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Abstract

Microarray-based gene expression analysis holds promise of improving prognostication and treatment decisions for breast
cancer patients. However, the heterogeneity of breast cancer emphasizes the need for validation of prognostic gene
signatures in larger sample sets stratified into relevant subgroups. Here, we describe a multifunctional user-friendly online
tool, GOBO (http://co.bmc.lu.se/gobo), allowing a range of different analyses to be performed in an 1881-sample breast
tumor data set, and a 51-sample breast cancer cell line set, both generated on Affymetrix U133A microarrays. GOBO
supports a wide range of applications including: 1) rapid assessment of gene expression levels in subgroups of breast
tumors and cell lines, 2) identification of co-expressed genes for creation of potential metagenes, 3) association with
outcome for gene expression levels of single genes, sets of genes, or gene signatures in multiple subgroups of the 1881-
sample breast cancer data set. The design and implementation of GOBO facilitate easy incorporation of additional query
functions and applications, as well as additional data sets irrespective of tumor type and array platform.

Citation: Ringnér M, Fredlund E, Häkkinen J, Borg Å, Staaf J (2011) GOBO: Gene Expression-Based Outcome for Breast Cancer Online. PLoS ONE 6(3): e17911.
doi:10.1371/journal.pone.0017911

Editor: Chad Creighton, Baylor College of Medicine, United States of America

Received December 23, 2010; Accepted February 14, 2011; Published March 21, 2011

Copyright: � 2011 Ringnér et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The present study was supported by the Swedish Cancer Society, the Foundation for Strategic Research through the Lund Strategic Centre for
Translational Cancer Research (CREATE Health), and the Swedish Research Council. The funders had no role in study design, data collection and analysis, decision
to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: johan.staaf@med.lu.se

Introduction

Breast cancer is one of the most common malignancies in the

world. It is evident that breast cancer is a heterogeneous disease

characterized by different tumor biological and histological

subtypes, age of onset, clinical course and responsiveness to

treatment. Although currently used prognostic and treatment-

predictive markers for breast cancer have markedly improved

treatment decisions, additional markers are required to further

tailor treatment for individual patients.

Microarray-based gene expression profiling has been used

extensively to characterize the transcriptome of breast cancer,

resulting in the identification of new molecular subtypes and

markers or signatures of potential therapeutic and prognostic

importance [1–12]. Although microarray-based gene expression

profiling of breast carcinoma holds promise for future improvement

in treatment decisions, current studies aimed at deriving prognostic

or treatment predictive gene signatures are often limited by a low

number of included patients, typically tens to hundreds, due to cost

and availability of suitable tissue specimens. The growing

accumulation of data from prognostic and/or treatment predictive

gene expression studies on breast cancer in public repositories, e.g.

Gene Expression Omnibus [13], provides an opportunity to

construct pooled gene expression data sets comprising a larger

number of patients with sufficient clinical data. Pooled gene

expression data sets of different sizes have been used for prognostic

validation of single and multigene predictors [14–17], identification

of gene set modules associated with prognosis [7,18–20], distinction

of clinical types of breast cancer [21], and dissection of underlying

processes in reported prognostic predictors [19,22]. Although data

sets in larger pooled sets are often individually available through

public repositories, the combined pooled data sets are commonly

not available, thereby representing an obstacle to researchers with

limited bioinformatic resources. To address this latter shortcoming,

we developed Gene expression-based Outcome for Breast cancer

Online (GOBO). GOBO is aimed at providing an online tool for

prognostic validation of single genes, sets of genes or simple

predictors in a pooled breast cancer data set comprising 1881 cases

from eleven public data sets analyzed using Affymetrix U133A

arrays. In addition, GOBO allows online investigation of the

expression of single genes or sets of genes across a large set of

commonly used breast cancer cell lines [23], as well as identification

of co-expressed genes in both breast cancer cell lines and breast

tumors. Using the CCNB1 gene and a Core Serum Response gene

signature as two examples we illustrate the usefulness of GOBO for

rapid online analysis in a large breast cancer data set

Results

Overview of GOBO applications
The web interface of GOBO allows precompiled data sets to be

