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Abstract

Background: The small subunit (SSU) processome is a large ribonucleoprotein complex involved in small ribosomal subunit
assembly. It consists of the U3 snoRNA and ,72 proteins. While most of its components have been identified, the protein-
protein interactions (PPIs) among them remain largely unknown, and thus the assembly, architecture and function of the
SSU processome remains unclear.

Methodology: We queried PPI databases for SSU processome proteins to quantify the degree to which the three genome-
wide high-throughput yeast two-hybrid (HT-Y2H) studies, the genome-wide protein fragment complementation assay (PCA)
and the literature-curated (LC) datasets cover the SSU processome interactome.

Conclusions: We find that coverage of the SSU processome PPI network is remarkably sparse. Two of the three HT-Y2H
studies each account for four and six PPIs between only six of the 72 proteins, while the third study accounts for as little as
one PPI and two proteins. The PCA dataset has the highest coverage among the genome-wide studies with 27 PPIs between
25 proteins. The LC dataset was the most extensive, accounting for 34 proteins and 38 PPIs, many of which were validated
by independent methods, thereby further increasing their reliability. When the collected data were merged, we found that
at least 70% of the predicted PPIs have yet to be determined and 26 proteins (36%) have no known partners. Since the SSU
processome is conserved in all Eukaryotes, we also queried HT-Y2H datasets from six additional model organisms, but only
four orthologues and three previously known interologous interactions were found. This provides a starting point for further
work on SSU processome assembly, and spotlights the need for a more complete genome-wide Y2H analysis.
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Introduction

Direct, pair-wise (binary), physical protein-protein interactions

(PPIs) are the foundation of all biological processes. Efforts to

elucidate the interaction network of all proteins within a cell or

organism — termed the interactome — has helped identify the

architectural and functional blueprint of cellular processes in

various model eukaryotic organisms, such as yeast [1–5], Drosophila

[6–9], C. elegans [10–14], Plasmodium [15], Arabidopsis [16–17],

mouse [18] and humans [19–22]. Mapping PPIs has forwarded

our understanding of key biological processes such as the mitotic

spindle [23], cell polarity [24], the proteasome [25] and the

editosome [26]. Furthermore, it has helped assign roles to proteins

of previously unknown function [5] and has increased our

understanding of and progress against human diseases [27–28].

There are two main methods of observing direct PPIs in vivo: the

yeast two-hybrid (Y2H) and its many derivatives [29] and more

recently, the protein-fragment complementation assay (PCA) [30].

In the Y2H, the interaction of bait and prey fusion proteins within

the nucleus reconstitutes a transcription factor that up-regulates

the expression of a reporter gene. PCA works similarly to the Y2H

but occurs in the cytoplasm and replaces the transcription-reporter

system with a reconstituted reporter protein capable of metabo-

lizing a toxic compound.

The PPIs of the yeast Saccharomyces cerevisiae have been

extensively explored. There are currently three genome-wide

high-throughput yeast two-hybrid (HT-Y2H) surveys [1–3] and

one genome-wide PCA study of the yeast interactome [4].

However, while these large-scale Y2H and PCA screening projects

have established proteome-wide protein interaction networks

(PINs) for yeast, statistical analysis reveals that their combined

datasets account for less than 30% of the entire yeast interactome

[3]. Furthermore, there is surprisingly little overlap of PPIs

between each of the four aforementioned studies and with the

literature-curated (LC) interaction dataset. The LC data, which

are derived from small scale Y2H studies (otherwise known as the
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‘‘community’’ dataset) displays a narrow focus on a few proteins or

an interactome sub-network. Despite recent reports to the contrary

[21,31–32], the LC dataset is commonly believed to be of higher

quality than the HT-Y2H interactions due to its narrow focus on

the PPIs of a few well-characterized proteins [33–36]. Further-

more, LC studies often report reciprocal interactions (bidirectional

interactions where proteins A and B interact as either bait or prey),

recapitulate their results via multiple independent orthogonal

methods and integrate their findings with other forms of

biochemical and genetic data [37–51]. The poor PPI overlap

among the large-scale screens and with the LC dataset has led to

the suggestion that the current HT-Y2H studies were not done to

saturation, and therefore must be missing additional interactions

[35]. This may be due to a number of reasons. First, most genome-

wide HT-Y2H studies do not include all of the protein-coding

genes in the yeast genome. The absence of even a few proteins

from HT-Y2H screens can significantly reduce interactome

coverage [3]. Also, the enormous scope of genome-wide HT-

Y2H screens often necessitates a pooling strategy in which up to 96

or more baits or preys are pooled then tested for interaction.

