
Influence of Salinity on Bacterioplankton Communities
from the Brazilian Rain Forest to the Coastal Atlantic
Ocean
Cynthia B. Silveira1, Ricardo P. Vieira1, Alexander M. Cardoso3*, Rodolfo Paranhos2, Rodolpho M.

Albano4, Orlando B. Martins1

1 Instituto de Bioquı́mica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 2 Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de

Janeiro, Brazil, 3 Instituto Nacional de Metrologia Normalização e Qualidade Industrial, Rio de Janeiro, Brazil, 4 Departamento de Bioquı́mica, Universidade do Estado do

Rio de Janeiro, Rio de Janeiro, Brazil

Abstract

Background: Planktonic bacteria are recognized as important drivers of biogeochemical processes in all aquatic ecosystems,
however, the taxa that make up these communities are poorly known. The aim of this study was to investigate bacterial
communities in aquatic ecosystems at Ilha Grande, Rio de Janeiro, Brazil, a preserved insular environment of the Atlantic rain
forest and how they correlate with a salinity gradient going from terrestrial aquatic habitats to the coastal Atlantic Ocean.

Methodology/Principal Findings: We analyzed chemical and microbiological parameters of water samples and constructed
16S rRNA gene libraries of free living bacteria obtained at three marine (two coastal and one offshore) and three freshwater
(water spring, river, and mangrove) environments. A total of 836 sequences were analyzed by MOTHUR, yielding 269
freshwater and 219 marine operational taxonomic units (OTUs) grouped at 97% stringency. Richness and diversity indexes
indicated that freshwater environments were the most diverse, especially the water spring. The main bacterial group in
freshwater environments was Betaproteobacteria (43.5%), whereas Cyanobacteria (30.5%), Alphaproteobacteria (25.5%), and
Gammaproteobacteria (26.3%) dominated the marine ones. Venn diagram showed no overlap between marine and
freshwater OTUs at 97% stringency. LIBSHUFF statistics and PCA analysis revealed marked differences between the
freshwater and marine libraries suggesting the importance of salinity as a driver of community composition in this habitat.
The phylogenetic analysis of marine and freshwater libraries showed that the differences in community composition are
consistent.

Conclusions/Significance: Our data supports the notion that a divergent evolutionary scenario is driving community
composition in the studied habitats. This work also improves the comprehension of microbial community dynamics in
tropical waters and how they are structured in relation to physicochemical parameters. Furthermore, this paper reveals for
the first time the pristine bacterioplankton communities in a tropical island at the South Atlantic Ocean.
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Introduction

Microorganisms have large population sizes and show long-

distance dispersal, high reproductive rates and remarkable genetic

diversity, suggesting that they can cross environmental boundaries,

including salinity, more frequently than multicellular organisms

[1]. These particularities support the Baas-Becking hypothesis

formulated in 1934, summed up as follows: ‘‘Everything is

everywhere, but the environment selects’’ (revised by Hooper

et al. [2]). Although this seems logical and plausible, the clustering

test performed in silico by Lozupone and Knight [3] using

annotated sequences from 202 globally distributed natural

environments demonstrates that salinity is the major barrier to

microbial communities, showing a strong environment-specific

evolution between freshwater and marine bacteria.

Until the late 1980’s, fresh and salt water planktonic bacteria

were thought to be ecologically similar, despite minor differences

such as some biotic interactions within the food web and sodium

requirement. Salt-dependence in marine bacteria was not

considered a fundamental ecological difference and species

distribution and their physiology were thought to be similar to

freshwater bacteria [4].

Since molecular methods started to be applied to the study of

uncultivated microbial communities [5,6], knowledge of microbial

ecology in aquatic systems has been significantly increased [7–11].

The first difference seen in bacterial community composition in
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fresh and marine water was the dominance of b-Proteobacteria in the

former, in contrast to the dominance of a- and c- subdivisions of

Proteobacteria in the latter [12–14]. Most bacterial sequences

retrieved from freshwater environments were neither affiliated

with known bacterial species nor with soil and marine relatives but

clustered in a habitat-specific manner, leading to the conclusion

that these were typical freshwater bacteria. Interestingly, this

bacterial cluster presented a cosmopolitan distribution, including

habitats located in different climatic zones [15].

