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Abstract

Background: Depression is associated with an unusually high rate of aging-related illnesses and early mortality. One aspect
of ‘‘accelerated aging’’ in depression may be shortened leukocyte telomeres. When telomeres critically shorten, as often
occurs with repeated mitoses or in response to oxidation and inflammation, cells may die. Indeed, leukocyte telomere
shortening predicts early mortality and medical illnesses in non-depressed populations. We sought to determine if
leukocyte telomeres are shortened in Major Depressive Disorder (MDD), whether this is a function of lifetime depression
exposure and whether this is related to putative mediators, oxidation and inflammation.

Methodology: Leukocyte telomere length was compared between 18 unmedicated MDD subjects and 17 controls and was
correlated with lifetime depression chronicity and peripheral markers of oxidation (F2-isoprostane/Vitamin C ratio) and
inflammation (IL-6). Analyses were controlled for age and sex.

Principal Findings: The depressed group, as a whole, did not differ from the controls in telomere length. However, telomere
length was significantly inversely correlated with lifetime depression exposure, even after controlling for age (p,0.05).
Average telomere length in the depressed subjects who were above the median of lifetime depression exposure ($9.2
years’ cumulative duration) was 281 base pairs shorter than that in controls (p,0.05), corresponding to approximately
seven years of ‘‘accelerated cell aging.’’ Telomere length was inversely correlated with oxidative stress in the depressed
subjects (p,0.01) and in the controls (p,0.05) and with inflammation in the depressed subjects (p,0.05).

Conclusions: These preliminary data indicate that accelerated aging at the level of leukocyte telomeres is proportional to
lifetime exposure to MDD. This might be related to cumulative exposure to oxidative stress and inflammation in MDD. This
suggest that telomere shortening does not antedate depression and is not an intrinsic feature. Rather, telomere shortening
may progress in proportion to lifetime depression exposure.
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Introduction

Major depressive disorder (MDD) is associated with a

significantly increased risk of developing serious medical illnesses

that are more commonly seen with advanced age, such as diabetes,

cardiovascular disease, immune impairments, stroke, dementia,

osteoporosis, diabetes and metabolic syndrome [1,2,3,4,5] and of

dying significantly earlier (even after accounting for socio-

demographic factors, suicide and risk factors such as smoking,

alcohol and physical illness) [6,7,8,9,10]. Indeed, major depression
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has been likened to a state of ‘‘accelerated aging,’’ with an

increased incidence of aging-related illnesses [1,8,11,12,13,14,15,

16,17,18,19,20,21,22]. Various explanations for a prematurely

aged phenotype in depression have been proposed, such as the

‘‘glucocorticoid cascade’’ hypothesis [23,24] and ‘‘allostatic load’’

[25], as well as an unhealthy lifestyle or environment. In this study,

we explored the additional (and not mutually exclusive) possibility

that ‘‘accelerated aging’’ in depression occurs at the level of

telomeres, as manifest in blood leukocytes. Further, we hypoth-

esized that such changes are directly correlated with cumulative

lifetime exposure to depression and are related to specific cytotoxic

biochemical mediators, such as pro-inflammatory cytokines and

oxidative stressors, which are often elevated in depression.

Telomeres are deoxyribonucleic acid (DNA)-protein complexes

that cap the ends of the linear chromosomal DNA, protecting the

genome from damage. In mitotic cells, telomeres can shorten with

each division, unless this can be counteracted or reversed by the

telomere-lengthening enzyme, telomerase [26,27]. When telomer-

ic DNA reaches a critically short length, as in cells undergoing

repeated mitotic divisions (e.g., leukocytes [28] and stem cells

[29,30,31,32,33]), cells become susceptible to senescence or

apoptosis [26,34]. Even in non-dividing cells, telomere shortening

has been associated with cytotoxic stressors such as oxidative

stress, which preferentially damages telomeric DNA compared

with non-telomeric DNA, and chronic inflammation

[35,36,37,38]. Such enhanced telomere shortening also increases

cellular susceptibly to apoptosis and death [33]. Telomere length is

emerging as a prognostic marker of disease risk and a robust

indicator of human ‘‘biological age’’ (as distinguished from

chronological age). It may represent a cumulative log of factors

such as the number of cell divisions and of exposure to cytotoxic

processes such as excessive oxidation and inflammation

[34,35,38,39,40,41,42]. Several recent studies in non-depressed

populations have demonstrated an inverse relationship between

leukocyte telomere length and the risk of current and future

medical illnesses (such as cardiovascular and infectious diseases

and dementia) and early death [42,43,44,45,46,47,48,49,50,

51,52,53,54]. Accelerated telomere shortening in individuals with

MDD could help explain the increased medical morbidity seen in

depression [8,40,46,55,56,57].