queried by the three main applications of GOBO: Gene Set

Analysis (GSA), Co-expressed Genes (CG), and Sample Prediction

(SP) (Figure 1). Currently, the precompiled data sets consist of gene

expression data and annotation data for a pooled 1881-sample

breast tumor set and 51 previously reported breast cancer cell lines

[23]. The 1881-sample breast tumor set comprises 11 public data

sets (Table 1) analyzed using Affymetrix U133A arrays and
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processed as described (in [15] and File S1). GSA is further divided

into outcome analysis in breast tumors (GSA-Tumor) and

expression patterns in breast cancer cell lines (GSA-Cell line). In

both GSA applications the input is either a single gene or probe

identifier, or a set of gene/probe identifiers (referred to as a gene set

hereinafter). CG allows identification of co-expressed genes by

provision of a single gene identifier in both the breast tumor data set

and the panel of breast cancer cell lines. SP allows users to

investigate the association of their classifiers (in certain predefined

forms) with outcome in the 1881-sample breast cancer set.

Pooling of gene expression data sets generated at different

institutions and time points may introduce artifacts due to, e.g.,

Figure 1. Architecture of GOBO. (A) Flowchart of the GOBO software illustrating the three different modules, data set module (black), web
interface module (red) and analysis module (blue). (B) Layout of GOBO applications with respect to input and results generated.
doi:10.1371/journal.pone.0017911.g001
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different reagent lots, scanner settings, RNA extraction procedures,

sample selections and laboratory practices. To investigate whether

such data set related artifacts existed in the 1881-sample set we

undertook three investigations. First, we performed principal

component analysis (PCA) and analyzed associations between

principal components and a variety of sample annotations (Figure

S1 in File S2). We observed that the different data sets are

contributing variation, however, in combination with biological/

clinical features. Importantly, the first three components are

significantly associated with molecular subtypes, ER status,

histological grade and lymph node status. Since some of the

included data sets contain only ER-negative, ER-positive or node

negative tumors, respectively, variation associated with data sets

cannot be corrected for without the risk of deleteriously affecting

biological/clinical features. Second, we examined gene expression

levels of Affymetrix probes suggested from literature to provide high

sensitivity and specificity in assigning cases to clinical subtypes based

on ER and HER2-status. Expression levels were investigated in nine

of eleven data sets for samples stratified by ER-status and PAM50

gene expression subtype classes (Figures S2 to S4 in File S2). These

analyses show consistency across data sets in the expression of ER

and HER2 across samples clinically annotated with ER-status, as

well as in what would be expected for the PAM50 gene expression

subtypes. Finally, we performed hierarchical clustering of the 1881-

sample data set using the PAM50 gene set [24], showing that the

different data sets are intermixed (Figure S5 in File S2). Taken

together, these validations indicate that the 1881-sample set can be

used for the types of supervised analyses made available through

GOBO. Moreover in the GOBO applications, we provide analysis

that reveals the influence of each data set on the result.

Association of gene sets with breast cancer outcome
(GSA-Tumor)

Numerous studies have investigated the prognostic importance

of mRNA expression, as measured by microarrays or quantitative

PCR, from single genes or sets of genes in different breast cancer

subgroups [14,18,19,25]. An online tool was recently reported that

allows Kaplan-Meier survival analysis of single genes in a pooled

1809-sample microarray-based breast cancer data set [26]. The

GSA-Tumor application of GOBO extends on the application

reported by Gyorffy et al. [26] by allowing: 1) expression of gene

sets to define patient cohorts based on a larger number of

quantiles, 2) gene weights to be used in computation of a

combined expression score, 3) time-censoring, 4) multivariate

analysis of gene expression groups with other covariates such as

estrogen receptor (ER) status, lymph node (LN) status, histological

grade, stratified tumor size (#20 mm or .20 mm), stratified

patient age (#50 years or .50 years), 5) analysis of gene set

expression across clinical (ER, LN, and histological grade) and

molecular breast cancer subgroups [1,24], and 6) correlation of

expression of individual genes in a gene set with co-expressed gene

modules emulating breast cancer specific biological processes

(Fredlund et al., Manuscript in preparation).

