insulin, glucose and

lipid plasma levels [22]. Interestingly, when the same HF diet was

provided for 6 weeks after weaning, only males issued from

normally fed dams become overtly obese while those born to HF

dams were protected against the obesogenic effect of the HF diet,

despite the same defective hypothalamic leptin signaling. Their

«spendthrift» phenotype suggested a persistent modification of the

energy control, in agreement with a predictive adaptive response

[23] to the inappropriate HF diet [24–26].

In the present paper, a highly palatable (P) diet was used

(experiment 1, Figure 1) to induce maternal obesity [27], then the

adult phenotype of male offspring was compared to that of control

rats born to chow-fed dams. When pups issued from obese dams

were assigned to the chow diet at weaning, they displayed

inherited defective leptin signaling in hypothalamus, which

persisted until age of 6 months despite normal body weight

evolution. However, pups born to obese P dams and weaned on

the same P diet were not protected against diet induced obesity.

Clearly the two inappropriate HF and P diets have distinct impacts

on both dams and pups, likely in relation with their different

palatability or composition. Both diets (HF and P) were then used

(experiment 2, Figure 1) in order to study whether adult pups born

to HF dams and weaned on a chow diet, will be more or less

susceptible than control rats to develop obesity when switched to

the obesogenic P diet, a question that remained unresolved in our

previous study [22]. Thus, male and female offspring born to HF

or control dams were assigned to the control diet for 7 post-

weaning weeks, and then switched to the P diet for 3 additional

months. Our results clearly showed that offspring from both

genders born to HF dams were protected from the obesogenic

effect of P diet as their body weight gain was lower as compared to

offspring born to chow dams. In addition, the potential protective

effect of maternal HF diet involves most likely different gender-

dependent mechanisms.

Results

Experiment 1
Females and pups until weaning. According to the

cumulative food intake measured during 4 weeks before mating

and the energy density of each dry diet (Table 1), the mean daily

amount of food ingested per rat (measured every two days on 4

cages of 4 rats in each group) was higher for the P diet (25.160.4 g

as wet P diet or 16.660.3 g as dry P diet) than for the C diet

(15.1860.18 g, p,0.0001), then providing more energy (65.261

and 56.260.7 kcal, p,0.0001, respectively). The number of

females which became pregnant (12 out of 16 animals in each

group) and the initial size of the litters (11.760.8 and 11.760.9

pups from P and C dams, respectively) were not influenced by the

maternal diet, but the male/female ratio (0.79 for 140 pups born

to P dams versus 1.16 for 141 pups born to C dams) was inversed.

No difference appeared in the mean birthweight and after the litter

size was equilibrated to 11–12 pups at birth, the evolution of the

mean litter weight was identical regardless the maternal diet until

weaning (results not shown). As shown in Figure 2, P dams became

overtly obese compared to C dams (n = 12 per group) and their

overweight (about 15% before mating) was maintained after 120

days of experimental diet, i.e 20 days after weaning. At this time,

fasting plasma level of leptin was clearly higher in P dams

(6.561.3 ng/mL, n = 6) than in control dams (1.960.5 ng/mL,

n = 7, p,0.005).

Offspring after weaning. Daily energy intakes and final

physiological parameters measured in adult fasted rats are shown

in Table 2. Mean daily energy intakes were calculated from daily

food intakes measured twice a week from the 2nd to the 6th post-

weaning week on 10 cages of 2 rats per group. The highest value

was found in the PC group of rats fed the highly palatable P diet

and born to normally fed dams. Their counterparts born to obese

dams (PP group) ingested less energy for a similar weight gain,

suggesting a better food efficacy of the P diet in this group. The

maternal diet did not affect CC and CP rats, which both displayed

a lean phenotype while their energy intake was close to that of

obese PP rats. As observed in Figure 3, independently of maternal

diet a striking effect of the post-weaning diet appeared on the body

weight evolution and gain. The same conclusion was drawn by

comparing plasma concentrations of triglycerides, leptin and

insulin, all reported in Table 2. These parameters were higher in

rats fed the P diet (PP and PC groups) than in rats fed the chow

diet (CC and CP groups). The only differences concerned the

plasma levels of leptin which were lower in CP rats than in control

CC rats, and the plasma levels of insulin and HOMA index of PP

rats which overpassed those of PC rats. In addition, the lowest

plasma cholesterol value was found in PP rats, indicating a long-

term impact of the maternal metabolic status on these parameters.

Hypothalamic leptin sensitivity of offspring. The

hypothalamic leptin sensitivity was assessed in each group by

comparing the phoshorylation levels of STAT3 and ERK1/2 in

response to a bolus of leptin. Briefly, 11 week-old rats from the

four groups were starved overnight and divided in two groups that

receive by IP saline or leptin, respectively. The phoshorylation

levels of STAT-3 and ERK1/2 were measured by Western blot.

Leptin IP bolus induced STAT-3 (fig. 4A and 4B) and ERK1/2

(fig. 4C and fig. 4D) phosphorylation only in CC groups, whereas

the other groups displayed a clear hypothalamic leptin-resistance

(Fig. 4).