In addition to biochemical stressors such as oxidation and

inflammation, chronic psychological stress is also associated with

shortened telomeres [58,59]. For example, healthy chronically

stressed individuals (e.g., maternal caregivers of chronically ill

children and family caregivers of demented individuals) showed

significantly shorter leukocyte telomere length compared to age-

matched controls [58,59], and in one study, telomere length was

inversely correlated with the chronicity of caregiving (i.e., women

with greater cumulative duration of caregiving stress had shorter

telomeres) [58]. This is consistent with the hypothesis that

telomere shortening develops over time in proportion to

cumulative exposure to the stressors. The difference in mean

telomere base pairs (bp) between the two groups in that study

suggested approximately 9–17 years of accelerated biological aging

in the stressed, compared to the non-stressed, women [58]. In the

first study of telomere length in affective illnesses, including MDD,

subjects also had significantly shortened leukocyte telomere length

compared to controls, with an estimated acceleration of biological

cell aging of over 10 years (average telomere shortening = 660 bp)

[55]. That study utilized an extremely chronically ill population

(average cumulative lifetime duration of illness = 31.8611.2 [SD]

years). To the extent telomere length reflects cumulative exposure

to depression and cytotoxic factors, telomere length should be

inversely correlated with the lifetime chronicity of depression, and

therefore, extrapolation of findings from that study to individuals

with less chronic major depression may not be possible. A second

study examined leukocyte telomere shortening in major depression

and also found shortened telomeres [60], but it did not report the

chronicity of depression in their sample. A very recent study also

found shortened leukocyte telomeres in MDD (although various

psychiatric, neurological and somatic disorders were not excluded

in their sample), with an average shortening of 350 bp [61],

representing approximately 6–8 years of ‘‘accelerated aging.’’ In

that study, average telomere length was not related to lifetime

depression history, as assessed by the time from the first onset of

MDD through the time of the present assessment, but intervening

periods of time that the subjects were not depressed were not

excluded in that assessment. In the present study, to test effects of

depression status and chronicity on cell aging, we evaluated

depressed individuals across a broad range of depression

chronicity and assessed chronicity as the estimated time actually

spent in depressive episodes.

In addition to investigating telomere length in depression, we

were interested in assessing biological factors associated with

telomere shortening. Since depression is often associated with

increased oxidative stress [57,62,63,64,65,66,67] and with a pro-

inflammatory milieu [4,68,69,70,71,72], we reasoned that oxida-

tive stress and inflammation might contribute to shortened

telomeres in depression, just as they are believed to do in certain

medical illnesses and in preclinical models [36,38,41,46,57,

73,74,75,76,77,78]. We hypothesized that depressed individuals

would have shorter leukocyte telomeres than matched controls,

that telomere length would be inversely correlated with cumulative

lifetime exposure to depression, and that telomere length would be

inversely correlated with oxidative stress and inflammatory

markers.

Methods

Ethics Statement
Subjects gave written informed consent to participate in this

study, which was approved by the University of California, San

Francisco (UCSF) Committee on Human Research (CHR).

Objectives
To determine whether leukocyte telomeres are shortened in

individuals with Major Depressive Disorder (MDD), whether this

is a function of depression chronicity and whether this is related to

putative mediators, oxidation and inflammation.

Participants
Eighteen subjects with MDD, diagnosed with the Structured

Clinical Interview for DSM-IV-TR (SCID) [79], and 18

individually-matched healthy controls (matched by sex, ethnicity

and age 63 years) were recruited. One healthy control had an

inadequate blood sample collection, leaving 18 depressed subjects

and 17 healthy controls with usable data. Depressed subjects were

all outpatients; they and the controls were recruited by fliers,

bulletin board notices, Craigslist postings, newspaper ads and, in

the case of depressed subjects, clinical referrals. Subjects were paid

for their participation. SCID diagnostic interviews were conducted

by an experienced clinical psychologist and were clinically verified

by a separate psychiatric interview with a Board-certified

psychiatrist. Depressed subjects with psychosis or bipolar histories

were excluded, although co-morbid anxiety disorders were

allowed when the depressive diagnosis was considered to be the

primary diagnosis. Subjects with Post-Traumatic Stress Disorder

Telomere Length in Chronic Major Depression
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(PTSD) were excluded, since PTSD may have important

differences in stress hormone regulation [80]. Seven of the

depressed subjects had co-morbid anxiety diagnoses as follows:

three with generalized anxiety disorder, two with obsessive-

compulsive disorder, two with binge eating disorder (one of whom

was in remission) and one with social anxiety disorder. Healthy

controls were also screened with the SCID, and were required to

have no present or past history of any DSM-IV Axis I or Axis II

diagnosis. Potential subjects were excluded if they met SCID

criteria for alcohol or substance abuse within 6 months of entering

the study. Subjects in both groups were medically healthy (assessed

by physical examination, review of systems and screening

laboratory tests), had no acute illnesses or infections, and had

not had any vaccinations within 6 weeks of entering the study. All

subjects (depressed and control) were free of any psychotropic

medications, including antidepressants, antipsychotics and mood

stabilizers, as well as any hormone supplements, steroid-containing

birth control or other interfering medications (e.g. statins) or

Vitamin supplements above the U.S. Recommended Daily

Allowances (e.g. Vitamin C, 90 mg/day), for a minimum of 6

weeks before entry into the study (with the exception of short-

acting sedative-hypnotics, as needed, up to a maximum of 3 times

per week, but none within one week prior to testing).

Procedures
Subjects were admitted as outpatients to the UCSF Clinical and

Translational Science Institute’s Clinical Research Center at 8:00

am, having fasted (except water) since 10:00 pm the night before.

Before proceeding with testing, all subjects were required to test

negative on a urine toxicology screen (measuring the presence of

abused drugs) and, in women of child-bearing capacity, a urine

pregnancy test. After the subjects had sat quietly for 45 minutes,

blood samples were obtained for leukocyte telomere length,

oxidative stress markers (F2-isoprostanes and the anti-oxidant,

Vitamin C) and inflammation (IL-6). Whole blood was drawn for

the telomere length assay, and buffy coat was saved for leukocyte

telomere length assay. DNA was prepared from whole blood using

commercially available reagents (Gentra Puregene Blood Kit,

Qiagen, Valencia, CA). Blood for the F2-isoprostane assay was

collected into EDTA tubes with no vacuum, and blood for the

Vitamin C assay was collected into foil wrapped serum separator

tubes. Blood for IL-6 assay was collected into serum separator

tubes.

Severity of depression in the depressed subjects was ascertained

with the observer-rated 17-item Hamilton Depression Rating

Scale (HDRS) [81]. Total lifetime duration of depression was

estimated in the depressed subjects using the life history methods

of Sheline [82] and Post [83], supplemented with information

derived from the SCID interview and the Antidepressant

Treatment History Form (ATHF) [84], which documents

depressive episode durations as well as durations of antidepressant

treatment, including the doses used and the treatment response.

Only periods of time during which subjects were actively

depressed (i.e., met DSM-IV criteria for MDD) were counted;

periods of time during which subjects were not depressed were not

included. Clinical history-taking and telomere assays were

performed blind to each other.

Assays
Telomere Length. High molecular weight DNA was

extracted from frozen whole blood using commercially available

reagents (Puregene, Gentra Systems, Qiagen, Valencia, CA). DNA

quality and quantity were assessed with a nanodrop

spectrophotometer and random samples were also assessed by

agarose gel electrophoresis. The telomere length measurement

assay was adapted from the published original method [85].

Briefly, the T (telomeric) and S (single copy gene) values of each

sample were determined by quantitative polymerase chain

reaction (PCR) using the following primers: tel1b [59-CGGTT-

T(GTTTGG)5GTT-39] and tel2b [59-GGCTTG(CCTTAC)-

5CCT-39] for T and hbg1 [59 GCTTCTGACACAACTGTGT-

TCACTAGC-39] and hbg2 [59-CACCAACTTCATCCA-

CGTTCACC-39] for S (human beta-globin). Genomic DNA

from HeLa cells was used as the reference to quantify the T and S

values relative to the reference DNA sample by the standard curve

method. All PCRs were carried out on a Roche Lightcycler 480

real-time PCR machine with 384-tube capacity (Roche

Diagnostics Corporation, Indianapolis, IN). The telomere

thermal cycling profile consisted of: cycling for T (telomeric)

PCR: denature at 96uC for 1 second, anneal/extend at 54uC for

60 seconds, with fluorescence data collection, 30 cycles; cycling for

S (single copy gene) PCR: denature at 95uC for 15 seconds, anneal

at 58uC for 1 second, extend at 72uC for 20 seconds, 8 cycles;

followed by denature at 96uC for 1 second, anneal at 58uC for 1

second, extend at 72uC for 20 seconds, hold at 83uC for 5 seconds

with data collection, 35 cycles. The inter-assay coefficient of

variation (CV) for telomere length measurement was 4%. Details

of the method can be found in [86].