However, when pooled, proteins that are toxic when expressed at

high levels may display a dominant negative phenotype and

interactions involving weakly expressed proteins may be under-

reported [35]. Similarly, certain proteins may be inefficiently

imported into the nucleus, the site of the Y2H assay. Furthermore,

PPIs that are not physiologically relevant (the so called ‘‘biological

false-positives’’) may be obtained for proteins normally residing in

different cellular compartments, expressed at different stages of the

cell cycle or in different tissues. These confounding factors are

believed to result in pooled HT-Y2H screening strategies being

less sensitive than array-based one-by-one screens, while poten-

tially containing a higher number of false positive interactions

[35,52].

We focused on mapping the PPIs of the small subunit (SSU)

processome, a very large ribonucleoprotein complex comprised of

,72 proteins and the U3 small nucleolar RNA (snoRNA). This

biochemically well defined complex guides the endonucleolytic

processing events at sites A0, A1 and A2 that liberate the mature

18S rRNA from the pre-rRNA transcript [53–55]. The SSU

processome is also believed to chaperone the folding of the pre-

18S rRNA and its assembly with ribosomal proteins into the

mature SSU of the ribosome.

The SSU processome was originally identified by tandem

affinity purification followed by mass spectrometry (TAP/MS)

studies [53–54,56]. Subsequent TAP/MS studies expanded the list

of SSU processome protein components and provided some of the

first data on the presence of sub-complexes [57–59]. In all, nearly

70% of all SSU processome proteins have been identified by

TAP/MS studies [53–54,57–59], with the remaining proteins

being identified by other biochemical or genetic methods. Thus,

TAP/MS studies have significantly contributed to our current,

nearly complete list of the protein constituents of the SSU

processome [53–54,57–59]. Typically, SSU processome protein

components meet the following criteria: i) they reside in the

nucleolus, the site of ribosome biogenesis, ii) their genetic depletion

results in an 18S rRNA processing defect and iii) they co-

immunoprecipitate the U3 snoRNA and/or another SSU

processome protein component. There are currently 46 confirmed

SSU processome proteins and 26 potential candidates suggested

from partial data (Table S1). Some of these proteins have been

categorized into the t-Utp/UtpA, UtpB, UtpC, Mpp10, Rcl1/

Bms1 and U3 snoRNP sub-complexes by TAP tag co-complex

purifications and small-scale Y2H studies [38–39,46,50,57–59].

However, the majority of SSU processome proteins remain

unassigned to a specific subcomplex due to a lack of interaction

data. Some proteins may even be components of subcomplexes yet

to be identified (Table S1). Identifying the protein-protein

interactions of the SSU processome thus becomes the next step

in elucidating its assembly, mechanism of function and regulation

in pre-rRNA processing.

Considering the SSU processome’s well characterized and

nearly complete component list, we sought to generate an up-to-

date, comprehensive yeast SSU processome PIN by extracting and

pooling protein interaction data from existing datasets. After

retrieving both high-throughput and literature-curated binary

protein interaction data, an interaction map was drawn using

Cytoscape. The result is the most current protein interactome map

of the yeast SSU processome to date, from which we identify

additional interactions within the subcomplexes and some of the

first potential interactions linking the various subcomplexes.

Materials and Methods

Mining databases for known PPIs
For each SSU processome component, both IntAct (http://

www.ebi.ac.uk/intact/) [60] and BioGRID (http://thebiogrid.

org/) [61] databases were queried for protein-protein interaction

data. These repositories were chosen because they: i) provide

downloadable data in a tab delimited format for every queried

protein, ii) each contain PPIs from a different subset of genome-

wide high-throughput studies, iii) each include PPIs from a

different subset of LC studies, iv) pool interaction data from

various organism-specific databases and v) are updated on a

monthly basis to include novel interactions. We downloaded a

total of 72 files from both IntAct and BioGRID databases, one for

each of the 72 SSU processome proteins, totaling 144 spreadsheets

by November 5, 2010. These files contained all known interactors

— both binary and co-complex — for the query protein, the

experimental method used to detect the interaction and the

publication reference.