In GSA-Tumor a gene set comprises either a single or multiple

genes. Weights can be associated with each gene, thus allowing

genes with positive and negative relative expression levels to be

combined into a gene set. In the case of multiple genes an averaged

gene set expression (including weights if supplied) is computed, prior

to dividing the data set into patient cohorts based on gene

expression quantiles. Association with outcome is investigated for

stratified patient cohorts using distant metastasis-free survival

(DMFS), relapse-free survival (RFS) or overall survival (OS) in

different breast cancer subgroups. GSA-Tumor allows division of

the 1881-sample data set into five major subgroups based on clinical

annotations available from GEO [13]; 1) all 1881 tumors, 2) ER-

positive tumors (n = 1225), 3) ER-negative tumors (n = 395), 4)

systemically untreated patients (n = 927), and 5) patients treated

with tamoxifen alone (n = 326, GSE6532 [27] and GSE12093 [28]).

In each of the selected major subgroups, survival analysis including

Kaplan-Meier, univariate and multivariate analysis, is performed on

subsequently more stratified groups based on gene expression

subtypes (basal-like, HER2-enriched, luminal A, luminal B, normal-

Table 1. Clinical characteristics of individual data sets in the combined 1881-sample Affymetrix U133A data set.

GEO ID

Number
of
samples

ER:
2/+A

LN:
2/+B

DMFS
(0/1)C

Average
DMFS
(years)

OS
(0/1)D

Average
OS
(years)

RFSE

(0/1)

Average
RFS
(years)

Grade:
1/2/3

Median
age
(years)

Average
size
(mm) Reference

GSE7390 198 64/134 198/0 136/62 10.865.4 142/56 11.463.7 107/91 9.365.6 30/83/83 4667 2268 [50]

GSE3494 251 34/213 158/84 NA NA 132/119 7.964.1 155/96 5.563.4 67/128/54 64614 22613 [51]

GSE1456 159 29/130 94/60 NA NA 119/40 6.461.9 119/40 6.262.3 28/58/61 56614 22612 [52]

GSE2034 286 77/209 286/0 179/107 6.563.5 NA NA NA NA 6/42/139* 53612* 1066* [6]

GSE2603 99 42/57 34/65 55/27 5.262.3 NA NA NA NA NA 56614 36617 [53]

GSE6532 327 45/262 221/85 225/68 6.363.7 NA NA 195/111 6.363.7 65/145/60 60.5612 23612 [27]

GSE4922 40 NA NA NA NA NA NA NA NA 0/40/0 NA NA [36]

GSE12093 136 0/136 136/0 116/20 7.763.2 NA NA NA NA NA NA NA [28]

GSE5327 58 58/0 NA 47/11 6.863.1 NA NA NA NA NA NA NA [54]

GSE11121 197 NA 197/0 153/44 7.864.2 NA NA NA NA 29/135/33 NA 21610 [55]

Chin 130 46/84 59/71 102/27 5.764 84/45 6.463.7 NA NA 14/46/65 51615 27614 [41]

Total 1881 395/1225 1383/365 1013/366 7.264.2 477/260 8.264.4 576/338 6.764.2 239/677/495 55613 20612

AER: Estrogen receptor.
BLN: Lymph node.
CDMFS: Distant metastasis-free survival.
DOS: Overall survival.
ERFS: Relapse-free survival.
*Collected from publications.
doi:10.1371/journal.pone.0017911.t001
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like) [24,29], ER-status, LN-status, histological grade, and treatment

status (untreated or tamoxifen treated tumors).

Proliferation has been recognized as one of the key prognostic

factors in breast cancer, and has been found to be the major

constituent of several prognostic gene expression signatures

[19,22]. Aberrant cell proliferation requires deregulation of several

cellular functions or pathways, including cell cycle progression.

Cyclins and cyclin-dependent kinases (CDKs) are key regulators of

the cell cycle, controlling the progression and initiation of different

phases of the cell cycle [30]. One of the key components of the

transition between the G2 and M phase in the cell cycle is the

protein complex formed by cyclin B1 (CCNB1) and CDK1 [31].

CCNB1 protein levels have been shown to differ between breast

cancer subgroups [32], tumors of different histological grade

[32,33], and to be associated with breast cancer outcome [32–34].

In addition, CCNB1 is also included in several prognostic gene

signatures such as the 21-gene recurrence score [10] and two

genomic grade signatures [35,36]. Using GSA-Tumor we stratified

the 1881-tumor set into three quantiles based on CCNB1 gene

expression (File S1). GSA-Tumor analysis of CCNB1 gene

expression shows, in agreement with previous protein-based

studies, that elevated expression is associated with the basal-like

and luminal B gene expression subgroups (Figure 2A), higher

histological grade (Figure 2B), and worse clinical outcome

predominantly in ER-positive breast cancers (Figures 2C and D)

supported by multivariate analysis (Figure 2E) [32–34].