Oxidative Stress. The recommended approach for

evaluating oxidative stress assesses the balance between anti-

oxidants and oxidative by-products, with assessment of at least one

antioxidant and one oxidized molecule [87,88,89]. Ascorbic acid

(Vitamin C) is often the preferred antioxidant to measure in this

context [87,88,89]. Although ascorbic acid is an essential nutrient

in humans (entirely derived from dietary consumption), ascorbic

acid levels reach steady state concentrations under fasting

conditions (approximately six hours following food consumption),

and they have been found to be relatively stable within individuals

across time and to predict long-term health outcomes up to 12

years later [90,91,92]. Because of this, and in order to limit the

problem of multiple hypothesis testing by examining oxidative by-

products and anti-oxidants separately, we a priori defined

‘‘oxidative stress’’ as the ratio of F2-isoprostanes [93,94,95] (a

class of major oxidative by-products) to ascorbic acid [89,96]. In a

prior study from our group, the ratio of oxidative by-products to

anti-oxidants was found to be inversely correlated with leukocyte

telomere length in stressed caregivers [58].

F2-isoprostanes (a collection of isomers) were measured by Dr.

Jason Morrow’s Lab at Vanderbilt University by gas chromatog-

raphy-mass spectrometry (GC-MS) as described previously.

[97,98]. The isoprostanes were extracted and purified with solid

phase extraction and thin layer liquid chromatography and then

converted to trimethylsilyl ether derivatives and analyzed by GC-

MS. Ascorbic acid was measured by Kronos Science Laboratory

using high performance liquid chromatagraphy (HPLC) method as

described previously [99]. Briefly, the serum sample was preserved

by adding an equal volume of metaphosphoric acid and treated

with dithiothreitol The resulting supernatant was injected into the

HPLC system equipped with diode array detector (DAD). The

separation was carried out using a 25064.6 mm Capcell Pak NH2

column (Shiseido, Tokyo, Japan) with a flow rate of 1 mL/min of

the mobile phases consisted of 10 mM ammonium acetate at

pH 4.2 and methanol. Ascorbic acid was quantified using external

standards with UV spectrophotometric detection at 243 nm

wavelength.

IL-6. Samples were collected in 10 ml serum separator tubes

(SST) tubes (Becton Dickinson, Franklin Lakes, NJ). Serum was

frozen and stored at – 80 C. A high sensitivity enzyme-linked
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immunosorbent assay was used to quantify IL-6 concentrations

(R&D Systems, Minneapolis, MN). The assay sensitivity is ,0.1

pg/ml, and average intra- and inter-assay coefficients of variation

are 7% and 8% respectively. Each sample was analyzed in

duplicate according to manufacturer protocol. IL-6 assays were

performed in the lab of Dr. Firdaus Dhabhar at Stanford

University.

Statistical Methods
We first assessed the impact of age, sex, body-mass index (BMI),

and lifetime and current tobacco use as potential confounds; we

found significant effects of age and sex on telomere length, and

significant effects of age and BMI on IL-6 (data presented below).

Lifetime and current tobacco use were not significantly related to

any of these variables. Consequently, all analyses were controlled

for age and sex, and analyses involving IL-6 were additionally

controlled for BMI. Before analyzing the data, distributions were

examined for normality; non-normal distributions were natural log

transformed (Ln).

Between-group comparison of the demographic variables was

by independent sample t-tests, Chi square tests and independent

sample Kruskal-Wallis tests. Independent sample tests, rather than

paired sample tests, were used, since the absence of blood data in

one control subject (described above) resulted in unequal group

sizes. Other between-group data, when covariates were applied,

were analyzed by analysis of covariance (ANCOVA). Correlations

between variables were assessed by linear regression, or by

hierarchical linear regression, with age and sex (and BMI, in the

case of IL-6) entered first. All tests were 2-tailed with an alpha =

0.05.

Results

Demographics
The mean age of the depressed and control subjects did not

significantly differ (36.6611.8 [SD] vs. 36.8611.0 years [range

25–69 years], respectively), nor did the sex distribution (65%

female in each group), ethnicity distribution or body-mass index

(24.863.7 vs. 26.265.7 [kg/m(2)], respectively). The subject

groups also did not significantly differ in current and past alcohol

and nicotine consumption, marital status, highest educational level

attained or self-rated socioeconomic status [100], although mean

household income was significantly lower in the depressed subjects

than in the controls (t = 2.59, p,0.02, df = 32). Household income

was not significantly correlated with leukocyte telomere length (r =

0.13, ns, df = 25), IL-6 concentrations (r = 0.01, ns, df = 28) or the

oxidative stress ratio (r = 20.17, ns, df = 27). In addition, average

activity (exercise) levels per month, as measured by the Yale

Physical Activity Survey (YPAS) [101], were significantly lower in

the depressed sample than in the controls (t = 2.88, p,0.01), but

activity level was not significantly correlated with leukocyte

telomere length (r = 0.19, ns, df), IL-6 concentrations

(r = 20.01, ns, df) or the oxidative stress ratio (r = 20.09, ns,

df). The mean 17-item Hamilton Depression Rating Scale (HDRS)

[81] rating in the depressed subjects was 19.363.9 (range 17–26),

and the mean chronicity of depression (i.e., lifetime months of

depression) was 156.56134.8 months (range 9.3–425.8 months).