Organizing the data
All 144 spreadsheets underwent five editing stages to remove

information unnecessary to this study and were streamlined into

six columns: Bait, Prey, Experimental System (Y2H, Y2H array,

Y2H pooling approach, PCA), Literature Code (Uetz et al. [1], Ito

et al. [2], Yu et al. [3], Hazbun et al. [5], PCA [4] or LC [37–51]),

Organism (yeast, Drosophila and C. elegans) and Reference.

Edit Stage 1. Data were sorted by experimental methods;

non-Y2H and non-PCA derived PPIs were removed. For IntAct

files, deleted examples include ‘‘tandem affinity purification’’ and

‘‘inferred by author’’ methods, and for BioGRID, they include

‘‘Affinity Capture-MS’’, ‘‘Phenotypic Enhancement’’ and

‘‘Synthetic Lethality’’. Interactions where neither the bait nor

the prey represented the query protein were also removed. The

IntAct files also included PPI for non-yeast organisms. These data

were extracted and edited separately.

Edit Stage 2. Proteins with missing names were labeled with

the ‘‘Standard Name’’ [62], and all names were kept congruent

between IntAct and BioGRID files. Proteins with multiple aliases

were labeled with the name most commonly used in literature (e.g.,

Sas10 was re-named Utp3 and Sik1was re-named Nop56).

Edit Stage 3. Columns with information irrelevant to our

study were deleted from both sets of data files. For IntAct, 32 data

columns were reduced to five columns: bait ID, prey ID,

interaction detection method, source (author) and PubMed ID.

We also removed the extra columns from BioGRID, cutting nine

columns down to the same five of the IntAct files.

Protein Interactions of the SSU Processome
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Edit Stage 4. The 72 BioGRID and 72 IntAct files were

merged into one large spreadsheet and duplicates entries were

removed. These included identical interactions with the same

experimental method and authors, a consequence of some, but not

all interactions being reported in both BioGRID and IntAct.

However, duplicate interactions identified via different

experimental methods or by different research groups were kept.

Edit Stage 5. All interactions involving only one SSU

processome component (i.e., interactions between an SSU

processome component and a non-SSU processome protein)

were removed as a function of the SSU processome protein

components having been relatively well catalogued biochemically.

A ‘‘Literature Code’’ column was added to separate the data into

Uetz et al. [1], Ito et al. [2], Yu et al. [3], Hazbun et al. [5], PCA [4]

and LC [37–51] categories.

Completion of all edit stages resulted in one master spreadsheet

containing all the query proteins (bait), their interactors (prey), the

experimental system used, the literature code, the source organism

and the reference (Table S2).

Interologues – conserved SSU processome PPIs in other
species

All downloaded IntAct files also included protein-protein

interactions for C. elegans, D. melanogaster, H. sapiens, S. pombe, P.

falciparum and M. musculus. Y2H interactions from organisms other

than S. cerevisiae (non-yeast) were quarantined during Edit Stage 1

and underwent the remaining editing stages separately. BioGRID

pre-categorizes interactions by organism; PPIs for non-yeast

organisms were downloaded separately and edited as described

above. In Edit Stage 5 following the IntAct and BioGRID merge, an

‘‘Organism’’ column was added to the master spreadsheet to

enable sorting of yeast and non-yeast data. Protein nomenclature

specific to the source organism was queried in Homologene

(http://www.ncbi.nlm.nih.gov/sites/homologene) [63] to deter-

mine the S. cerevisiae homologue. Proteins with available Homo-

logene data were renamed as the S. cerevisiae homolog (e.g., D.

melanogaster CG13097 renamed Mpp10). BLAST analysis [64] was

used to identify the yeast homologues of non-yeast proteins not

annotated in Homologene [63]. As with the yeast datasets, only

PPIs both involving SSU processome components were kept.