Experiment 2
Females and pups until weaning. The experiment 2 was

performed in order to study the impact of high fat diet (HF) during

pregnancy and lactation on offspring when swithched to a high

palatable diet (P) at the adulthood. The measurement of food

intake twice a week before mating (14 cages of 2 rats per group)

indicated that dams fed the high fat diet daily ingested less food

than control dams fed the chow diet (12.660.2 vs 18.260.2 g/rat,

p,0.0001), which however provided more energy

(71.961.1 kcal/day vs 67.460.7 kcal/day, p,0.002) due to the

high caloric density of the HF diet. After 7 weeks, the body weight

of HF females (30165 g, n = 28) did not significantly exceed that

of C dams (29163, n = 28) before mating, as observed before

delivery (46769, n = 21 and 45566 g, n = 25, respectively) and

just after, since the body weight fall was similar in the two groups

(9864 and 10265 g, respectively). All lactating HF dams then
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became gradually thiner and their body weight at weaning was

markedly lower than that of control dams (31967 g, n = 21 versus

35165 g, n = 25, p,0.0001).This pattern is illustrated in Figure 5

for HF and C dams. The proportion of HF females which become

pregnant was smaller than in the control group (23 vs 28 out of 28

females per group) as was the litter size at birth (n = 11.260.6 vs

n = 13.160.7, p,0.05). Regardless of gender, the mean

birthweight of pups issued from HF dams was lower than that of

pups issued from C dams (6.1560.04 g, n = 227 vs 6.7760.07 g,

n = 286, p,0,0001) and the male/female ratio was similar in the 2

groups (1.14 and 1.03, respectively).

The maternal diet markedly influenced the weaning body

weight of pups, which was dramatically lower in males

(53.461.8 g, n = 48) and females (50.262.0 g, n = 48) born to

HF dams compared to those born to control dams (77.461.6,

n = 41 and 73.061.0, n = 42, p,0.0001, respectively). The

observations were continued on pups issued from 19 litters from

HF dams and 23 from C dams.

Adult offspring born to HF or C dams. N After 7 weeks

feeding the chow diet since weaning. The body weight

measured after 7 post-weaning weeks on the chow diet is presented

in Table 3 for the 4 groups of adult offspring. The effect of the

maternal HF or C diet persisted in the two genders: the growth

retardation of pups issued from HF dams, which averaged 32% of

body weight at weaning, was partially caught up and represented

about 17% in male and 12% in female pups. The absolute body

weight gain was identical in the two groups of females regardless

the maternal diet, while males born to HF dams growed relatively

more slowly than those born to C dams. Taking into account the

classical sexual dimorphism in the body growth in the rat species,

results were then analyzed separately for each gender (table 3).

N Challenged for the highly palatable P diet or maintained

on the control C diet. As shown in Figure 6, swithching from C

diet to the P diet for additional 3 months markedly increased the

body weight for both genders but regardless the diet, rats born to

HF dams still displayed a lower final body weight than their

counterparts born to control dams (Fig. 6). The effect of the

maternal diet was also observed for the corpulence index (Table 4)

which was similar in offspring born to C dams and fed the C diet

and those born to HF dams and fed the P diet. The maternal diet

did not influence the absolute weight gain (measured between

week 7 and the end of the experiment and corresponding to the

switch to P diet) of males under the C or P diet (Fig. 6), while

females issued from HF dams gained significantly less body weight,

under the P diet as compared to those issued from C dams (Fig. 6).

Compared to the C diet, the P diet increased plasma TG,

insulin and leptin levels in both genders, and glucose only in males.

In both genders and for each diet, plasma TG levels were lower in

rats born to HF dams than in those born to C dams. Similar

variations were observed for leptin levels, which appeared to be

more influenced by the maternal diet than insulin levels. Plasma

leptin levels were lower in female born to HF dams and fed P diet

compared to those born to C dams and fed P diet. In females but

not in males, cholesterol varied in parallel with TG, with higher

values under the P diet (Table 4).

Figure 1. Model depecting the experimental protocol for experiment 1 and experiment 2. C, P and HF diets correspond to Chow, High
palatable diet and High Fat diet, respectively.
doi:10.1371/journal.pone.0018043.g001

Figure 2. Evolution of the body weight of dams fed the control
(C) diet (n = 16) or highly palatable diet (P) (n = 16) for 6 wk
before mating, throughout gestation and lactation (28 days)
and until the postweaning period (*p,0.05).
doi:10.1371/journal.pone.0018043.g002

Table 1. Energy content of the commercial chow diet (C) and
the semi-purified highly palatable (P) and high-fat (H) diets.

Energy (kcal %) derived from C P H

Carbohydrates 66.2 70 22.6

Proteins 22.7 14.6 12.9

Lipids 11.1 15.4 64.5

Energy content (kcal/100 g of dry diet) 370.1 392.6 571.9

doi:10.1371/journal.pone.0018043.t001
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Daily food intake was measured during 8 days, one month after

the dietary challenge, and the daily energy intake was calculated,

as shown in Table 5. Independently of their diet (C or P), the

relative daily energy intake is significantly increased in males born

to HF dams. In females born to HF dams relative daily energy

Intake was reduced when fed control diet, but when fed P diet

offspring born to HF or C dams exhibited similar relative energy

intake (Table 5).

