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Abstract

Intraneoplastic diversity in human tumors is a widespread phenomenon of critical importance for tumor progression and
the response to therapeutic intervention. Insights into the evolutionary events that control tumor heterogeneity would be a
major breakthrough in our comprehension of cancer development and could lead to more effective prevention methods
and therapies. In this paper, we design an evolutionary mathematical framework to study the dynamics of heterogeneity
over time. We consider specific situations arising during tumorigenesis, such as the emergence of positively selected
mutations (‘‘drivers’’) and the accumulation of neutral variation (‘‘passengers’’). We perform exact computer simulations of
the emergence of diverse tumor cell clones over time, and derive analytical estimates for the extent of heterogeneity within
a population of cancer cells. Our methods contribute to a quantitative understanding of tumor heterogeneity and the
impact of heritable alterations on this tumor trait.
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Introduction

Human tumors originate from normal cells that accumulate

genetic and epigenetic changes. The types and numbers of

changes necessary for malignant transformation differ between

tumor types, but a common feature among most types is variability

in both genotype and phenotype among the cancer cells within a

single tumor [1–3]. These cells can be distinguished by

characteristics such as size, cellular morphology, and antigen

expression as well as in behaviors like cell turnover, motility, cell-

cell interactions, response to treatment, and angiogenic, immuno-

genic, and metastatic ability [4,5]. This tumor diversity has

profound clinical implications for disease progression, diagnosis,

therapeutic responses, and the choice of optimal treatments. Since

biopsies used for diagnostic purposes sample only a small region of

a tumor, they might not be representative of the totality of a

diverse cancer cell population; hence treatment choices based

upon such diagnostic samples might not inhibit all tumor cells and

thereby lead to residual disease in many patients. Similarly, the use

of biomarkers may lead to inappropriate conclusions about the

type, stage, and prognosis of a tumor. The therapeutic response of

tumors also depends on the composition of the cell population:

experimental tumors composed of multiple clones display different

sensitivity to cytotoxic drugs as compared to monoclonal tumors,

since clonal interactions can either potentiate or inhibit therapeu-

tic efficacy [6]. Therefore, intratumor heterogeneity adds an

additional level of complexity to the study of cancer development

and poses challenges for the development of successful therapies.

Determining the evolutionary events that control tumor

heterogeneity would increase our understanding of cancer

development and could lead to more effective prevention methods

and therapies. In this paper, we design a mathematical model of

tumor heterogeneity and investigate the evolutionary dynamics of

this tumor trait. The present work contributes to the study of

tumor diversity using computational modeling [7–14]. Diversity

and the accumulation of mutations have also been the subject of

many research efforts in evolutionary theory [15–27]. The models

presented in the population genetics literature generally consider

cells undergoing sexual reproduction and situations with weak

selection. However, the dynamics of selective sweeps of advanta-

geous mutations differ between asexually and sexually reproducing

populations, and the types of modeling approaches used to

examine scenarios with weak selection cannot be applied to

situations with strong selection such as those arising during cancer

evolution. Hence a novel mathematical framework is necessary to

investigate the extent of heterogeneity of an asexually evolving

population accumulating alterations with large fitness effects over

time. The model presented in this paper serves as a toy model to

investigate the dynamics of tumor heterogeneity and the impact of

heritable alterations on diversity. We consider an idealized

mathematical model in which cells proliferate according to a

stochastic process in which they maintain a strictly constant

population size. The assumption of a constant population size may

describe pre-malignant tissues in which genetic and epigenetic

alterations lead to diversity before more aggressive clones arise.

Additionally, such a model applies to cancer cell populations

which have reached a carrying capacity due to resource limitation,

the lack of an appropriate phenotype conferred by specific

mutations, or other restrictions to continued growth such as the

absence of angiogenesis, presence of a strong immune response, or

tissue and compartment boundaries. Although the tumor cells may

be able to continue to expand exponentially once those barriers

are removed, for the duration of time until the evolution of a more

aggressive phenotype, the assumption of a constant population size

may apply. Therefore, we here analyze a model restricting the

number of cells to a constant value over time.
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The Model

Consider a population of N cancer cells following a stochastic

process [28]: at each time step, a cell is chosen for replication

proportional to fitness (i.e. growth rate), and its offspring replaces

another randomly chosen cell. The population size remains strictly

constant during the period of observation; the population size can,

however, increase in response to the accumulation of specific

(epi)genetic changes. During each cell division, a new genetic or

epigenetic alteration may emerge in one of the two daughter cells.