The mean length of the current episode of depression was

125.16158.0 months (range 1.7–425.8 months). Demographic

characteristics of the subjects are provided in Table 1.

Telomere Length
Overall, leukocyte telomere length (in bp) was not significantly

different in the depressed subjects compared to the controls (mean

6 SD: depressed: 51016425 bp, vs. controls: 51416282 bp;

difference = 40 bp) (F = 0.17, ns [p = 0.66], controlling for age

and sex). The small average difference between the groups is

roughly equal to one year of accelerated aging at the level of the

leukocyte, assuming an average yearly attrition of 31–66 bp [58],

and given the measurement variance, this is not a meaningful

difference. We had predicted that not all depressed subjects would

be equally likely to show shortened telomeres, since the lifetime

exposure to depression varied greatly between subjects, and since

telomere length is believed to reflect cumulative history of cellular

reproduction and of exposure to cytotoxic stimuli such as

oxidation and inflammation and to stress. Therefore, as an a priori

planned comparison, we examined telomere length within the

depressed group as a function of cumulative lifetime duration of

depression, corrected for age and sex. Next, as a secondary

(exploratory) test of our hypothesis, we dichotomized lifetime

exposure to depression into a categorical independent variable,

comparing the control subjects (N = 17) to the depressed subjects

in the highest half of lifetime depression duration (n = 9), while

controlling for age and sex. Telomere length within the entire

depressed group was significantly inversely correlated with lifetime

depression duration (controlling for age and sex); individuals with

greater lifetime duration of major depression had significantly

shorter telomeres (F = 4.70, p,0.05) (Fig. 1). This relationship

remained statistically significant when lifetime and current tobacco

use and BMI were additionally controlled. When depressed

individuals in the upper half of lifetime exposure to depression

($9.2 years cumulative duration, n = 10) were compared to

controls, significant differences in telomere length were observed

(controls: 51416282 bp vs. depressed: 48606349 bp; difference =

Table 1. Characteristics of Depressed and Control Subjects.

Controls
n = 17

Depressed
n = 18 p

Age (Years) 36.6611.8 36.8611.0 ns

Sex (Female, %) 65% 67% ns

Ethnicity (%)
Caucasian
African-American
Asian
Other or Mixed

71%
18%
6%
5%

72%
17%
6%
5%

ns

Body-Mass Index (kg/m[2]) 24.863.7 26.365.9 ns

No Tobacco Ever (%) 59% 67% ns

Current Tobacco Use (%)
None
Sometimes
Daily

82%
12%
6%

83%
17%
0%

ns

Subjective Socio-economic
Status1

6.4561.13 5.7561.60 ns

Years of Education 15.8262.28 15.2862.06 ns

Annual Household Income
($)

$59,7756$32,550 $29,2256$26,005 ,0.02

Physical Activity Level2 3.1160.90 2.1061.26 ,0.01

1Subjective socioeconomic status was measured using a 10-rung ladder version
of the MacArthur Scale of Subjective Social Status [100], with higher numbers
equaling higher perceived socioeconomic status.

2Physical Activity Level was measured with the Yale Physical Activity Survey
(YPAS) [101]. On this scale, 1 = ‘‘not very active;’’ 2 = ‘‘weekend/vacations
only;’’ 3 = ‘‘more than 1–2 times per week;’’ 4 = ‘‘more than 3 times per week.’’
Other measures on the YPAS, such as ‘‘Vigorous Activity’’ and ‘‘Duration of
Vigorous Activity’’ yielded similar differences between groups.

doi:10.1371/journal.pone.0017837.t001
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281 bp; F = 2.87, p = 0.05, controlling for age and sex). This

difference also remained significant when lifetime and current

tobacco use and BMI were controlled. This difference in mean

telomere length (around 280 bp) is equivalent to approximately 7

years of ‘‘accelerated aging’’ at the level of the leukocyte. The fact

that this difference is significant after controlling for age suggests

that greater lifetime duration of depression was not simply a proxy

for older age, which is also associated with shorter telomeres.