Impact on key genes involved on energy homeos-

tasis. To evaluate the impact of maternal C or HF diet on

the hypothalamic and hepatic gene expression levels of male and

female offspring challenged with high palatable diet, we have

Table 2. Physiological parameters measured in fasted and fed male rats (age: 11 weeks) from 4 experimental groups named
according to the post-weaning and maternal chow or palatable diet (C or P as 1st and 2 nd letter, respectively).

Group CC CP PC PP

Daily energy intake (Kcal/day) 87.261.3a 83.264.5a 99.161.9b 88.462.5a

(n) (16) (16) (16) (16)

Overnight Fasted

(n) (20) (20) (20) (20)

Liver weight (g) 12.060.3a 12.060.4a 14.360.3b 13.960.3b

%Body weight 2.3260.05bc 2.3960.05c 2.2060.04ab 2.1060.04a

Liver lipids (mg/g) 3.0460.22 2.5360.18 3.0860.18 2.8060.20

Plasma

(n) (20) (20) (20) (20)

Glucose (g/L) 0.92860.017 0.99660.031 1.01960.026 1.00660.025

Insulin (ng/mL) 0.63160.09a 0.76160.071a 1.70360.128b 2.32860.224c

HOMA* 3.5460.38a 4.7160.55a 10.3960.80b 14.0761.33c

Leptin (ng/mL) 3.5760.64b 2.6460.57a 11.4961.51c 14.6964.64c

Triglycerides (g/L) 0.8460.047a 0.74260.049a 1.26860.094b 1.48160.112b

Cholesterol (g/L) 0.86260.058b 0.81360.036b 0.70760.036b 0.65460.025

*calculated according to Tumer et al. (1993),
**subgroup of rats injected with physiological saline (n = 10). Different superscript letters a,b,c denote significant differences at p,0.05 by ANOVA and the Fisher posthoc
test.
doi:10.1371/journal.pone.0018043.t002

Figure 3. Impact of post weaning diet on the body weight of male pups born to dams fed the control diet (C) or highly palatable
diet (P). At weaning four groups of male pups (CC, n = 32; CP, n = 35; PC, n = 34; PP, n = 32) were formed and named according to the post weaning
diet (C or P, first letter) and to maternal diet (C or P, second letter) and their body weight and body weight gain were registred during 20 weeks after
weaning. Body weight and final body weight gain are reported in panel 3A and 3B, respectively (*p,0.05).
doi:10.1371/journal.pone.0018043.g003
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focused our interest on some key genes involved in the control of

food intake, energy homeostasis or insulin-sensitivity.

In male offspring, the hypothalamic expression of UCP2, NPY

and POMC was lower in PC group than in the other groups

(Fig. 7). Moreover ObRb was clearly less expressed in PC and PH

groups as compared to CC group, with a similar tendency for CH

Figure 4. Phosphorylation of STAT-3 and ERK in the hypothalamus of male offspring born to dams fed the control diet (C) or highly
palatable diet (P). At weaning four groups of male pups (CC, CP, PC, PP) were formed and named according to the post weaning diet (C or P, first
letter) and to maternal diet (C or P, second letter). Each goup contained 20 rats was divided into two sub-groups that received by IP either saline
(n = 10) or leptin (n = 10). In each group, the sensitivity toward leptin was assessed by a significant elevation of the mean p-STAT-3/t-STAT-3 and p-
ERK/t-ERK ratio in leptin-injected compared to saline-injected rats. Panel A and C show representative western-blots for total and phosphorylated
STAT-3 and ERK, respectrively. Panels B and D show the mean ratio band density of phosphorylated and total STAT-3 and ERK, respectively;
(**p,0.005; * p,0.05).
doi:10.1371/journal.pone.0018043.g004

Figure 5. Evolution of the body weight of dams fed the control
(C) diet (n = 28) or high-fat diet (HF) (n = 28) for 6 wk before
mating, throughout gestation and lactation (28 days) and until
the postweaning period (*p,0.05).
doi:10.1371/journal.pone.0018043.g005

Table 3. Body weights and post-weaning body weight gains
of offspring born to dams fed the chow (C) or the high-fat (H)
diet and fed the chow diet for 7 weeks since weaning.

Gender Male Female

Maternal Diet Chow High-fat Chow High-fat

Group MC MH FC FH

(n) (42) (48) (40) (48)

Body weight (g) 41067a 33966b 24464a 21463b

Post-weaning body weight
gain (g)

33267a 28865b 17164a 16763a

Different superscript letters a,b denote significant differences at p,0.05 by
ANOVA and the Fisher posthoc test.
doi:10.1371/journal.pone.0018043.t003
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group (Fig. 7). In contrast, IR expression was not affected by

dietary conditions (data not shown). We have also shown that

POMC and AgRp expression were not affected by dams’ diet by

immunohistochemistry (Supporting Data, Fig S1). In the liver, the

expression level of phosphotyrosine phosphatase 1B (PTP-1B) was

significantly increased in PH group as compared to the other

groups (Fig. 8), and a similar effect was found for the expression of

adiponectin receptors 1 and 2. Insulin receptor expression was

significantly reduced in CH group as compared to the others.

In female offspring, hypothalamic expression of POMC and

NPY was affected by maternal diet independently of offspring diet

(fig. 9) and expression of Obrb was only increased in PC group

whereas UCP2 expression was not affected (fig. 9). In liver, no

significant change was observed for PTP-1B, IR, AdipoR1 or

AdipoR2 (data not shown).