Figure 2. GSA-Tumor analysis of CCNB1 using the 1881-sample breast cancer data set. (A) Box plot of CCNB1 gene expression for tumor
samples stratified according to PAM50 subtypes [24]. (B) Box plot of CCNB1 gene expression for tumor samples stratified according to histological
grade. (C) Association with outcome for CCNB1 gene expression levels in subgroups of breast cancer using DMFS as endpoint and 10-year censoring.
Samples in the 1881-sample set were stratified into three quantiles based on CCNB1 expression, CCNB1_low (log2 expression 22.9 to 20.497),
CCNB1_medium (20.48 to 0.416), and CCNB1_high (0.42 to 2.8) followed by Kaplan-Meier survival analysis in 21 subgroups for 1379 cases with DMFS
follow-up. Logrank P-values are shown as 2log10(P-value). (D) Kaplan-Meier analysis, using DMFS as endpoint, for ER-positive tumors (n = 856)
stratified into the three quantiles based on CCNB1 gene expression level. (E) Corresponding multivariate analysis for ER-positive tumors (n = 554)
using lymph node status and stratified histological grade (histological grade 1 and 2 vs. 3) as covariates and DMFS as endpoint with 10-year
censoring.
doi:10.1371/journal.pone.0017911.g002
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Gene set expression in breast cancer cell lines (GSA-Cell
line)

Cancer cell lines, derived from immortalized cancer cells, are

commonly employed in cancer research as model systems for

functional assessment of aberrant gene function and prediction or

indication of response to therapeutic substances. Furthermore, it

has been shown that breast cancer cell lines in many aspects

mirror the heterogeneity in transcriptional and genomic aberra-

tions found in breast tumors [23,37], underlining the importance

of selecting the appropriate cell line for a specific experiment. The

GSA-Cell line application provides an interface for exploring

mRNA expression levels of gene sets across 51 previously reported

breast cancer cell lines [23], reporting both relative gene

expression levels across the cell line panel, as well as summarized

average intensity values. Similarly as for GSA-Tumor, if a gene set

consists of multiple genes an average expression is computed for

the total gene set, taking consideration to gene weights if supplied.

Using the GSA-Cell line application, we investigated CCNB1

mRNA expression levels across the breast cancer cell line panel.

Highest gene expression was observed in the basal B subgroup

associated with a more stem-cell like phenotype and recently also

the claudin-low subtype [23,38], followed by the basal A and

luminal subgroups as defined by Neve et al. [23] (Figures 3A and

B). In line with previous reports analyzing CCNB1 protein

expression we found that triple-negative cell lines displayed highest

CCNB1 mRNA expression levels (Figure 3C) [32].

Co-expressed Genes
Utilization of gene expression microarrays has made it clear that

for a given gene investigated in a large enough data set other genes

exist that display high similarity in expression pattern across

samples. This co-expression of multiple genes is anticipated, given

that functional processes and molecular pathways in an organism

involve a highly organized interplay between multiple genes.

Moreover, the co-expression of genes suggests that genes in a gene

signature are often interchangeable as illustrated in a reanalysis of

the van’t Veer et al. [12] data set [39], indicating that it is the

functional processes captured by a gene signature and not the

individual genes that is of importance [22]. Recently, the approach

of constructing metagenes or gene expression modules aimed at

mimicking key biological processes in breast cancer has been

utilized to identify gene sets with prognostic or treatment

predictive power in breast cancer subgroups [4,18,19,40]. These

metagenes or gene expression modules are often based on

identification of co-expressed genes to a specific prototype gene

believed to represent the biological process of interest.