Visualizing the interactome
We used Cytoscape [65], a bioinformatics software used to

visualize molecular interaction networks, to convert the spread-

sheet files to interactome maps. Nodes refer to proteins and are

labeled with the protein’s commonly used name. Edges connect

two nodes, illustrating a protein-protein interaction. We distin-

guished in different colored nodes the various known subcom-

plexes of the SSU processome (see Table S1; green for the t-Utp/

UtpA subcomplex, blue for UtpB, yellow for UtpC, gray for the

U3 snoRNP proteins, brown for the Bms1/Rcl1 subcomplex and

red for Mpp10 subcomplex) and labeled the proteins unassigned to

a subcomplex in pink. The numerous RNA helicases of the SSU

processome are depicted as diamonds. Cytoscape maps were

generated for the SSU processome protein interactions from the

Uetz et al. [1], Ito et al. [2], Yu et al. [3], Hazbun et al. [5], Tarassov

et al. [4] and literature-curated datasets [37–51]. An additional

Cytoscape map was drawn for the merged dataset and included

SSU processome interologues.

Protein motif and domain identification
The motifs and domains present in the SSU processome

proteins were identified using the SCOP Superfamily (http://

supfam.org/SUPERFAMILY/index.html) [66], the MIPS Com-

prehensive Yeast Genome Database (http://mips.helmholtz-

muenchen.de/genre/proj/yeast/) [67], Pfam domains (http://

pfam.sanger.ac.uk/) [68], PROSITE (http://ca.expasy.org/

prosite/) [69], SMART (http://smart.embl-heidelberg.de/) [70]

and the Conserved Domain Database at NCBI (http://www.ncbi.

nlm.nih.gov/Structure/cdd/wrpsb.cgi) [71].

Results

Mining databases for known SSU processome protein-
protein interactions

We aimed to assemble a protein-protein interaction map of the

yeast SSU processome from existing datasets. Three HT-Y2H

studies [1–3], one PCA dataset [4] and many small-scale LC

studies [37–51] were queried for PPIs involving the 72 SSU

processome proteins. For each protein, one set of data from

BioGRID [61] and one from IntAct [60] were downloaded,

totaling 144 spreadsheets for the 72 processome proteins. The files

were curated to remove interaction detection methods that were

neither Y2H nor PCA, such as TAP-Tag, mass spectrometry and

genetic interactions. Furthermore, since the list of protein

components of the SSU processome has been well characterized

[53–54,56–59], and is believed to be nearly complete, we also

discarded interactions involving non-SSU processome proteins.

Most of the PPIs involving non-SSU processome components were

with proteins that are poorly characterized, not nucleolar or with

no known role in ribosome biogenesis. While deleting these

proteins from our analyses may have resulted in the loss of

important interactions or potentially novel SSU processome

members, we limited our study to nucleolar proteins involved in

ribosome biogenesis or known to co-immunoprecipitate other SSU

processome constituents such as the U3 snoRNP.

The spreadsheets for each SSU processome protein were

merged into a master file and duplicate entries originating from

PPIs listed in both BioGRID and IntAct databases were removed

(Table S2). The master spreadsheet was sorted by study (Literature

Code) to determine how many of the protein interactions for the

72 SSU processome proteins are attributed to each of the three

HT-Y2H studies [1–3], the PCA dataset [4] and the small-scale

LC studies [37–51]. An interactome map was drawn using

Cytoscape [65] for each dataset to show the extent of SSU

processome coverage per study. Finally, the merged master

spreadsheet was converted to a Cytoscape map to illustrate the

most up-to-date interactome of the 72 SSU processome proteins.