Impact of a HF diet on the cytoarchitectonic organization
of the hypothalamus

Since high fat diet given to dams seemed to deeply affect the

offspring energy homeostasis, we hypothesized that this could be

associated to changes in hypothalamic and more precisely in

arcuate nucleus organization. The immunohistochemical detec-

tion in the ARC revealed that the maternal HF diet induced a

significant increase in the density of astrocytic processes around

the blood vessels in males (p,0.05) at weaning whereas this

alteration was not observed in females (fig. 10). This gender-

specific modification was maintained until adulthood (data not

shown). It is to notice that the maternal HF diet had no effect on

the vascularisation or the global astrocyte coverage in the ARC,

whatever the gender.

Discussion

The highly palatable P diet used in the present study has been

initally presented as an alternative to the classical cafeteria diet to

promote a massive obesity [27,28]. Thus the P diet induced a

massive obesity in dams, which was persistent from before mating

and throughout gestation and lactation as pups were reared in

large litters. At weaning, pups born to P dams exhibited slight

growth retardation as compared with those born to control dams.

This observation might be surprising since stress is likely

minimized in pups weaned on day 28 (instead of day 21), which

progressively complete milk by the maternal solid food, as under

natural conditions. For comparison with our previous study, dams

fed the HF diet (60% energy as palm oil) only presented a slight

overweight before mating, followed by a spectacular body weight

loss during the lactation period [22] and weaning pups weighed

10% less than those of normally fed dams. Using a HF diet based

also on vegetal oil, others reported that gestation/lactation

alleviate some of the effect of HF feeding on body weight gain

of dams compared to nonpregnant rats but at day 20, pups reared

in small litters appeared heavier and fatter, and considered to be

more predisposed to obesity [19].

Among the four groups of adult male rats born to C or P dams

and weaned on the C or P diet, only the control CC group

exhibited an increased phosphorylation level of both STAT3 and

ERK1/2 in the hypothalamus in response to leptin challenge. It

may be concluded that in the three other groups, a central leptin-

resistance was either induced by the post-weaning P diet (PP and

PC groups) and/or programmed by the maternal P diet (CP

group). Interestingly, only rats fed the post-weaning P diet were

overtly obese with classical associated traits of the metabolic

syndrome, such as hyperglycemia, hypertriglyceridemia, hyperin-

sulinemia and hyperleptinemia on fasting state. Those born to P

dams and weaned on the balanced C diet (CP group) displayed a

normal corpulence and their plasma parameters were quite similar

to those of control rats, as reflected by normal body composition.

Thus, the defective central leptin signaling, inherited by the

offspring of obese dams, is quiescent in these animals which display

no tendency to become overweighed even after 5 post-weaning

months on the control diet. The physiological significance of this

observation is not yet understood. Unexpectedly, the degree of

obesity induced by the post-weaning P diet was not exacerbated in

offspring born to obese dams and plasma parameters were similar

in both groups of leptin-resistant rats, except higher insulin and

HOMA values and lower cholesterol level, in the PP than in the

PC group. It is to note that the food efficiency of the highly

palatable P diet was higher in the PP than in the PC group,

suggesting that the maternal P diet programmed a ‘‘thrifty’’

phenotype which tended to minimize the degree of diet-induced

obesity in the offspring, as a predictive adaptive response to the

obesogenic diet [23]. In the same way, the inherited ‘‘spendrift’’

phenotype observed in offspring born to HF dams, when

maintained on the same HF diet, probably accounts for their

unexpected resistance to the HF diet [22]. In order to verify

whether a maternal HF diet protects offspring from developing

obesity and metabolic/endocrine alterations, adult offsprings born

Figure 6. Impact of post weaning diet on the body weight of
male and female pups born to dams fed the control diet (C) or
high-fat diet (HF). At weaning offspring were divided into four
groups of each gender (CC, CH, PC, PH; n from 20 to 26) and named
according to the post weaning diet (C or P, first letter) and to maternal
diet (C or H, second letter). From weaning to 7 weeks of age all groups
were assigned to chow diet then swithched to C or P diet for 13
additional weeks. Body weight and body weight gain are reported in
panel A and B, respectively. Different superscript letters a,b,c denote
significant differences at p,0.05 by ANOVA and the Fisher posthoc test.
doi:10.1371/journal.pone.0018043.g006
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to HF or control dams and weaned on a chow diet were submitted

thereafter to the obesogenic P diet. In both genders, offspring born

to HF dams and fed the C or P diet exhibited lower body weight as

compared to their counterparts born to control dam. Thus, the

maternal HF diet clearly affects body weight gain of pups, which

confirms our previous data [22]. In addition, but only in males, the

daily energy intake was higher for PH and CH groups than for PC

and CC groups, respectively. This suggests that male offspring of

HF dams exhibited higher energy expenditure which may account

for their lower body weight and corpulence index. In both gender,

the P diet given in adulthood clearly increased the plasma leptin

levels which reached the same final value in PC and PH groups,

regardless the maternal diet. In females, plasma leptin was lower in

PH group than in PC group, likely in relation with the difference

Table 4. Corpulence and plasma parameters measured in male and females offspring of dams fed the control or high-fat diet (C or
H as 3rd letter) after feeding the control or highly palatable diet (C or P as 2nd letter) for three months.