Estuarine waters are dynamic environments due to the mixing

of sediments, marine and freshwater, resulting in salinity and

nutrient gradients. Shifts in physical, chemical, and microbiolog-

ical properties between freshwater and adjacent coastal marine

environments occur in short periods of time, driven by tides and

freshwater flow, creating an intense abiotic pressure that influences

the composition of bacterioplankton communities [16]. The

presence and abundance of typical freshwater and marine

bacterial taxa are closely related with these gradients and also

with growth rates, viral lysis, predation, and retention times [17–

20]. Long-term adaptability to different salinity conditions is also

indicated by the ability of some organisms to occur in both marine

and freshwater habitats [21]. In spite of a number of published

studies of large estuaries and in silico comparisons between

freshwater and seawater bacterioplankton, very few concerned

South American tropical habitats.

The Atlantic rain forest, a species diversity hotspot [22–23],

represents a substantial contribution of organic and inorganic

material to the coastal waters of the Southwest Atlantic Ocean.

Bacteria and fungi from Atlantic forest habitats have been

analyzed mainly by culture-dependent methods [24–27]. By

means of 16S rRNA gene libraries, it has been estimated that

millions of new bacterial species exist in the Atlantic rain forest soil

and phyllosphere [28–29]. As most of the Brazilian population

lives in the coast, Atlantic forest habitats are greatly impacted by

human activities. The Atlantic rain forest extends along the

Brazilian coast from Rio Grande do Norte to Rio Grande do Sul

states and has been reduced to less than 8% of its range [30]. The

forest has a well-defined dry winter and rainy summers with high

precipitation levels, with a mean annual rainfall of 1368 mm [31]

that greatly increases river transport. This dynamic hydrology

sustains a great biodiversity of flora and fauna which characterizes

the Atlantic forest as a diversity hotspot [22–23].

One of the few protected areas of the Atlantic rain forest is Ilha

Grande island in Rio de Janeiro state, Brazil (Figure 1). Ilha

Grande has some coastal marine and freshwater sites that may be

considered as undisturbed. Based on the construction and analyses

of 16S rRNA gene libraries, we compared bacterioplankton

diversity in six representative habitats of Ilha Grande’s aquatic

ecosystems in the context of a salinity gradient. Here we present

results that corroborate the idea of divergent evolution and the

lack of transitions between marine and freshwater bacterial

communities.

Materials and Methods

Sampling
The six analysed sites, three freshwater and three marine, are shown

in Figure 1: FWS - a water spring (23u10957.000S/44u14955.190W);

FWR - Parnaioca river (23u11921.330S/44u15911.080W); SWP -

Parnaioca beach (23u11924.770S/44u15915.070W), just where Par-

naioca river flows into; FWM - a mangrove (23u10926.980S/

44u17908.490W) which, at the time of sampling, had the communi-

cation to the sea closed by a sand barrier; SWA - Aventureiros beach

(23u11924.530S/44u18958.060W); SWM - two milles west from Ilha

Grande island near Meros island (23u12953.670S/44u21955.030W).

Water samples (5.8 Liters) were collected at 1 m depth (except for the

water spring) on September 7, 2007 for DNA extraction and for abiotic

and microbiological characterization (100 mL). Samples were kept on

ice until processed in the laboratory.

Chemical and microbiological parameters
Chemical data were determined in triplicates by standard

oceanographic methods. Temperature, salinity, and pH were

determined at the moment of sample collection using a field

thermometer, a hand-held refractometer (Leica) and pH strips.

Ammonia was measured by the indophenol method [32], nitrite

by diazotation [33] and nitrate by reduction in a Cd-Cu column

followed by diazotation [33]. Total phosphorus was evaluated by

acid digestion to phosphate and silicate by reaction with molibdate

[33].