Expert curation of protein-protein interaction datasets is
often required

We initially explored a variety of different PPI databases,

including BioGRID [61], IntAct [60], MIPS Mpact [72], DIP

[73], STRING [74] and SPIDer [75]. Our survey found that

BioGRID and IntAct contained the most complete and up-to-date

PPIs, with the other databases containing non-overlapping subsets

of the HT-Y2H, PCA and LC datasets. We did, however, identify

a number of problems with both the BioGRID and IntAct

datasets. Although BioGRID is continuously updated, some

published Y2H interactions have yet to be included in the

database (as of January 2011), such as the Y2H interactions of the

UtpB subcomplex published by Champion et al. [38] in November

2008. Thus, BioGRID does not contain a complete inventory of

all currently known PPIs. In some instances, the IntAct database

had difficulty filtering and reporting interactions involving only the

queried protein due to nomenclature conflicts. For example, a

query of the proteins Imp3 (‘‘Interacts with Mpp10 #3’’) or Imp4

Protein Interactions of the SSU Processome
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(‘‘Interacts with Mpp10 #4’’) retrieved the appropriate PPIs and

erroneous included additional PPIs between Mpp10 and other

proteins. Furthermore, a few PPIs from one database were absent

in the other, such as the interaction between Utp20 and Sof1

reported by Tarassov et al. [4], which is included in the IntAct

database, but not found in BioGRID. Thus, assembling an

interactome from current datasets without expert curation is likely

to result in an incorrect protein-protein interaction map.

Sparse coverage of SSU processome proteins from the
three genome-wide HT-Y2H studies

Mining the three genome-wide HT-Y2H datasets for PPIs

among SSU processome components revealed disappointingly

sparse coverage. The Uetz et al. study (2000) [1], which was the

first comprehensive HT-Y2H, screened DNA binding domain

fusion clones (baits) against both an array and a pool of activation

domain fusion clones (preys). For the SSU processome, this

yielded five interactions among six of the 72 proteins, as well as

one self-interaction for Ckb2 (Fig. 1A and Table 1) [1]. The Ito et

al. study [2], published in 2001, assembled a yeast interactome by

assaying for interactions between the approximately 6,000

proteins of yeast. Sixty-two mating crosses of bait and prey pools

were performed with each pool containing 96 different clones as

either bait or prey. Their interactions were divided into higher

quality ‘‘Core’’ and lower quality ‘‘Full’’ datasets: the former

included only the interactions observed 3+ times, while the latter

included interactions observed two times. The Ito et al. study [2]

identified four interactions among six of the 72 SSU processome

proteins, all from the lower quality ‘‘Full’’ dataset (Fig. 1B and

Table 1). The most recent and third genome-wide HT-Y2H

assay, the Yu et al. study (October 2008) [3], screened individual

baits against pools of 188 different preys. Their dataset revealed

only one PPI between two of the 72 SSU processome proteins,

Utp18 and Utp21 (Fig. 1C and Table 1). This interaction had

previously been identified in the Ito et al. dataset (Fig. 1B) [2].

Thus, among the three HT-Y2H datasets, the Uetz et al. [1] and

Ito et al. [2] studies provide the highest coverage of PPIs for SSU

processome proteins (Fig. 1A, B, C and Table 1). In all, the three

genome-wide HT-Y2H studies account for interactions among

only 12 of the 72 SSU processome components (16.7%) and show

minimal overlap with the exception of the Utp18-Utp21

interaction reported by Ito et al. [2] and Yu et al. [3].

A systems biology study by Hazbun et al. (2003) [5] used the

Y2H methodology to help assign roles to yeast proteins of

unknown function. This study individually screened each of 100

essential ORFs of unknown function as baits against an array of

Figure 1. Interaction maps of the SSU processome proteins from existing HT-Y2H datasets. Proteins are colored as described in the
Materials and Methods; green nodes refer to proteins of the t-Utp/UtpA subcomplex, blue for UtpB, yellow for UtpC, gray for the U3 snoRNP proteins,
brown for Bms1/Rcl1 and red for the Mpp10 subcomplex. Pink nodes refer to proteins that have yet to be assigned to a subcomplex. RNA helicases
are depicted as diamonds. Multiple edges, or interactions, linking the proteins represent interactions identified in different studies or reciprocally
identified as both bait and prey. Self-interactions are shown as looped edges. A) Results from the Uetz et al. dataset [1]. B) Results from Ito et al.
dataset [2]. C) Results from the Hazbun et al. dataset [5]. D) Results from the Yu et al. dataset [3].
doi:10.1371/journal.pone.0017701.g001
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approximately 6,000 prey ORFs. From this dataset, we identified

three of the 72 SSU processome proteins and two PPIs among

them (Fig. 1D and Table 1), with no data overlap with any of the

three HT-Y2H studies.