Males MCC MCH MPC MPH

(n) (20) (22) (21) (26)

Body weight (g) 524613b 458611a 653617d 573611c

Naso-anal length (cm) 25.6760.18b 24.8260.16a 26.7960.25c 26.2760.17c

Corpulence index* 0.8360.02b 0.7760.02a 0.9460.02c 0.8660.01b

Body weight gain (g) 14467a 13965a 259611b 251610b

Plasma glucose (g/L) 0.9360.01a 0.9560.01a 1.0160.02b 1.0060.02b

Plasma insulin (ng/mL) 0.4460.04a 0.3660.05a 1.2460.12b 1.1660.10b

Plasma leptin (ng/mL) 3.5560.48b 2.9860.45a 12.6160.84c 12.8061.46c

Plasma Triglycerides (g/L) 0.8960.07b 0.7360.05a 1.8360.13c 1.2860.12b

Plasma Cholesterol (g/L) 0.6360.03 0.5560.02 0.6060.04 0.5660.02

Females FCC FCH FPC FPH

(n) (21) (24) (21) (24)

Body weight (g) 28066ab 26066a 353610c 29567b

Naso-anal length (cm) 21.260.2a 21.160.2a 22.160.2b 21.360.2a

Corpulence index* 0.6660.02ab 0.6260.01a 0.7560.02c 0.6860.01b

Body weight gain (g) 5862a 6163a 12168c 9462b

Plasma glucose (g/L) 0.9060.01 0.9560.02 0.9460.01 0.9460.01

Plasma insulin (ng/mL) 0.2360.02a 0.2660.02a 0.5360.06b 0.5360.05b

Plasma leptin (ng/mL) 1.9360.22b 1.6860.21a 6.4760.78d 5.2260.52c

Plasma Triglycerides (g/L) 0.4660.02b 0.4160.02a 0.7860.07d 0.5560.03c

Plasma Cholesterol (g/L) 0.6760.03a 0.6660.02a 0.7660.05b 0.7460.03b

Different superscript letters a,b,c,d denote significant differences at p,0.05 by ANOVA and the Fisher posthoc test.
doi:10.1371/journal.pone.0018043.t004

Table 5. Daily energy intake (calculated by animal and by 100 g body weight) in male and female 16 week-old rats (2 or 3 by
cage), after 4 weeks feeding the palatable P diet or maintained on the chow C diet since weaning (P or C, respectively as 2nd letter),
according to the maternal chow or high-fat diet (C or H, respectively as 3rd letter).

Male rats MCC MCH MPC MPH

(n) (21) (21) (22) (29)

Body weights (g) 483612b 417611a 546615c 45969ab

Daily energy intake (kcal/rat) 88.562.7a 86.763.1a 101.762.6b 9562.2b

Relative daily energy intake (kcal/100 g body weight) 18.760.4a 20.960.4b 17.960.7a 20.460.5b

Female rats FCC FCH FPC FPH

(n) (18) (24) (18) (29)

Body weights (g) 26666a 24864a 317610b 26565a

Daily energy intake (kcal/rat) 66.161.6ab 60.462.0a 67.762.3b 61.461.2b

Relative daily energy intake (kcal/100 g body weight) 24.760.7b 24.060.5b 21.661.1a 22.960.6ab

Different superscript letters a,b denote significant differences at p,0.05 by ANOVA and the Fisher posthoc test.
doi:10.1371/journal.pone.0018043.t005
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in body weight gain between the two groups. Interestingly, in both

genders, TG plasma levels were lower in PH than in PC group,

reflecting a potential protective effect of the maternal HF diet

against adverse effects of the P diet on offspring.

In an attempt to understand mechanisms underlying the

potential protective action of maternal high fat diet, we have

examined the hypothalamic and hepatic expression of key genes

involved in energy homeostasis, and also the astrocyte organiza-

tion in the hypothalamic ARC nuclei.

In male offspring, the hypothalamic expression level of UCP-2

was significantly reduced in PC group as compared to the other

groups and specifically to PH group. Thus, the maternal HF diet

contributed to maintain UCP-2 expression level in PH group

similar to that of CC and CH groups and this may explain, at least

partially, the lower body weight of this group as compared to PC

group. It has been reported that mitochondrial respiration in the

hypothalamus is dependent upon UCP-2 which is involved in

POMC neurons plasticity and also in NPY/AgRP activation in the

fasted state [29,30]. Thus the alteration of UCP-2 expression may

affect energy homeostasis in PC group. Furthermore, UCP-2 has

been described to protect hypothalamic cells from inflammation

damage induced by TNF alpha [31]. This hypothesis is reinforced

by the fact that both POMC and NPY expressions were affected in

PC group as compared to PH group. The level of ObRb

expression was affected in PC and PH as compared to CC group

which may be associated to the higher circulating leptin levels.

Interestingly, in male offspring liver, PH goup exhibited a higher

expression level of Adiponectin receptors R1/R2 as compared to

the other groups. AdipoR2 in liver is associated to increased fatty

acid b oxidation and reduction of circulating TG [32], this is in

good agreement with our data where body weight was lower and

relative daily energy intake was higher in PH group as compared

to PC group. Furthermore, the TG plasma level is lower in PH

group as compared to PC and this could result, at least partially,

from the overexpression of liver AdipoR1/R2 in PH group.