Bacterial abundance was determined by flow cytometry [34]

and bacterial production by 3H-leucine incorporation [35–37].

Specific production (SP) is an index calculated as the ratio

Microbial Production versus Microbial Abundance [38] that

allows comparisons of secondary productivity between environ-

ments with differences in prokaryotic counts.

DNA extraction
The water samples were filtered through 0.2 mm Sterivex filters

(Millipore, Bedford, MA, USA) after filtration through 3.0 mm to

separate free-living microbes from larger organisms and particles.

Total cellular nucleic acids were isolated by cell lysis with

proteinase K and SDS, followed by phenol-chloroform extraction

[39]. DNA integrity was checked on a 1% (w/v) agarose gel that

was subsequently stained with Syber Green (FMC Bioproducts,

Rockland, ME, USA) and the gel image was digitalized with

Storm Image Scanner (GE Healthcare, Little Chalfont, UK).

Bacterial 16S rRNA gene library construction
PCR was performed in 50 ml reaction mixtures (2.5 mM

MgCl2, 0.2 mM deoxynucleoside triphosphates, 1 ng of each

primer.ml21, 2.5 U of High Fidelity Taq DNA polymerase

[Promega], 16 PCR buffer and 200 ng of each environmental

DNA sample, using the universal bacterial primers 27BF (59-

AGAGTTTGATCCTGGCTCAG-39) [40] and 907RAB (59-

TTTGAGTTT MCTTAACTGCC-39) [41]. PCR amplification

began with a 5 min denaturing step at 94uC; this was followed by

25 cycles of 94uC for 90 seconds, 50uC for 90 seconds, and 72uC
for 2 min. The final cycle was an extension at 72uC for 5 min.

PCR products were concentrated and purified with a GFx PCR

DNA and Gel Band Purification Kit (GE Healthcare) after

electrophoresis on a 1% (w/v) agarose gel. PCR products were

cloned into the pGEM-T cloning vector (Promega) and used to

transform competent E. coli DH10B cells. Positive colonies for the

blue-white colony screen used for this vector were picked and

frozen at 270uC. Six 16S rRNA gene libraries were constructed

from different environmental DNA samples.

Sequence analyses and taxa identification
Approximately 192 clones from each clone library were

submitted to sequence analysis. Plasmidial DNA from each clone

(400 ng) was prepared and PCR-sequencing reactions with primer

27BF were carried out using the DYEnamic ET terminator cycle-

sequencing kit (GE Healthcare). Partial 16S rRNA sequences were

obtained by capillary electrophoresis on a MegaBace1000 DNA

analysis system (GE Healthcare). Chromatograms were trans-

formed into Fasta format with Phred software [42] and sequences
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with less than 300 bp and chimeras were removed prior to further

analysis using MOTHUR. A total of 831 valid sequences with

approximately 642 bp were compared with sequences in the

Ribosomal Database Project II [43]. Sequences were also analyzed

by BLAST [44] searches in GenBank database (http://www.ncbi.

nlm.nih.gov) and were aligned with representative bacterial

sequences obtained from the public databases using ClustalX

software [45]. The partial 16S rRNA gene sequences generated in

this study have been deposited in GenBank under accession

numbers FJ717864-FJ718690. All submissions conform to the

‘‘Minimum information standards’’ recommended by the Geno-

mic Standards Consortium [46].

Biodiversity and phylogenetic analyses
Re-sampling and adjustment of the total number of sequence

reads to identical sequencing depth was done before analysis [47].

Sequences were clustered as OTUs at an overlap identity cutoff of

97% or 80% by MOTHUR software [48]. Richness and diversity

statistics including the nonparametric richness estimators ACE,

Chao1 and the Shannon diversity index were calculated. The

diversity of OTUs and community overlap were also examined

using rarefaction analysis and Venn diagrams. Phylogenetic trees

were constructed for marine and freshwater libraries with

reference sequences from GenBank by the neighbor-joining

algorithm based on distances calculated by the Kimura-2 method.