We consider two types of alterations: those that do not alter the

growth or death rate of the cell (neutral or ‘‘passenger’’ changes),

and those that confer a fitness advantage to the cell. The latter

mutations may be ‘‘driver’’ alterations that contribute to tumor

progression and malignancy. Deleterious mutations, i.e. those that

decrease cellular fitness, are not considered since they will likely be

lost from the population. Neutral and advantageous changes arise

at rates u and v per cell division, respectively. Each time a

mutational event occurs, a novel cell type arises (Fig. 1). This

assumption is known as the infinite alleles model in population

genetics [29]. Denote those cell types that do not harbor an

advantageous mutation as type A cells (including all cell types

carrying different numbers of neutral mutations), and those cells

that harbor a specific advantageous mutation as type B cells. The

growth rates of type A and B cells are given by R and R+S,

respectively, while both their death rates are given by D. Note that

we assume the fitness effect of the advantageous alteration to act

on the growth rather than the death rate; alternative assumptions

are possible. Denote by H(t) the probability at time t that a

randomly chosen pair of cells is genetically distinct; this quantity is

called tumor heterogeneity.

In tumors that follow the stem cell hypothesis – i.e. the idea that

only a small subset of tumor cells possesses unlimited self-renewing

abilities [30], only cancer stem cells can accumulate variability that

will persist in the population. All alterations arising in transit-

amplifying or terminally differentiated cells will eventually be lost

from the system, unless these changes themselves confer self-

renewing capabilities to cells. Here transit-amplifying cells are

defined as those cells that possess the ability to undergo a limited

number of cell replication events before undergoing apoptosis or

differentiating further; unlike self-renewing cells, these cells cannot

persist indefinitely in a tissue. Therefore, in tumors that are

replenished by a small population of cancer stem cells, we consider

that heterogeneity of transit-amplifying cells is proportional to the

heterogeneity of cancer stem cells. Mutations conferring self-

renewal propensities to transit-amplifying cells are not considered

to contribute to the total (long-term) heterogeneity in this case. In

tumor types that do not follow the cancer stem cell model, all cell

types may accumulate alterations that have the potential to persist

in the population, and therefore all tumor cells are included in the

model describing tumors of this latter type. Mathematical models

describing more complex population structures will be the topic of

future investigations.

Computer simulations
We perform exact computer simulations of the stochastic

process; see the supplement online for the source code of the

simulations. There are two categories of cell types: the cell types

that harbor only neutral alterations (type A cells), and the cell types

that additionally carry an advantageous mutation (type B cells).

Denote their respective abundances by xi and yi, where i~0,:::,I
enumerate the individual cell types. The quantity x0 denotes the

number of type A cells that carry no mutations, while y0 denotes

the number of type B cells that harbor no neutral mutations. The

index i~0,:::,I enumerates the individual cell types, where I

denotes the maximum number of types for type A and B cells. This

maximum number may be dictated by the number of ways in

which genetically distinct cells can arise, or alternatively by the

number of ways in which currently available genome profiling

methods can distinguish differences between cells; in the latter

case, differences are only noted when they occur in those parts of

the genome which are profiled in a given study, and may

underestimate the true extent of diversity in a tumor sample.

Initially, there are N unmutated cells, x0(0)~N , while y0(0)~0
and xi(0)~yi(0)~0 for i~1,:::,I . At each time step of this

stochastic process, one cell is chosen for reproduction at random,

but proportional to fitness. If there are j type B cells with fitness

R+S in a population of N-j type A cells with fitness R, then the

probability that a type B cell is chosen for reproduction is

(RzS)j=½(RzS)jzR(N{j)�. The chosen cell produces a

daughter cell, possibly with a mutation, which replaces another

randomly chosen cell. The total number of cells remains strictly

constant. This stochastic process is known as the Moran model

[28]. Each time a mutational event occurs, a new cell type is

created; for instance, a cell of type 3 may produce a cell of type 9,

if there are already 8 cell types present. For each parameter set, we

perform many independent runs of the stochastic process to

account for random fluctuations, and determine the heterogeneity

of cells as

Figure 1. A mathematical model of tumor heterogeneity. We consider a population of N tumor stem cells which accumulate mutations. Each
time a mutational event occurs, a new cell type is created. Cell types are enumerated i = 0, 1, …, I. The extent of heterogeneity at time t is measured
by Simpson’s index shown below, which incorporates the number of cells of each type at time t, xi(t), and the total number of cells, N.
doi:10.1371/journal.pone.0017866.g001

Intratumor Heterogeneity
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for each time t (Fig. 1). This quantity is known as Simpson’s index

[31].