These results contrast with those obtained in females, where

hypothalamic UCP-2 expression levels were similar in all studied

groups whereas maternal HF diet seemed to affect NPY and

POMC expression levels in CH and PH groups. In liver, all

studied genes were not affected in females (data not shown). This

suggests that HF diet given to dams protects male and female

offspring, from adverse effects of high palatable diet at least at the

level of corpulence index and metabolic markers such as reduced

TG, through probably gender-dependent mechanisms. This

hypothesis is reinforced by the fact that the maternal HF diet

induced a significant increase in the arcuate nucleus density of

astrocytic processes around the blood vessels in males but not in

females at weaning. This gender-specific modification was

maintained until adulthood. It is to notice that the maternal HF

diet had no effect on the vascularisation or the global astrocyte

coverage in the ARC, whatever the gender. This gender-

dependent change in the astrocytic coverage is probably due to

Figure 7. Impact of post weaning diet on hypothalamic gene expression of male pups born to dams fed the control diet (C) or high-
fat diet (HF). At weaning offspring were divided into four groups of each gender (CC, CH, PC, PH; n = 10) and named according to the post weaning
diet (C or P, first letter) and to maternal diet (C or H, second letter). From weaning to 7 weeks of age all groups were assigned to chow diet then
swithched to C or P diet for 13 additional weeks. UCP-2, NPY, POMC and ObRb expression were measured by quantitative RT-PCR and results were
normalized to 18S RNA. Different superscript letters a,b denote significant differences at p,0.05 by ANOVA and the Fisher posthoc test.
doi:10.1371/journal.pone.0018043.g007
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sexual dimorphism. Testosterone exposure has been shown to

induce significant increase in stellation response in ARC atrocytes

[33]. The sexual differentiation of astrocyte morphology has been

also reported in other brain areas such as preoptic area where

testosterone induced significant modifications in process length

and number of astrocytes [34]. Thus, the increased density of

astrocytes in male offspring of HF dams may contribute to the

formation of synapses and their efficacy leading to establishment of

synaptic patterning.

In female offspring of HF dams, the protective effect of maternal

HF diet is most likely due to mechanisms that are not yet identified

but it is noteworthy to take into account the reduced expression

levels of NPY and POMC at the hypothalamic level in PH and

CH female groups as compared to PC and CC groups. Since NPY

is an orexigenic neuropeptide this may at least partially explain the

protective effect of maternal HF diet by limiting then food intake

despite the challenge with the P diet leading to reduced body

weight gain.

Taken together, our data show that offspring born to overtly

obese dams fed a highly palatable P diet beared a defective leptin

signaling in hypothalamus, which remained silencious in pups

weaned on the chow diet, thus without impact on their

predisposition to develop obesity, a situation observed in

fructose-fed rats [35] and in our previous study using a HF diet

based on palm oil [22].

Interestingly, when offspring born to dams fed P or H diet were

compared (experiment 1 and 2), this clearly points out the

protective effect of HF diet given to dams. Because the offspring of

HF diet dams are less exposed to body weight gain even when fed

palatable diet. The protective effect of maternal HF diet involves

gender-dependent mechanisms.

Materials and Methods

Ethics statement
Rat studies were carried out in agreement with the French

legislation on animal experimentation and with the authorization

of the French Ministry of Agriculture (Animal Health and

Protection Directorate).

Diets
The commercial chow diet (C, formula 113 from Safe, F-89290

Augy) contained 55.9% starch, 20% protein, 4.5% lipid and was

used as ground (experiment 1) or pellets (experiment 2). The semi-

solid highly palatable P diet (experiments 1 and 2) was custom-

made in our laboratory according to the described formula

(Holemans Ket al, 2004) using 33% ground commercial chow

(Safe 113), 33% full fat sweetened condensed milk, 7% sucrose and

27% water. The semi-purified HF diet (experiment 2), adapted

from Guo and Jen [19], contained palm oil as the main source of

fat, as detailed [22]. The energy content and distribution (as

carbohydrates, protein and lipids) are given in Table 1 for the 3

experimental diets. Concerning the highly palatable P diet, the

accurate measurement of food and energy intake required a

conversion factor between the weight of fresh semi-solid

preparation and its equivalent weight after deshydratation: the

value of 0.66, for the dry/wet diet weight ratio, was obtained

experimentally by dehydratation of the P diet under vacuum. For

Figure 8. Impact of post weaning diet on hepatic gene expression of male pups born to dams fed the control diet (C) or high-fat
diet (HF). At weaning offspring were divided into four groups of each gender (CC, CH, PC, PH; n = 10) and named according to the post weaning diet
(C or P, first letter) and to maternal diet (C or H, second letter). From weaning to 7 weeks of age all groups were assigned to chow diet then swithched
to C or P diet for 13 additional weeks. UCP-2, NPY, POMC and ObRb expression were measured by quantitative RT-PCR and results were normalized to
18S RNA. Different superscript letters a,b denote significant differences at p,0.05 by ANOVA and the Fisher posthoc test.
doi:10.1371/journal.pone.0018043.g008
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all the diets, and especially the ground chow diet, food intakes

were calculated after subtracting the amount of spilled food,

estimated by sifting the litters.