This analysis was performed with the MEGA4 program [49] and

bootstrap analysis with 1000 replications was used. Tree topology

and distribution of hits along the tree were uploaded to the

UniFrac computational platform [3,50]. UniFrac is a beta

diversity metric analysis that quantifies community similarity

based on phylogenetic relatedness. In order to visualize distribu-

tion patterns of bacterial communities we used the UniFrac metric

to perform PCA highlighted by significance. Libraries were sub-

sampled randomly to test the consistency of the results.

Statistical comparison between 16S rRNA libraries
In an attempt to determine the differences between clone

libraries, we applied LIBSHUFF statistics [51] that uses Monte

Carlo methods to generate homologous and heterologous

coverage curves. Sequences were randomly shuffled 999 times

between samples prior to the distance between the curves being

calculated using the Cramér-von Mise statistic test. The

DNADIST program of the PHYLIP package, using the Jukes-

Cantor model for nucleotide substitution was used to generate the

distance matrix analyzed by LIBSHUFF.

Results

Abiotic and microbiological parameters
Abiotic and microbiological parameters from each sampling site

are shown in Table 1. Temperatures varied from 22 to 28uC. The

low salinity found at Parnaioca beach (SWP) is explained by the

Figure 1. Map of the studied site and the six sampled locations. FWS – Parnaioca freshwater spring; FWP – Parnaioca river; FWM – mangrove;
SWP – Parnaioca beach; SWA – Aventureiros beach; SWM – seawater near Meros island.
doi:10.1371/journal.pone.0017789.g001
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input of freshwater from Parnaioca River to this site. In the same

way, salinity in the mangrove (FWM) was typical of a freshwater

environment due to strong rainfall that fell a few days before

sampling which increased river input and blocked the communi-

cation of the mangrove with the sea by a sand barrier. For further

analysis, the water spring, river and mangrove habitats were

considered as freshwater environments, and Parnaioca, Aventure-

iros beach and Meros Island as marine environments. All are

representative samples of the dynamic environmental conditions

which characterize the Atlantic rain forest. Analysis of nitroge-

nated compounds showed the highest ammonia concentration at

the mangrove site, FWM, while nitrate was the main compound in

Parnaioca river, FWP. Nitrite concentrations ranged between 0.33

and 0.54 mM and silicate concentrations reached high values in

the mangrove. Freshwater samples were more acidic than marine

ones, with pH values ranging from 5.5 to 6.5 (Table 1).

Prokaryotic counts were in the range of 106 cells per mL, being

most abundant in the mangrove. Bacterial production values,

which mean the heterotrophic activity, varied from 0.26 to

3.44 mg C.L21.h21. Although the highest heterotrophic activity

was found in the mangrove, the bacterial production versus

bacterial counts ratio (specific productivity - SP) was higher in the

river. Marine samples presented SP values varying from 2.88 to

3.54 ag C.cell21h21 (Table 1).

Clone library coverage, richness and diversity
The number of OTUs from each site as well as richness and

diversity indexes calculated by MOTHUR [48] are shown in

Table 2. The coverage of each library was calculated using the

abundance-based coverage estimator (ACE). We also grouped

freshwater (FWS, FWR, FWM) and marine sites (SWP, SWA,

SWM) to perform these calculations. In order to account for

uneven sampling efforts, the same number of sequences was

randomly selected from each sample. The Parnaioca water spring,

FWS, library had higher richness based on ACE, Chao1 and H9.

Parnaioca river, the mangrove and Meros island libraries had the

lowest richness values, but the H9 values were not far from the

other libraries. Although no major differences among marine

samples were found, SWP was the richest sample. Interestingly,

the comparison between marine and freshwater libraries showed

that, at 97% similarity level, bacterial richness and diversity of

fresh and seawater communities are similar.

All rarefaction curves at a high cutoff phylogeny resolution

(97%) show that the diversity is very high and the total coverage of

bacterial richness was not achieved. A decline in the rate of OTU

detection at 80% cutoff indicates that the most dominant bacterial

phyla have been detected for freshwater and marine samples.