The CG application of GOBO allows single genes to be used as

prototype genes for identification of co-expressed genes by Pearson

or Spearman correlation analysis in both subsets of the breast

tumor data set (similar as GSA-Tumor) and the breast cancer cell

line data set. The list of co-expressed genes can be further

submitted to iterative correlation analysis, identifying which of the

co-expressed genes that show tight co-expression with each other

in an iterative process across the selected data set. The result of

such an analysis could be a smaller cluster of genes that all are

highly correlated with each other, representing a more distinct

metagene or gene module (Fredlund et al., Manuscript in

preparation). Using the CG application, we searched for genes

highly co-expressed with CCNB1 in a 1751-sample subset of the

1881-sample breast cancer data set (excluding Chin et al. [41]

cases) (File S1). Using a Pearson correlation cut-off .0.6 combined

with a gene expression log2 standard deviation cut-off .0.9, we

identified 34 genes to be positively co-expressed with CCNB1

(Table S1). When subjected to iterative correlation analysis one by

one, all 35 genes showed at least 5 connections (Pearson

correlation .0.6) with other highly co-expressed genes

(Figure 4A, visualized using Cytoscape [42]). Functional analysis

of the 35 genes using DAVID [43,44] confirmed the strong

association with cell cycle processes, specifically M-phase and

mitosis (Table S2). CCNB1 mRNA expression has been reported to

be significantly and positively correlated with mRNA expression

levels of CENPE, AURKB, PLK1, and PLK4 in both breast tumors

and breast cancer cell lines [32]. None of these genes were present

in the list of 34 genes from the CG analysis, explained by lower

correlations (CENPE: 0.47, AURKB: 0.42, PLK1: 0.39, PLK4 0.38)

to CCNB1 in our analysis. However, when performing a CG

analysis in the Neve et al. cell line panel we found PLK1, AURKB

and CENPE to be correlated (Pearson correlation .0.5) with

CCNB1 given a gene expression log2 standard deviation cut-off

.0.4. Association with outcome for a derived co-expressed gene

set may be further investigated by subsequent GSA-Tumor or SP

analysis (Figure 4B, File S1), while association with biological

processes could be made through usage of public functional

annotation tools.

Sample Prediction
A multitude of microarray-based gene signatures have been

derived stratifying breast cancer into subtypes [1,2,24], identifying

patients at risk [5,6,8,9,11,12], and predicting response to

therapeutic agents [3,4]. However, it has become evident that

gene signatures often represent the same biological processes [22],

are associated with outcome only in subgroups of breast cancer

[18,19], and that validation of gene signatures needs to be

performed in large independent data sets [45]. The SP application

of GOBO is aimed at providing an interface for prognostic

validation of simple gene signatures in similar subsets of the 1881-

sample breast cancer data set as for GSA-Tumor. Currently, SP

supports three forms of predictor designs; 1) PAM-clustering [46],

2) stratification by expression quantiles, and 3) correlative centroid

prediction. SP analysis includes, similar to GSA-Tumor, Kaplan-

Meier analysis, univariate and multivariate analysis of predicted

groups, as well as correlation of predictor genes to functional

modules (Figure 1B).

Cancer invasion and metastasis represent the often-fatal steps in

tumor progression, but remain poorly understood. Clearly,

modifications in the tumor microenvironment involving not only

tumor cells but also surrounding tissue, e.g., tumor-associated

fibroblasts, are required for a tumor to become invasive and able

to metastasize. Observations of histological similarities between the

tumor microenvironment and normal wound healing have led to

the hypothesis that tumors represent ‘‘wounds that do not heal’’

[47]. Fibroblasts represent a key component in wound healing,

and in an attempt to identify a canonical gene expression signature

of the fibroblast serum response to wound healing Chang et al.