The dynamics of heterogeneity due to neutral variation
Let us first investigate the level of heterogeneity of a population

of type A tumor cells with growth rate R and death rate D, in

which neutral alterations arise with probability u per cell division.

We will consider advantageous mutants in a later section. During a

small time interval of length Dt, a cell division, death, or mutation

event may occur. Starting from N cells at time t, there are

W~N½1z(R{D)Dt� cells at time tzDt: the number of cells that

remain unchanged during Dt is given by N½1{(RzD)Dt�, the

number of cells that die during Dt is given by NDDt, the number

of cells that divide without mutating is given by NR(1{u)Dt

(producing 2NR(1{u)Dt cells at time tzDt), and the number of

cells that divide while mutating is given by NRuDt (producing

2NRuDt cells at time tzDt, half of which carry the new

mutation). Then the total number of cells at time tzDt except

novel mutants is given by Y~N½1z(R{D)Dt{RuDt�. The

probability that a randomly chosen pair of cells has exactly the

same genotype is given by

1{H(tzDt)~

½1=2Y(Y{1){NR(1{u)Dt�(1{H(t))zNR(1{u)Dt

1=2W(W{1)
:
ð2Þ

The factor 1/2 arises since each pair of cells is counted only once.

When neglecting terms of higher order of Dt, we obtain

1{
1

N
z 2{
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Then, letting Dt?0 and with Nww1 and uvv1, we have

dH

dt
&{2R uz

1

N

� �
Hz2Ru: ð4Þ

With H(0)~0, we obtain

H(t)~
Nu

Nuz1
1{exp½{2R(uz1=N)t�ð Þ: ð5Þ

This quantity increases smoothly from 0 to the asymptotic level,

H(?)~Nu=(Nuz1). Figure 2 shows the dynamics of heteroge-

neity as given by equation (5) and the exact computer simulation of

the stochastic process.

The dynamics of heterogeneity due to neutral and
advantageous variation

Let us next discuss the situation in which a single type B cell

carrying an advantageous mutation arises at time t1. This cell has

division and death rates of R+S and D, respectively, and its lineage

accumulates neutral variation at rate u per cell division. Denote

the number of type B cells at time t by n(t) while the total

population size is N. Type B cells have a per capita division rate of

b, which includes the fitness values of both type A and B cells since

it is the outcome of their competition. The probability of cell

division of type B cells in a time interval of length Dt is given by

bnDt~DNDt
(RzS)n

(RzS)nzR(N{n)
: ð6Þ

Then the per capita net growth rate of type B cells is given by

b{D~½S(1{n=N)D�=½RzSn=N� and the population of those

cells grows according to

dn

dt
~(b{D)n ð7Þ

with initial condition n(t1)~1.

To derive the expression for heterogeneity among type B cells

over time, recall equation (5). With initial condition HBB(t1)~0
and given equation (7), the heterogeneity among type B cells is

then given by

dHBB

dt
~{2

(RzS)D

RzSn=N
uz

1

n

� �
HBBz2

(RzS)D

RzSn=N
u: ð8Þ

Similarly, the per capita cell division rate of type A cells is given

by a~RD=½RzSn=N�. Then the heterogeneity among type A

cells over time, HAA(t), is given by

dHAA

dt
~{2

RD

RzSn=N
uz

1

N{n

� �
HAAz2

RD

RzSn=N
u, ð9Þ

where HAA(t1)~H(t1) from equation (5). Finally, the total

heterogeneity is composed of heterogeneity among type A cells,

HAA(t), heterogeneity among type B cells, HBB(t), and heteroge-

neity between type A and B cells, HAB(t). If the type B lineage

does not have the possibility of going extinct, then the total

heterogeneity of the population is given by

H1(t)~

N{n

N

� �2

HAA(t)z2
n

N

� � N{n

N

� �
HAB(t)z

n

N

� �2

HBB(t):
ð10Þ

Considering the possibility of extinction of type B cells, the total

heterogeneity becomes

H2(t)~ 1{
R

RzS

� �
H1(t)z

R

RzS
H(t): ð11Þ

.
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Here the factor 1{R=(RzS)~S=(RzS) denotes the proba-