Rarefaction analysis at this cut-off revealed that freshwater

environments were more diverse than marine ones, as well as at

97% cutoff (Figure 2). Additionally, Venn diagram shows that no

OTUs are shared between fresh and marine water samples at

species level (97%) indicating that the bacterial communities are

completely different in these two kinds of environment.

Bacterial Groups
In order to reveal bacterial phyla composition in such diverse

communities, sequences from each library were classified with the

RPD classifier tool (http://rdp.cme.msu.edu/classifier). Marine

samples showed a higher abundance of Cyanobacteria, Alphaproteo-

bacteria while freshwater samples were dominated by Betaproteo-

bacteria (Figure 3). Gammaproteobacteria were found mainly in the

river (FWP) and Meros island (SWM) sites. A minor proportion of

Deltaproteobacteria was observed in the FWP and mangrove (FWM)

libraries. Actinobacteria were seen only in the river and mangrove

environments, being more abundant in the latter one. Bacteroidetes

were present in all the sites, except at the water spring. The newly

described group OD1 was only found at the water spring and

mangrove sites. A greater percentage of unclassified sequences

were found in marine samples. Freshwater samples were richer at

the phylum level than marine ones, with nine and four phyla

represented, respectively.

Phylogenetic Analysis
The phylogenetic tree allowed us to recognize the bacterial

phylotypes that compose the groups listed above (Figure 4). The

Table 1. Abiotic and microbiological parameters.

FRESHWATER SEAWATER

FWS FWP FWM SWP SWA SWM

aSal (S) 0.09 0.83 0.73 26.67 33.64 32.63

bT (6C) 22 22 28 25 25 26

cTP (mM) 0.54 0.22 0.78 0.32 0.49 0.33

dNH3 (mM) 0.48 1.11 7.17 1.40 0.90 0.73

eNO2
2 (mM) 0.44 0.33 0.54 0.39 0.38 0.41

fNO3
2 (mM) 1.80 8.20 nd 0.95 0.90 0.73

gSiO2 (mM) 20.45 28.03 44.98 22.85 2.44 1.53

pH 5.5 5.5 6.5 7.0 7.5 7.0

hMA (106cells.mL21) 0.15 0.23 1.36 0.30 0.26 0.12

iMP (mg C.L21.h21) 0.26 1.97 3.44 1.08 0.76 0.44

jSP (fg C.cell21.h21) 1.69 8.51 2.53 3.54 2.88 3.43

aSal, salinity;
bT, temperature;
cTP, total phosphorous;
dNH3, ammonia;
eNO2

2, nitrite;
fNO3

2, nitrate;
gSiO2, silicon;
hMA, microbial abundance;
iMP, microbial production; and
jSP, specific production.
FWS – Parnaioca freshwater spring; FWP – Parnaioca river; FWM – mangrove;
SWP – Parnaioca beach; SWA – Aventureiros beach; SWM – seawater near
Meros island.
doi:10.1371/journal.pone.0017789.t001

Table 2. Species richness estimates and diversity of 16S rRNA
gene sequences as determined by MOTHUR software.

FRESHWATER SEAWATER

FW FWS FWP FWM SW SWP SWA SWM

aOTUs 269 89 56 58 219 90 63 57

bACE 2457 1024 184 101 762 233 187 296

Chao1 1018 564 130 85 543 220 134 252

cH9 5.33 4.43 3.72 3.83 5.07 4.42 3.90 3.69

aNumber of unique OTUs defined by using the furthest neighbor algorithm in
MOTHUR at 97% similarity.