Care and maintenance of animals
Wistar rats were purchased from CER Janvier (Le Genest-St-

Isle, France) and maintained under controlled temperature

(2261uC), with a 12–12 h light-dark cycle (light on: 8:00 am)

with food and water provided ad libitum. The studies were carried

out in agreement with the French legislation on animal

experimentation and with the authorization of the French Ministry

of Agriculture (Animal Health and Protection Directorate).

Experiment 1. Thirty-two females and 8 males (aged 8-

weeks) were housed by 4 in collective cages and given commercial

pellets for one week for adaptation. Two groups of 16 females were

then formed according to the C (powdered Safe 113) or P (highly

palatable semi-solid preparation) diet given until the end of the

lactation period, and males received commercial pellets (Safe 113)

(Fig. 1). After 6 weeks, one male was introduced in each cage of

females for mating in harem and males were permuted every two

days for 14 consecutive days. Timing of delivery, litter size and

weight were recorded at birth. Litters were adjusted to 10–11 pups

for each dam while maintaining sex ratio as close to 1:1 as possible.

The whole litter weight was checked weekly and the individual

body weight of pups was registered at weaning, when aged 28

days. Four groups of 25–26 male pups each were formed and

named according to the post-weaning diet (C or P as first letter for

control or palatable diet, respectively) and maternal diet (C or P as

2nd letter). Rats were caged by 2 and allowed to free access to food

and water. Body weights of dams and pups were measured twice a

week. Food intake was monitored during the last 4 weeks before

mating for dams, and during 4 weeks in the post-weaning period

for pups. After 20 weeks on the C or P diet, adult offspring (age: 6

months) were sacrificed (between 9 and 11 a.m.), either in a

postprandial state (4 groups), or after overnight food deprivation

and 30 min after intraperitoneal injection of recombinant rat

leptin (1 mg/kg) or physiological saline. Blood was collected on

heparin (10 IU/mL) and tissues (hypothalamus and liver) were

quickly removed. The hypothalamus was immediately frozen into

liquid nitrogen and the liver was weighed.

Experiment 2. Fifty-six old females and 16 males (aged 8-

weeks) were caged by 2 and given commercial pellets (Safe 113) for

one week of adaptation. Females were randomized into 2 groups

(n = 28) according to the control pellet C diet (Safe 113) or the

hypercaloric HF diet provided ad libitum for 6 weeks before mating

and throughout gestation and lactation. Litters were adjusted to

10–12 pups at birth. Pups were randomized into four groups,

according to gender and maternal C or high-fat (H) At weaning

when aged 2661 days, all were assigned to the chow diet for 7

weeks, then in each group, half of the animals were switched to the

obesogenic P diet for 13 additional weeks, while the others were

maintained on the chow diet. The 8 groups were named according

Figure 9. Impact of post weaning diet on hypothalamic gene expression of female pups born to dams fed the control diet (C) or
high-fat diet (HF). At weaning offspring were divided into four groups of each gender (CC, CH, PC, PH; n = 10) and named according to the post
weaning diet (C or P, first letter) and to maternal diet (C or H, second letter). From weaning to 7 weeks of age all groups were assigned to chow diet
then swithched to C or P diet for 13 additional weeks. UCP-2, NPY, POMC and ObRb expression were measured by quantitative RT-PCR and results
were normalized to 18S RNA. Different superscript letters a,b denote significant differences at p,0.05 by ANOVA and the Fisher posthoc test.
doi:10.1371/journal.pone.0018043.g009
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to gender (M or F as 1st letter), final diet (C or P as 2nd letter) and

maternal diet (C or H as 3rd letter) (Fig. 1). The body weight

evolution of rats was registered every week and daily food and

energy intakes assessed during the diet challenge. The animals

were sacrificed when aged 6 months, after an overnight food

deprivation. By analogy with the body mass index (BMI) in

humans, a corpulence index (expressed in g/cm2) was calculated

from the body weight (g) and the naso-anal length (cm). Blood,

liver and hypothalamus were removed as above.

Biochemical analyses
Recombinant rat leptin was produced as previously described

[36]. Phospho-STAT-3 (Tyr705), STAT-3, phospho-ERK and

ERK antibodies were purchased from Cell Signaling Technology

(Danvers, Massachusetts, USA). Secondary antibodies (from

mouse and rabbit) conjugated to peroxidase were purchased from

Sigma-Aldrich (Missouri, USA). Other chemicals were generally

purchased from Sigma-Aldrich (France).

Plasma glucose, cholesterol and triglyceride levels were

measured by enzymatic procedures using commercial kits (Elitech,

Salon de Provence, France), by means of an automatic analyzer

(Abbott VP, Rungis, France). Insulin and leptin were assayed by

radioimmunoassay using commercial diagnostic kits (Linco

Research, St. Louis, MO, USA). The homeostatic model

assessment for insulin resistance was calculated from insulin and

glucose concentrations [37].