[48] reported a Core Serum Response (CSR) signature that was

subsequently found to be associated with outcome in breast cancer

Figure 3. Result of GSA-Cell line analysis for CCNB1. (A) Box plots of CCNB1 gene expression across cell lines grouped in the basal A (red), basal
B (grey) and luminal (blue) subgroups [23]. (B) Expression of CCNB1 across the 51 individual cell lines. Colours according to (a). (C) Box plot of gene
expression for CCNB1 across cell lines grouped into clinical subtypes; triple negative (TN, red), HER2-positive (HER2, purple), and Hormone receptor-
positive (HR, blue) based on annotation data from Neve et al. [23].
doi:10.1371/journal.pone.0017911.g003
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Figure 4. Identification of CCNB1 co-expressed genes and their association with outcome as a gene set. (A) GOBO analysis using the Co-
expressed genes application identified 34 genes to be highly correlated with CCNB1 in a 1751-sample subset of the full combined breast cancer data
set (excluding Chin et al. cases). Iterative correlation analysis of the 35 genes showed that all genes were highly correlated to each other with at least
5 connections, as visualized by a Cytoscape V2.6.3 spring embedded network. Each connection is visualized as a line between two genes. CCNB1 is
highlighted in yellow. (B) PAM clustering into two groups of samples using the Sample Predictor (SP) application with the 35 genes in (a), followed by
Kaplan-Meier analysis for 21 subgroups of the 1881-tumor set using DMFS as endpoint and 10-year censoring for 1379 cases with DMFS follow-up.
Logrank P-values are shown as 2log10(P-value).
doi:10.1371/journal.pone.0017911.g004
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Figure 5. Sample Prediction analysis of the CSR gene signature in the 1881-sample breast cancer data set. (A) Composition of CSR
classification groups for different clinical variables and Hu et al. gene expression subtypes in the 1881-sample set. (B) Association of the CSR activated
fibroblast classification group with clinical variables and gene expression subtypes (Hu et al.). Y-axis display log10(P-value) from Fisher tests for each
category. E.g., for the basal-like subtype a 262 table is generated containing number of basal-like tumors in the CSR activated fibroblast class,
number of non-basal-like tumors in the CSR activated fibroblast class, number of basal-like tumors in the CSR non-activated class and number of non-
basal-like tumors in the CSR non-activated class. Fisher P-values from tests with odds ratios ,1 (negative association) are depicted as log10(P)
(negative values on y-axis), whereas odds ratios .1 (positive association) are depicted as –log10(P) (positive values on y-axis). Results can be
interpreted such that the CSR activated fibroblast class is associated with ER-negative tumors, tumors with histological grade 3, and tumors classified
as basal-like or luminal B. (C) Association with outcome for CSR classification in subgroups of breast cancer using DMFS as endpoint and 10-year
censoring. Samples in the 1881-sample set were stratified into two groups based on correlation to the CSR activated fibroblast gene signature,
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patients [8]. In order to investigate the prognostic association of

the CSR signature in subgroups of breast cancer we submitted the

CSR activated fibroblast centroid [8] to SP analysis (File S1).

Analysis of the association for the CSR signature with different

clinical and molecular variables showed that the activated

fibroblast class of tumors was predominantly associated with

typical high-proliferative poor outcome classes in breast cancer,

such as ER-negative tumors, histological grade 3 tumors, basal-like

and luminal B classified tumors (Figure 5A and B). In contrast, the

non-activated fibroblast class of tumors was associated with ER-

positive tumors, histological grade 1 and 2 tumors, luminal A and

normal-like classified tumors (Figure 5A and B). As expected from

these results the CSR signature was associated with outcome for all

tumors (Figure 5C).

SP analysis also reveals if a signature is associated with outcome

within subgroups of breast cancer stratified using clinical and

molecular variables. Association with outcome for the CSR

signature was mainly observed for ER-positive, LN-positive, LN-

negative, untreated tumors, tamoxifen (TAM) alone treated

tumors, or ER-positive/LN-negative tumors (Figure 5C). In

further support, associations with outcome for CSR in ER-positive

(Figure 5D), LN-positive and TAM tumors were supported by

multivariate analysis using ER-status, LN-status and stratified

histological grade as covariates when applicable. Taken together,

the CSR SP and CCNB1 GSA-Tumor analyses are consistent with

results from meta-analyses of different prognostic gene signatures,

including CSR, identifying proliferation as the major constituent

of several signatures [19,22]. These meta-analyses have shown the

signatures to be predominantly associated with outcome in ER-

positive breast cancers, whereas the signatures identify the

majority of ER-negative breast cancers as poor outcome and

cannot be used to further stratify ER-negative tumors into groups

with different outcome. These findings reinforce that prognostic

gene signatures in breast cancer need to be evaluated in a subtype-

specific manner in sufficiently large sample sets [18,19,22,49].