In an exploratory analyses, we also assessed the relationship of

telomere length to the duration of the current major depressive

episode. The correlation was in the expected direction (with longer

episode duration associated with shorter telomeres), but this missed

statistical significance (r = 20.44, p,0.09, controlling for age and

sex). We also examined the relationship of telomere length to

HDRS ratings and found no significant correlation (r = 20.10,

p,0.80, controlling for age and sex). We also examined the

impact of antidepressant treatment on the relationship between

lifetime duration of depression and telomere length. Lifetime

exposure to untreated depression remained significantly inversely

correlated with telomere length (F = 3.62, p,0.05), but lifetime

exposure to depression while receiving antidepressants was not

(F = 2.50, p = 0.11). The latter relationship must be interpreted

cautiously, however, since the lengths of time subjects had

remained depressed while receiving antidepressant medication

spanned a relatively short range (range: 0 to 31.2 months).

Relationship of Telomere Length to Age and Sex by
Diagnosis

PBMC telomere length was significantly and inversely correlat-

ed with age (independently of sex) in the combined subject group

(r = 20.36, p,0.05) and within the MDD group alone (r = 20.58,

p = 0.01) but not within the control group alone (r = 20.07, p =

0.79). Male, as opposed to female, gender was associated with

significantly longer PBMC telomere length (independently of age)

in the combined subject group (t = 2.09, p,0.05) and within the

control group alone (t = 2.27, p,0.05) but not within the MDD

group alone (t = 1.06, p = 0.30).

Oxidative Stress and Inflammation
There were no significant between-group differences in

measures of oxidative stress (F2-isoprostanes/Vit. C ratio)

(depressed: 0.01460.015; controls: 0.01060.010; F = 0.50, ns)

or inflammation (IL-6) (depressed: 0.8460.82 pg/ml; controls:

0.7360.37 pg/ml; F = 0.01, ns). Further, there were no significant

correlations between lifetime depression duration (controlling for

age and sex) and either the oxidative stress ratio (r = 20.07, ns) or

IL-6 (r = 20.10, ns).

Relationship of Telomere Length to Oxidative Stress and
Inflammation

In the combined sample (depressed plus control subjects), the

oxidative stress ratio (F2-isoprostanes/Vitamin C) was significantly

inversely correlated with telomere length (F = 8.21, p,0.001,

controlling for age and sex) (Fig. 2). This relationship remained

significant in the separate depressed (F = 6.04, p,0.01) and

control groups (F = 4.38, p,0.05). Considering the components of

this ratio separately, Vitamin C concentrations were significantly

positively correlated with telomere length in the combined sample

(F = 4.72, p,0.01) as well as in the individual depressed (F = 5.85,

p,0.01) and control samples (F = 4.04, p,0.05) (all controlled for

age and sex). F2-isoprostane concentrations were significantly

negatively correlated with telomere length in the combined sample

(F = 4.78, p,0.01, controlling for age and sex), but this

relationship was only marginally significant in the separate

Figure 1. Relationship between cumulative lifetime duration of
depression and leukocyte telomere length (in base pairs, bp).
(F = 4.70, p,0.05, controlling for age and sex by hierarchical linear
regression).
doi:10.1371/journal.pone.0017837.g001

Figure 2. Relationship between the oxidative stress ratio (F-2
isoprostanes/Vitamin C concentrations, Ln transformed) and
leukocyte telomere length (in base pairs, bp). Filled circles
represent depressed subjects (‘‘MDD’’) (F = 6.04, p,0.01, controlling for
age and sex), and open squares represent controls (‘‘Cont’’) (F = 4.38,
p,0.05, controlling for age and sex). In the combined sample
(depressed plus controls), the relationship was also statistically
significant (F = 8.21, p,0.001, controlling for age and sex).
doi:10.1371/journal.pone.0017837.g002
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depressed (F = 2.59, p,0.10) and control groups (F = 2.31, p =

0.13) due to low statistical power. IL-6 concentrations were

significantly inversely correlated with telomere length in the

depressed group (F = 3.29, p,0.05, controlling for age, sex and

BMI) (Fig. 3), but not in the control group (F = 2.28, p = 0.13). In

the combined sample, this relationship approached statistical

significance (F = 2.45, p = 0.07, controlling for age, sex and BMI).

After controlling for lifetime duration of depression, the relation-

ships between the oxidative stress ratio and IL-6 concentrations

and telomere length remained significant (F = 4.91, p,0.02, and

F = 3.46, p,0.05, respectively).