Western blot analysis
Samples were prepared as previously described [38]. Briefly,

frozen hypothalami were homogenized in lysis buffer (10 mM

Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EGTA, 1 mM EDTA,

0.5% nonidet-P40, 1% Triton X-100, protease inhibitor cocktail

(0.35 mg/ml PMSF, 2 mg/ml leupeptin, 2 mg/ml aprotinin) and

phosphatase inhibitor cocktail (10 mM sodium fluoride, 1 mM

sodium orthovanadate, 20 mM sodium b-glycerophosphate,

10 mM benzamidine). After lysis in ice for 90 min, insoluble

materials were removed by centrifugation (15,000 rpm at 4uC for

45 min) and protein concentrations of the resulting lysates were

determined using a protein assay kit (Pierce, Perbio Science,

France). Proteins (50 mg) were subjected to SDS-PAGE and

transferred onto nitrocellulose membranes. Blots were blocked

with 5% non-fat milk and then incubated in the presence of

appropriate primary and secondary antibodies. Following nitro-

cellulose membrane washing, targeted proteins were revealed

using enhanced chemiluminescence reagents (ECL, Amersham

Life Science, France). The intensity of bands was determined using

Molecular Imaging apparatus (Vilber Lourmat, France) and BIO-

1D software.

Quantitative RT-PCR
Total RNA from hypothalamus and liver was extracted using

Trizol (Invitrogen, France) according to manufacturer’s recom-

mendations. 1 mg of total denatured RNA was reverse transcribed,

and the resulting cDNAs were submitted to quantitative PCR. The

PCR primer sequences used were as follows, UCP-2 forward:

59TGGCGGTGGTCGGAGATAC39, reverse: 59GGCAAGG-

GAGGTCGTCTGTC39; NPY forward 59ATGCTAGGTAA-

CAAACG39, reverse 59ATGTAGTGTCGCAGAG39; POMC

forward: 59AGGTTAAGGAGCAGTGAC39, reverse: 59CGT-

CTATGGAGGTCTGAAGC39; LEPRb forward 59 ACCACA-

TACCTCCTCACACTA 39, reverse 59 AGCAGTCCAGCCTA-

CACTCTT 39; AdipoR1 forward 59GCTGGCCTTTATGC-

TGCTCG39, reverse 59 TCTAGGCCGTAACGGAATTC39;

Figure 10. Co-detection of a glial marker (GFAP) and an endothelial marker (laminin) in male (A–F) and female (G–L) offspring born
to dams fed a control (A–C ; G–I) or a high-fat (D–F ; J–L) diet in the arcuate nucleus (ARC) at weaning. Maternal HF diet significantly
increases the density of astrocytic processes around the blood vessels in males (p,0.05) but not in females (D–F, M). Scale bars = 33 mm.
doi:10.1371/journal.pone.0018043.g010
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AdipoR2 forward 59 ATAGGGCAGATAGGCTGGTTGA39,

reverse 59GGATCCGGGCAGCATACA39; 18S forward 59TC-

CCCGAGAAGTTTCAGCACAT39, reverse 59CTTCCCAT-

CCTTCACGTCCTTC39. Real-time PCR was carried out using

the Step One apparatus (Applied Biosystems, USA) and the Fast

SYBR Green Master Mix (Applied Biosystems, USA). A ratio of

specific mRNA/18S amplification was calculated, to correct for

any difference in efficiency at RT.

Immunohistochemistry
One-month old male (n = 10) and female (n = 6) rats born to C

or HF dams were used for the immunohistochemical detection of

glial fibrillary acidic protein (GFAP) and laminin in the ARC.

After deep anesthesia with a ketamin (75 mg/kg) and domitor

(0,5 mg/kg) cocktail, animals were perfused with 100 mL of

phosphate buffered saline (PBS) 16 pH 7.4, followed by 500 mL

of 4% paraformaldehyde in PBS 1X. Brain sections (50-mm thick)

were cut with a microtome (HM 650V, Thermo Scientific

Microm, Walldorf, Germany) before being incubated with a

monoclonal mouse anti-GFAP antibody (1:1000, Sigma) and a

rabbit polyclonal anti-laminin antibody (7:1000, Sigma) for 12 h at

4uC. Primary antibodies were then visualized with a donkey anti-

rabbit IgG coupled to FluoProbes-488 (FP-488; Interchim,

Montluçon, France) or a donkey anti-mouse coupled to cyanine-

5 (Cy5; Jackson Immunoresearch Laboratories; Suffolk, UK)

antibodies (1:500). Immunofluorescence (IF) was examined under

a confocal microscope (Zeiss LSM 510 system, Germany). Optical

sections were taken through the Z axis at 1 mm intervals and

averaged four times. Quantification was performed with ImageJ

1.36b software (NIH, USA). Perivascular GFAP coverage was

assessed by measuring the GFAP-positive fraction on blood vessels

contours in whole bilateral ARC and after background subtrac-

tion. This operation was performed on six different vessels

throughout six different sections homogenously distributed

through the ARC in each animal.

Statistical analysis
Statistical analysis was performed using (Stat View Software,

ver.5) to detect significant intergroup differences. Values were

expressed as means 6 SE, and P,0.05 was considered statistically

significant.

Supporting Information

Figure S1 Detection of a MSH (upper panel) and AgRp (lower

panel) in male offspring rats born to dams fed a control (CC) or

high-fat diet (HF) in the arcuate nucleus at weaning.

(TIF)
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