bility that a newly arisen type B cell survives the stochasticity when

its clone is small; this calculation is based on the branching process

approximation (e.g., [32]). Since cell types A and B differ by at least

the advantageous mutation, we can consider HAB(t)~1 for all times

t. Figure 3 shows the dynamics of heterogeneity as given by equation

(11) and the results of the exact stochastic computer simulation.

Alternatively, consider the case in which the advantageous

mutation cannot be detected by currently used screening methods.

In that case, the only loci contributing to heterogeneity are those

that do not cause a fitness difference when mutated – i.e., neutral

variation. Then the heterogeneity between type A and B cells at

time t, HAB(t), is determined by considering the ancestral cell

lineages giving rise to any pair of cells. Recall that the number of

type B cells existing at time tzDt is n½1z(b{D)Dt�, and the

number of cells harboring a novel neutral mutation at time tzDt is

nbuDt. Then the probability that a cell accumulates a mutation between

times t and tzDt is given by nbuDt=½n(1z(b{D)Dt)�&buDt. As we

trace the ancestral lineage of a type B cell from time t back to

time t1, the probability that no mutation occurs during this time

interval is given by exp½{
ðt

t1

b(t)udt�. Similarly, the probability

that no mutation occurs in the ancestral lineage of a type A cell is

given by exp½{
ðt

t1

a(t)udt�, where a denotes the per capita

division rate of type A cells. Then we have

HAB(t)~ 1{exp {

ðt
t1

(a(t)zb(t))udt

2
64

3
75

0
B@

1
CAz

H(t1)exp {

ðt
t1

(a(t)zb(t))udt

2
64

3
75,

ð12Þ

since a pair of type A and B cells are different either because their

ancestral cells at time t1 were different, or because the ancestral

lineage of either cell accumulated a mutation. Equation (12) can

be approximated by

HAB(t)~(1{exp½{2Du(t1{t)�)zH(t1)exp½{2Du(t1{t)� ð13Þ

since bwDwa. Figure 4 shows the dynamics of heterogeneity in

the case in which the advantageous mutation cannot be detected,

as given by equation (12), and the results of the exact stochastic

computer simulation for that scenario.

Finally, let us discuss the situation in which type B cells carrying

advantageous mutations arise at rate v per cell division. A cell with

k advantageous mutations has growth and death rates of

R(1zS=R)k and D, respectively, and its lineage accumulates

neutral variation at rate u per cell division. In this case, the rate at

which a selective sweep occurs is given by NvS=(RzS). Then the

expected mean heterozygosity is given by

Figure 2. Tumor heterogeneity due to neutral variation. A cell
population of fixed size, N, accumulates neutral mutations at rate u per
cell division. All cell types have growth rate R and death rate D. The
figure shows the fit of the exact stochastic computer simulation of this
process with equation (5). In the simulation, heterogeneity is defined as
Simpson’s index, equation (1). Parameters are N~1000, R~D~1,
I~104 , and u~10{2 in (a), u~5:10{3 in (b), and u~10{3 in (c), and
results are averaged over 100 simulation runs.
doi:10.1371/journal.pone.0017866.g002
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E H(t)½ �~
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H(t)exp {
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dt

z
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exp {
NvS

RzS
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In this equation, the first term corresponds to the case in which

one or more selective sweeps of advantageous mutants occur

before time t, while the second term corresponds to the case in

which no selective sweep has occurred until time t. By substituting

equation (1) for H(t), we obtain

E H(t)½ �~

Nu

Nuz1
1{e½{at�{ a

azb
1{e½{(azb)t�ð Þze½{at� 1{e½{bt�ð Þ

� �
,
ð15Þ

where a~NvS=(RzS) and b~2(uz1=N). In the limit of

infinitely large time t, this expression becomes E½H(?)�~
Nub=½(Nuz1)(azb)�. Figure 5 shows the dynamics of heteroge-

neity in the case in which advantageous mutations arise at rate v

while neutral mutations are accumulated at rate u per cell division;

we show equation (15) and the results of the exact stochastic

computer simulation for that scenario.