Discussion

Across a broad range of depressive chronicity, depressed

individuals did not significantly differ from controls in leukocyte

telomere lengths. However, individuals with more chronic courses

of major depression had significantly shorter leukocyte telomeres

than healthy controls, suggesting this may be a cumulative marker

of chronic depression. Importantly, the relationship between

telomere length and lifetime duration of depression was significant

after age was controlled, indicating that longer exposure to

depression was not simply a proxy for more advanced age, which

is also associated with telomere shortening. Since telomere length

has been proposed as a biomarker of cell aging and a predictor of

health and longevity [38,41,42,46,47], this finding may underlie

some of the excess medical morbidity and premature mortality

seen in chronically depressed populations [1,2,3,4,5,6,7,8,9,10,11].

Depressed individuals with less chronic courses, however, showed

no significant differences in telomere length, compared to controls.

This argues against short telomeres representing a pre-existing risk

factor for, or an invariant concomitant of, major depression.

Rather, it suggests that telomere shortening may progress with

longer exposure to depression. Prospective studies will be needed

to explore this as well as the question of whether antidepressant

treatment can attenuate this shortening.

Our finding that telomere shortening is directly related to the

chronicity of depression exposure is similar to the finding of Epel

et al. in caregivers [58]. Although there are clear differences

between major depression and psychological stress, they, too,

found that telomere shortening was directly correlated with the

chronicity of caregiver stress, The study of affectively ill subjects by

Simon et al. [55] found a significant shortening of telomere length

in their whole affectively ill sample rather than in just a chronic

subgroup, as we did. However, it is important to note that the

average lifetime duration of affective illness in their depressed

sample was 31.8 611.2 years, compared to the average lifetime

duration of 13.0611.2 years in our sample. Accordingly, the

estimate of accelerated aging in our more chronically depressed

individuals is in line with the data from that study. One other study

of telomere length in MDD did not state the chronicity of its

sample [60]. The only prior study that did examine leukocyte

telomere length as a function of lifetime depression did not find a

significant relationship [61], but those data may not be

comparable to ours, since they did not exclude periods of time

during which subjects were not depressed that occurred after the

first onset of MDD, and since medical illnesses and various

neuropsychiatric conditions were not excluded [61].

The degree of telomere shortening we observed in the more

chronically depressed individuals (those above the median of

chronicity) corresponds to approximately seven years of ‘‘acceler-

ated cell aging.’’ This degree of ‘‘acceleration,’’ accords fairly well

with that described in stressed maternal caregivers (9–17 years)

[58], in combined spousal and offspring caregivers (4–8 years)

[59], and in depressed/affectively ill individuals (6 to 10+ years)

[55,61], assuming an average annual rate of telomere bp attrition

of 31–66 (although some estimates suggest annual attrition rates of

only 19–25 bp [59,61]). While shortened telomere length in

chronic depression is consistent with findings in other chronically

stressed and depressed populations [55,58,59,61,102], this mea-

sure is not specific to chronic stress or depression and thus is not

useful as a specific diagnostic ‘‘biomarker.’’

While the mediating biochemical factors responsible for telomere

shortening in chronic depression cannot be adequately assessed in a

cross-sectional study, our findings of significant inverse correlations

between telomere length and oxidative and inflammatory stress in

the depressed subjects raise the possibility that these biochemical

stressors contribute to telomere shortening in chronic depression.

However, the direction of causality is not fully clear, as cells with

shortened telomeres hyper-secrete pro-inflammatory cytokines

[28,103]. We found that oxidative stress was inversely correlated

with telomere length in the depressed subjects and the controls,

consistent with the reported shortening effect of oxidation on

telomeres [36,37,38,57,104]. IL-6 concentrations were inversely

correlated with telomere length in the depressed subjects but not in

the controls. The reasons for this difference are unknown. It may be

related to our small sample sizes, or to differences in specific

relationships between inflammatory and anti-inflammatory cyto-

kines in depressed individuals vs. controls [71]. The lack of

significant correlations between lifetime depression duration and

both the oxidative stress ratio and IL-6 does not argue against the

mechanistic hypothesis we put forward, since the hypothesis does

not require that oxidative stress and inflammation be progressive

across the life course of MDD. The lack of significant between-

group differences in oxidation and inflammation, measured cross-

sectionally, also does not argue against our mechanistic hypothesis.