bAbundance based coverage estimator (ACE).
cShannon-weaver index of diversity (H9).
FWS – Parnaioca freshwater spring; FWP – Parnaioca river; FWM – mangrove;
SWP – Parnaioca beach; SWA – Aventureiros beach; SWM – seawater near
Meros island. FW and SW were calculated by merging the respective libraries.
doi:10.1371/journal.pone.0017789.t002
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tree shows that most of our sequences were affiliated to

environmental uncultured bacterial species. In freshwater samples,

Betaproteobacteria sequences were affiliated to uncultured bacteria

from lakes, freshwater ponds, aquifers, rivers, and subsurface

freshwater. A great number of sequences from the river site were

closely related to Acidovorax sp. The Acinetobacter was the most

represented group among Gammaproteobacteria. Members of Bacter-

oidetes were not found in the water spring while they occurred in

high percentage in the mangrove and river sites. Among all

freshwater sequences, only two mangrove clones fell into the

Alphaproteobacteria clade, being related to Rhodobacteriaceae retrieved

from a Taiwan mangrove and river sediments, and two other

OTUs fell into the Deltaproteobacteria group. At the mangrove,

Actinobacteria were mainly represented by Microbacteriaceae. Addi-

tionally, in the mangrove and river libraries we found members of

the recently proposed OD1 group, affiliated with a eutrophic lake

bacterium. The Cyanobacteria found in the mangrove were related

to marine species, different from those of the water spring site

which were more related to drinking water system bacteria.

Phylogenetic analysis of the marine libraries revealed that

Cyanobacteria were well represented by Prochlorococcus and Syneccho-

cocus, which is expected for coastal marine samples. Sequences

from marine samples were mainly represented by Alphaproteobac-

teria. In this group, a representative clade with OTUs related to

Figure 2. Rarefaction analysis of 16S rDNA clone libraries from Ilha Grande using a distance level of 80% (A, B and E) and 97% (C, D
and F). In A and B or C and D each freshwater or marine water libraries are plotted, respectively. In E and F the three samples of seawater and the
three samples of the freshwater were joined. FWS – Parnaioca freshwater spring; FWP – Parnaioca river; FWM – mangrove; SWP – Parnaioca beach;
SWA – Aventureiros beach; SWM – seawater near Meros island.
doi:10.1371/journal.pone.0017789.g002
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uncultured bacteria from Chesapeake Bay (USA), Mallorca Island

(Spain), and Guanabara Bay (Brazil) and other clades with OTUs

related to genera commonly found in marine waters, like

Roseobacter and Ruegeria, were observed. The distribution of OTUs

within Gammaproteobacteria followed this pattern, with a represen-

tative clade formed by uncultured bacteria from marine samples

and by Neptuniibacter and Oceanospirillum species and another clade

related to Alteromonas.

Library Comparison
The comparison by LIBSHUFF statistics revealed that bacterial

community composition differed significantly between marine and

freshwater sampling sites. We obtained p,0.0001 for the

comparisons of each marine library to each freshwater ones and

also for the comparison of all marine sequences against all

freshwater ones. Nevertheless, freshwater libraries were different

among themselves whereas marine libraries were statistically

similar (p = 0.0003 for the comparison between Parnaioca and

Aventureiros, p = 0.0004 for Parnaioca and Meros, and p = 0.1718

for Aventureiros and Meros).

Through a scatter plot of the first two principal coordinates by

the UniFrac analysis (Figure 5), PC1 and PC2 explained 9.5% and

7.4% of the data variation, respectively. The randomly construct-

ed sub-libraries were grouped according to the original libraries.

Marine libraries were separated from freshwater ones in the plot

by PC1. The three marine libraries grouped together showing a

high similarity with each other, whereas freshwater samples were

dispersed in the plot and seem to be different among them.

Additionally, the mangrove FWM clustered between freshwater

and marine samples along the PC1 axis, which divides saline and

other freshwater environments. This result corroborates the

LIBSHUFF analysis, wherein only marine libraries reached high

p values.

Discussion

In this work we investigated for the first time the bacterio-

plankton diversity in the tropical island, Ilha Grande. This

environment suffers very low anthropogenic impact and is located

in the Brazilian coast at the South Atlantic Ocean. The differences

found in community composition add new knowledge to

planktonic bacteria distribution in freshwater and coastal marine

ecosystems.