So far, we have discussed the dynamics of intratumor

heterogeneity in populations of constant size. However, since

tumors expand over time, it is also important to consider the

accumulation of variation in growing tumor cell populations. In

cases in which the expansion of a tumor cell population is driven

by the accumulation of (epi)genetic alterations, the model

described above can be used to describe the kinetics of diversity

during those times when the population size is roughly constant –

i.e., between the events of accumulation of a novel advantageous

mutation. Once such a mutation has arisen, the population grows

until reaching a new steady state level. Our model is useful for

describing the accumulation of variation during these fixed-size

periods. Alternatively, an exponentially growing population can be

considered in which alterations arise; a useful stochastic process for

this scenario is the branching process model in which cells divide

in a binary fashion, and the population grows (or declines) on

average exponentially. Such a model is the topic of other work

[33,34].

Discussion

Intratumor heterogeneity is a key mechanism underlying tumor

progression and the frequent lack of therapeutic responses.

Although tumors are thought to originate from a single cell that

Figure 3. Tumor heterogeneity due to neutral and positively
selected variation. A cell population of fixed size, N, accumulates
neutral mutations at rate u per cell division. All neutral mutants have
growth rate R and death rate D. Additionally, a positively selected
mutant arises at time t1 in the population. Its lineage has growth rate
RzS and death rate D. The figure shows the fit of the exact stochastic
computer simulation of this process with equation (11). In the
simulation, heterogeneity is defined as Simpson’s index, equation (1).
Parameters are N~1000, R~D~1, I~104 , u~10{2, and S~1 in (a),
S~3 in (b), and S~100 in (c), and results are averaged over 100
simulation runs.
doi:10.1371/journal.pone.0017866.g003

ð15Þ
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accumulates (epi)genetic alterations necessary for transformation,

by the time of diagnosis, most cancers exhibit widespread

heterogeneity. This tumor diversity does not only complicate the

profiling of cancers, since a sample may not be representative of

the whole, but also decreases the likelihood of cure due to

therapeutic interventions since resistant clones may already pre-

exist therapy. An understanding of the evolutionary forces driving

intratumor heterogeneity would enhance our understanding of

tumorigenesis and may allow us to more effectively plan

treatments.

In this paper, we have designed a stochastic mathematical

model of the accumulation of (epi)genetic alterations in popula-

tions of cells to estimate the extent of heterogeneity over time

(Fig. 1). We have studied this model with exact stochastic

computer simulations (Figs. 2–5) and have also derived analytical

approximations for the dynamics of heterogeneity in the

population. We have considered two different types of heritable

alterations that may arise during cell divisions: neutral variation

that does not change the fitness of cells, but leads to the emergence

of a new cell type that can be distinguished from the resident

cancer cell population with molecular profiling techniques, and

advantageous alterations which lead to a fitness increase of the cell

and potentially a selective sweep in the population. Here selective

sweep refers to the reduction or elimination of variation in a cell

population due to recent and strong positive selection [35]. We

have neglected disadvantageous alterations since in large tumors,

cells carrying such alterations are likely unable to establish a

surviving clone, but go extinct due to their deleterious character-

istics. The population of cells at risk of accumulating these

alterations consists of those cells that are maintained in the

population for long time horizons; in tumor types adhering to the

cancer stem cell hypothesis, only cancer stem cells have self-

renewal propensities and hence, genetic variability accumulated

within them may persist in the population rather than being lost

due to differentiation and death of its carrier cell. Heterogeneity

accumulated in progenitors and differentiated cells can contribute

to a snapshot analysis of diversity, but cannot be maintained for

long time horizons. In the case of tumors not following the cancer

stem cell model, all tumor cells potentially possess self-renewal

abilities and are therefore part of the population of cells which

accumulate (epi)genetic variability.