Interestingly, a majority of genes in the CSR centroid did not show

clear co-expression with any of eight different co-expressed gene

expression modules, including two proliferation modules (Check-

point and M-phase) (Fredlund et al. Manuscript in preparation)

(Figure 6A). Moreover, in exploratory analysis we found that genes

in the CSR centroid did not show extensive co-expression when

tested pair-wise in the 1751-sample subset used by the CG

application (Figure 6B). Similarly, when dissecting several reported

gene signatures Wirapati et al. found that when using only a subset

of signature genes associated with proliferation, performance was

identical or even improved for certain signatures [22]. This

observation suggests that many prognostic gene signatures contain

only a smaller fraction of genes actually associated with outcome,

and a significant proportion of passenger genes that may perturb

or even have a detrimental effect on the prognostic performance.

Conclusions
GOBO is a convenient and user-friendly online tool for

preliminary analysis of association with outcome for gene

expression levels of single genes, sets of genes or gene signatures

in a large public breast cancer microarray data set. Moreover,

GOBO offers the possibility of investigation of gene expression

levels in breast cancer subgroups and breast cancer cell lines for

gene sets, as well as creation of potential metagenes based on

iterative correlation analysis to a prototype gene. We have here

demonstrated the usefulness of GOBO using CCNB1 and the CSR

gene signature as two examples for rapid online extraction of gene

expression patterns, co-expressed genes, and survival analysis in a

large breast cancer data set.

followed by Kaplan-Meier survival analysis in 21 subgroups using 1379 cases with DMFS follow-up. Logrank P-values are shown as 2log10(P-value).
(D) Corresponding multivariate analysis for ER-positive tumors (n = 554) using lymph node status and stratified histological grade (histological grade 1
and 2 vs. 3) as covariates, DMFS as endpoint and 10-year censoring. ER status is omitted from the multivariate analysis since all investigated cases are
ER-positive.
doi:10.1371/journal.pone.0017911.g005

Figure 6. Correlation of genes in the CSR signature to different
gene modules and pair wise co-expression. (A) For each gene
module and gene in the CSR centroid (n = 304 matching), a Spearman
correlation value is computed by comparing the expression pattern
across all samples for a specific gene to the corresponding rank sum for
each sample in the specific module. Red dots indicate actual correlation
values. (B) Box plot of pair wise correlations (n = 46056 pairs) of 304
genes from the CSR centroid matching in the 1751-sample set used by
the CG application, showing that the absolute majority of genes in the
CSR gene signature is not co-expressed across a large set of breast
tumors.
doi:10.1371/journal.pone.0017911.g006
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Design and Implementation

GOBO is designed in three modules; a data set module, a web

interface module, and a data processing module (Figure 1). The

data set module contains normalized gene expression data sets,

and corresponding annotation data compiled into R-data objects.

The GOBO web-interface module is written using Perl CGI. In

the data processing module, application specific Perl scripts are

used to parse parameters passed from web-interface, and to launch

application specific R-scripts for analysis. R-scripts perform all

analyses using standard R packages, such as survival for outcome

analysis. Upon completion, R-scripts return analysis results as files

available from the web-server for download. In order to simplify

extensive analysis comparisons, storage of analysis results and to

provide plots as scalable vector graphics supporting incorporation

in publications output from GOBO analyses are reported as text

and pdf files.

Availability and Future Directions

GOBO is freely accessible from the GOBO website http://co.

bmc.lu.se/gobo. The design and implementation of GOBO

facilitate easy incorporation of additional query functions and

applications, as well as additional data sets irrespective of tumor

type and array platform in the form of precompiled R-data sets.

Future integration of data sets with additional information such as

mutation status, copy number alterations or methylation data may

further enhance the usefulness of GOBO.

Supporting Information

Table S1 Result of Co-expressed genes analysis for
CCNB1. An Excel table listing genes co-expressed with CCNB1 in

the combined breast cancer data set.

(XLS)

Table S2 Result of functional analysis of genes co-
expressed with CCNB1 using DAVID. An Excel table

showing the results from functional analysis using DAVID for

CCNB1 and 34 co-expressed genes.

(XLS)

File S1 Supplementary Methods. A Word document

describing the preprocessing of the breast tumor and breast

cancer cell line microarray data sets, and settings for described

GOBO analyses.

(DOCX)

File S2 Investigation of data set bias in the combined
1881-sample data set. A PDF file with figures S1 to S5

displaying result of PCA analysis of the 1881-sample set, examples

of gene expression levels for Affymetrix probe sets matching ER

and HER2 across clinical and molecular annotations, and

clustering of the 1881 cases using the PAM50 gene set.

(PDF)
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