Many abiotic parameters, such as nutrient concentration and

organic matter, are thought to influence the composition of

natural bacterioplankton communities [52–53]. In the same

manner, autochthonous biological activity can modify water

chemical features [54]. In this study, nutrient concentrations in

marine samples were similar to Sepetiba Bay values but lower than

in the highly eutrophic Guanabara Bay [55,39]. Both are

economically important water bodies which lie geographically

close to Ilha Grande. In the mangrove environment, high bacterial

production contrasts with low specific productivity. A possible

explanation is that many marine cells that entered into the

mangrove are not active anymore because of the change in

salinity. In opposition, the river community, that reached higher

specific productivity values, seems to be a well-adapted commu-

nity, which probably has a large supply of oxygen available for

aerobic metabolism. In estuaries, shifts in bacterioplankton

community composition along salinity gradients are related to

residence and community doubling times [16,18]. Specific

productivity and bacterial abundance estimates allow microbial

communities to be compared and can be used to measure the

metabolic status of the planktonic microbes [38]. A particular

estuarine community is formed in intermediate salinities when

average metabolic status and, consequently, the doubling times are

shorter than residence times. Although specific productivity values

for Parnaioca river and all marine samples are around one order

of magnitude higher when compared to a previous study in

Guanabara bay, an urban, pollution impacted Brazilian bay [56],

there is no water residence time as the river water flows directly

into the sea without a transition area, causing an abrupt change in

salinity, and giving no time for the development of local bacterial

species. The consequence is a complete shift in community

composition when Parnaioca river and Parnaioca beach are

compared, despite the close proximity (50 m) of these two sites.

Typical marine clades, such as Cyanobacteria and the Alpha and

Gamma subdivisions of Proteobacteria were more represented in

marine coastal and open-sea samples, not just in our data but also

in the literature [16,57]. However, in contrast to previous studies

that found a low relative abundance of phototrophic Cyanobacteria

compared to heterotrophic bacteria [58–59], members of

Synechococcus and Prochlorococcus were one of the most abundant

groups in Ilha Grande marine samples.

The most abundant group in water spring, river, and mangrove

sites were the Betaproteobacteria, a typical freshwater clade [12] that

was not recorded in marine samples. Recovery of 16S rRNA gene

clones affiliated to Betaproteobacteria is common in libraries

constructed from coastal samples, but few to no Betaproteobacteria

have been reported by open ocean surveys [16,57,60–62]. These

findings lead to the idea that bacterioplankton represented by

these lineages have a probable freshwater origin and are adapted

Figure 3. Distribution of sequences in bacterial phyla classified by the Classifier tool at RDP Database. Clones from freshwater libraries
are shown in A and from seawater are shown in B. FWS – Parnaioca freshwater spring; FWP – Parnaioca river; FWM – mangrove; SWP – Parnaioca
beach; SWA – Aventureiros beach; SWM – seawater near Meros island.
doi:10.1371/journal.pone.0017789.g003
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to coastal marine environments and could be representative of

bacterioplanckton phylotypes that transit between freshwater and

marine habitats [63]. However, the present data clearly do not

support this proposal, since no Betaproteobacteria was retrieved from

our marine libraries.

The Gammaproteobacteria and Bacteroidetes clades were well

represented in both saline and freshwater environments. This

might be a consequence of the presence of closely related marine

phylotypes of common freshwater taxa [59]. In fact, the bacterial

phylotypes belonging to these two clades encompass distantly

related organisms in freshwater and marine samples, as seen in the

phylogenetic trees, indicating an evolutionary separation between

these marine and freshwater lineages [1]. In the marine sites,

several Gammaproteobacteria and Bacteroidetes related OTUs were

affiliated to sequences from marine habitats of different geographic

areas, indicating that these are worldwide distributed bacteria.