Our evolutionary model demonstrates that the accumulation of

neutral variation in a population leads to an increase in

heterogeneity until a maximum extent is reached (Fig. 2). This

maximum value is dictated by the number of cells in the

population as well as the mutation rate giving rise to new cell

types. After introduction of an advantageous mutation, the extent

of heterogeneity decreases rapidly as the advantageous clone

spreads through the population, but afterwards rebounds as

neutral variation continues to be accumulated in this clone (Figs. 3

Figure 4. Tumor heterogeneity when only neutral variation can
be detected. A cell population of fixed size, N, accumulates neutral
mutations at rate u per cell division. All neutral mutants have growth
rate R and death rate D. Additionally, a positively selected mutant arises
at time t1 in the population. Its lineage has growth rate RzS and death
rate D. This mutation, however, cannot be detected when measuring
heterogeneity in the population. The figure shows the fit of the exact
stochastic computer simulation of this process with equation (12). In
the simulation, heterogeneity is defined as Simpson’s index, equation
(1), and wild type cells as well as cells harboring the advantageous
mutation are considered as one cell type. Parameters are N~1000,
R~D~1, I~104 , u~10{2 , and S~1 in (a), S~3 in (b), and S~100 in
(c), and results are averaged over 1000 simulation runs.
doi:10.1371/journal.pone.0017866.g004

Intratumor Heterogeneity
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and 4). If successively more advantageous mutants emerge in the

population over time, then the extent of heterogeneity is

maintained at a lower level since the advantageous clones arise

stochastically and decrease the average heterogeneity across the

cancer cell population (Fig. 5). Our model provides an

understanding of the consequences of accumulating neutral and

advantageous variation in a tumor; such knowledge aids in the

interpretation of cancer genomic data as well as relays an

understanding of the basic biology and kinetics of tumors.

We have chosen to concentrate on the behavior of tumor cells

which accumulate (epi)genetic changes while proliferating in a

fixed-size population or niche. Situations with exponentially

increasing population sizes are the topic of follow-up work

[33,34]. For clarity, we have neglected other important aspects

contributing to tumorigenesis, such as interactions of tumor cells

with the immune system and microenvironment, cell-cell interac-

tions, competition for resources and space, as well as the effects of

exogenous mutagenic factors and inherited predispositions. These

factors will be considered in future contributions.

To validate the predictions of this model and further the

understanding of tumor diversity, detailed experimental analyses

of tumor heterogeneity are necessary. For instance, the number

and frequencies of (epi)genetically or morphologically diverse

clones in a tumor should be ascertained along with the variability

of these quantities when comparing tumors from different

patients or different sites within the same patient, such as

primary and metastatic lesions. With such data, it will be possible

to relate the extent of diversity to clinically important covariates

like survival, proliferation indices, invasiveness, sensitivity to

therapy, etc. Such studies have recently been initiated [36–38]

and will enhance our understanding of the role of tumor diversity

in cancer progression and the response to treatment. Further-

more, evolutionary parameters such as growth and death rates,

mutation rates, and the ability of different cell types to migrate,

adhere and invade are needed to accurately describe the

dynamics of diversity. The values of such parameters remain

unknown for many cell and mutation types, but are necessary for

progress in this field. Finally, the role of the immune system and

microenvironment in tumor progression and diversity must be

delineated to design accurate mathematical models. Although

such studies have been initiated [39,40], many open questions

remain. In summary, experimental methodologies to profile

single cells – both tumor and microenvironmental – from

neoplasms at multiple stages of their evolution are necessary

such that, with the help of appropriate analysis tools, the clinical

management of patients with premalignant lesions or cancer can

be improved.
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Figure 5. Tumor heterogeneity due to continuously arising
neutral and advantageous variation. A cell population of fixed
size, N, accumulates neutral mutations at rate u per cell division and
advantageous mutations at rate v per cell division. All neutral mutants
have growth rate R and death rate D, while a cell with k advantageous
mutations has growth and death rates of R(1zS=R)k and D. The figure
shows the fit of the exact stochastic computer simulation of this
process with equation (15). In the simulation, heterogeneity is defined
as Simpson’s index, equation (1). Parameters are N~1000, R~D~1,
I~104 , u~10{2 , S~1000, and v~10{5 in (a), v~5:10{6 in (b), and
v~10{6 in (c), and results are averaged over 1000 simulation runs.
doi:10.1371/journal.pone.0017866.g005
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