Although speculative, it is possible that depressed individuals are

more sensitive to the telomere-shortening effects of oxidation and

Figure 3. Relationship between serum IL-6 concentrations (pg/
ml) and leukocyte telomere length (in base pairs, bp) in
depressed subjects. (F = 3.29, p,0.05, controlling for age, sex and
BMI). The relationship missed significance in the combined sample
(depressed plus controls) (F = 2.45, p = 0.07, controlling for age, sex and
BMI) and was not significant in the controls alone (not plotted) (F =
2.28, p = 0.13, controlling for age, sex and BMI).
doi:10.1371/journal.pone.0017837.g003
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inflammation due to some other biochemical ‘‘co-factor,’’ or due to

a lack of counter-regulatory anti-oxidant and anti-inflammatory

activities. Regarding the first possibility, emerging studies are

suggesting enhanced susceptibility of cells from depressed individ-

uals to apoptosis [105]. Regarding the second possibility, we and

others previously reported significantly low serum IL-10 levels in

MDD [71,106], along with an elevated IL-6/IL-10 ratio in MDD,

despite no significant elevations in serum IL-6 levels [71]. IL-10 is

an anti-inflammatory/immuno-regulatory cytokine, and data from

that study suggested a perturbed balance between pro- and anti-

inflammatory activity in MDD [71]. Similarly, studies have

previously shown not only increased oxidative activity in MDD,

but decreased counter-regulatory anti-oxidant activity [107,108,

109,110] in MDD.

Our findings, along with the literature reviewed below, suggest

that chronic inflammation and oxidation may be mechanisms by

which chronic depression can result in shortened telomeres.

Significant increases in oxidative stress [62,63,65,66,67] and

inflammatory stress [16,17,71,72,111,112] have been described in

many, but not all, studies of major depression. To the extent

oxidative and inflammatory stress are chronically increased in

depressed individuals, or to the extent depressed individuals are

more sensitive to such cytotoxic stimuli or have a compromised

ability to recover from oxidative or inflammatory damage, these

stressors could contribute to telomere shortening [113,114,115,

116]. Conversely, leukocyte telomere shortening, resulting in

immunosenescence and impaired leukocyte function, can lead to

increased inflammatory cytokine output [28] and to increased

oxidative stress [115], thus forming a vicious cycle [16]. The

significant correlations we observed between oxidative and

inflammatory stress and telomere length have not been previously

reported in individuals with MDD, but they are consistent with

relationships between oxidative and inflammatory stress and

telomere length in other populations. It is possible that leukocyte

telomere shortening occurs across conditions that are characterized

by chronic exposure to oxidation and/or inflammation or by

increased leukocyte turnover [49,58,59,117,118,119,120].

Limitations
The major strengths of the present study are the use of physically

healthy, well characterized, matched subjects, the prospective

recruitment, the assessment of important covariates such as BMI,

exercise and nicotine consumption, the exclusion of psychotropic

and other medications that might have influenced our results, the

assessment of depressive chronicity and the assessment of potential

biochemical mediators. The major limitations are the small sample

size, the use of self report to assess lifetime depression duration and

the lack of longitudinal data. While the failure to discern an overall

effect of depression (independent of chronicity) on telomere length

may be due to the lesser chronicity of our sample compared to others

[55], it is also possible that our small sample size lacked the statistical

power to detect the effect. The effect size (Cohen’s d) of telomere

differences in the study by Simon et al. [55] was 0.74, in the study by

Lung et al. [60] was 0.83, and in the study by Hartmann et al. [61]

was 0.59 (effect sizes calculated from published data). The sample

size used in the present study would have had between 40% –66%

power to detect effects of these magnitudes. Due to our small sample

size, especially the size of the sub-sample of depressed subjects with

more chronic depressions, our results should be considered

preliminary and in need of replication with a larger sample. There

are several additional caveats in interpreting our data. First, the

relationship between peripherally-measured inflammation and

oxidation and such processes in the central nervous system is

complex [121,122,123,124,125,126], and we make no extrapolation

of our results to CNS oxidation or inflammation. It should be noted,

however, that telomere length is reduced in hippocampal CA1

neurons in Alzheimer’s disease, and this has been postulated to

result, at least in part, from oxidative stress [127]. Second, it is not

known whether telomere length observed in leukocytes is related to

telomere length in other cell types or tissues [128], including the

central nervous system [129]. However, shortened telomeres in

peripheral blood leukocytes were significantly correlated with smaller

hippocampal volumes and with declining cognitive function among

participants in the Nurses’ Health Study [130]. The effects of

depression on telomere lengths of specific leukocyte subpopulations

and on specific tissues should be examined in future studies. Third, it

remains to be determined if our observed telomere length findings

represent changes on a per-cell basis or, rather, differences in the

relative proportions of circulating blood cell types, since subpopu-

lations of leukocytes (e.g., CD8+CD28- leukocytes) differ in average

telomere lengths [131]. It will be important in future studies to

determine which specific leukocyte subpopulations are mediating the

observed effects. Lastly, since childhood adversity (e.g., childhood

sexual abuse) is associated with shortened telomeres [132,133,134],

and since childhood adversity is more common in depressed

populations than in controls, such factors could have impacted our

data, independent of the effects of depression.
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