Our data show a strong spatial heterogeneity of bacterial

community composition in Ilha Grande. Most libraries, except

when the three marine libraries are compared among themselves,

are statistically different to each other. This most likely reflects the

remarkable abiotic differences of these environments, especially

salinity. This was also observed by Vieira et al [56] in Guanabara

Bay, but contrasts to the results found for Chesapeake Bay (USA),

where only temporal variation was significant [64]. The water

spring is an interesting case, as it is highly different from the other

environments, including other freshwater habitats. This may be

explained by a strong influence of soil, plant-associated and

underground water bacterial communities.

As seen by Lozupone [3], our data showed a clear separation

between freshwater and marine libraries. The PC1 axis repre-

sented the saline barrier which segregates marine and freshwater

bacterial communities. In fact, salinity is pointed out as the major

environmental determinant of aquatic microbial community

composition, rather than extremes of temperature, pH, or other

physical and chemical factors by the global pattern of the bacterial

diversity [3]. Recently, deep evolutionary divergence between

marine and freshwater SAR11 lineages was seen not only by

means of 16S phylogenetic constructions and Unifrac analysis, but

also by Fragment Recruitment Analysis using metagenomic

Figure 4. Phylogenetic tree of bacterial clones obtained in the
freshwater or seawater locations. Reference sequences from
GenBank (in bold). OTUs were defined by using a distance level of
3% by using the furthest neighbor algorithm in MOTHUR. One access
number from each OTU is displayed. The tree topology is based on
neighbor joining and bootstrap analysis was performed with 1000
replications. Bootstrap value .50 and representative OTUs are shown.
More detailed trees can be found in Figures S1 and S2.
doi:10.1371/journal.pone.0017789.g004

Figure 5. Match between bacterial communities in freshwater
and seawater samples. Principal coordinates plots (PCA) were
generated using the pair wise unweighted UniFrac distances. Freshwa-
ter in open symbols: FWS (g) – water spring; FWP (#) – Parnaioca river,
FWM (%) - mangrove. Marine samples in filled symbols: SWP (N) –
Parnaioca beach, SWA (&) – Aventureiros beach, SWM (m) – Meros
island.
doi:10.1371/journal.pone.0017789.g005
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libraries from environments of different salinities [65]. Although

our marine samples clustered together in the PCA analysis,

freshwater ones were dispersed in the plot, showing a higher

heterogeneity among these environments. Interestingly, mangrove

communities cluster along the PC1 axis, between saline and other

freshwater environments. This could be a result of the recent

changes in salinity due to a sand barrier formation and the intense

rainfall that brought a large input of freshwater to this habitat. The

dispersion seen among the freshwater environments has been

observed in other studies [3,65] and is probably the result of

complex interactions between biotic and abiotic factors, not only

salinity, which ultimately shape communities in natural habitats.

Community composition changes across salinity gradients

probably lead to changes in expression patterns that can modify

the way in which organisms interact with each other and with the

environment. In fact, seasonal changes in bacterial gene expression

patterns across the salinity gradient in the Columbia river was

recently observed by microarrays [66].

In summary, our results support the notion of ecologically

defined bacterial species and processes and increase our

knowledge about the relationships between bacterial diversity

and environmental parameters in a tropical region.

Supporting Information

Figure S1 Phylogenetic tree of bacterial clones obtained
in the freshwater locations. Reference sequences from

GenBank (in bold). OTUs were defined by using a distance level

of 3% by using the furthest neighbor algorithm in MOTHUR.

The tree topology is based on neighbor joining and bootstrap

analysis was performed with 1000 replications. Bootstrap value

,50 and singletons are not shown. FWS (g) – Parnaioca

freshwater spring; FWP (#) – Parnaioca river; FWM (%) –

mangrove.

(TIF)

Figure S2 Phylogenetic tree of bacterial clones obtained
in seawater locations. Reference sequences from GenBank (in
bold). OTUs were defined by using a distance level of 3% by

using the furthest neighbor algorithm in MOTHUR. The tree

topology is based on neighbor joining and bootstrap analysis was

performed with 1000 replications. Bootstrap value ,50 and

singletons are not shown. SWP (N) – Parnaioca beach; SWA (&) –

Aventureiros beach; SWM (m) – seawater near Meros island.

(TIF)
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