The genome-wide PCA study contains the best coverage
of SSU processome PPIs

The protein fragment complementation assay is an alternative

method for identifying direct, physical PPIs. This strategy was used

by Tarassov et al. in 2008 [4] to compile a forth genome-wide yeast

interactome. Unlike the three HT-Y2H studies, the PCA dataset

was derived from individual one-by-one matings between haploid

yeast strains each carrying bait and prey ORFs. The PCA dataset

accounts for 25 of the 72 SSU processome proteins and 27

interactions among them — the highest coverage among the

genome-wide studies (Fig. 2 and Table 1) and shows some overlap

of PPIs with the Uetz et al. [1] dataset.

The literature-curated dataset contains the best SSU
processome coverage overall

The SSU processome protein coverage of the aforementioned

datasets was compared to coverage from literature-curated (LC)

sources [37–51]. These small-scale interaction studies coopera-

tively account for more SSU processome proteins than any of the

individual high-throughput genome-wide datasets [1–4]. In all, the

LC dataset accounts for 34 of the 72 proteins and 44 interactions

(Fig. 3 and Table 1) and displays some overlap with the HT-Y2H

[1–3] and PCA studies [4].

Mining for SSU processome interologues
Conserved protein-protein interactions – or interologues –

found in multiple organisms, as well as PPIs replicated by multiple

studies or distinct experimental methods, carry a higher

confidence value and are more likely to represent true interactions

[76–77]. To determine which interactions have been identified in

other organisms, we extracted PPI data for the 72 SSU

processome proteins from BioGRID and IntAct for C. elegans, D.

melanogaster, H. sapiens, S. pombe, P. falciparum and M. musculus.

The Cytoscape map of the interologue dataset disappointingly

showed only two interactions between Mpp10 and Imp3, and

Mpp10 and Imp4 orthologues in D. melanogaster [6] and one

interaction between Mpp10 and Utp3 orthologues in C. elegans

(Fig. 4) [10]. These interactions overlap completely with the yeast

dataset, thereby further increasing their likelihood. No interactions

within the components of the SSU processome were identified in

S. pombe, Plasmodium, human and mouse PPI datasets.

The first partial protein interaction map of the SSU
processome

Merging all the collected yeast and non-yeast PPI datasets [1–

6,10,37–51] for the 72 SSU processome proteins provides the first

partial protein interaction map of the SSU processome. The

Cytoscape map of the merged dataset includes 67 distinct edges,

corresponding to 67 different interaction pairs among the 72

queried SSU processome proteins (Fig. 4, Table 1 and S2). Twenty-

six out of the 72 proteins (36.1%) did not have any known

interacting partners. The LC data (Fig. 3) contributed the largest

number of interactions of any dataset (47.2% coverage of the 72

queried nodes and 65.7% of the 67 known edges) followed by the

PCA data (34.7% of the 72 nodes, 40.3% of the 67 known edges).

The other studies each account for less than 10% of the 67 currently

known PPIs among the 72 SSU processome proteins (Table 1).

A poor overlap for the HT-Y2H, PCA and LC datasets
Interactions identified by different studies or using independent

methods carry a higher confidence value [76–77]. Therefore, we

examined the level of overlap between the genome-wide HT-Y2H

studies, the PCA and LC datasets. Minimal congruence was found

among the HT-Y2H datasets, with Uetz et al. [1] and Ito et al. [2]

not sharing any reported interactions (Figs. 1 and 5). The SSU

processome interactions reported by Yu et al. [3] overlap

completely with those of Ito et al. [2] and were thus already

known. The interactions reported in the systems biology study of

Hazbun et al. [5] do not overlap with any of the HT-Y2H datasets

[1–3]. Some overlap was found between the HT-Y2H studies [1–

3] and the PCA dataset [4] (nine proteins and four PPIs; Figs. 1, 2

and 5). Overlap was also found between the HT-Y2H studies [1–

3], the PCA dataset [4] and the LC dataset (Figs. 1, 2, 3 and 5)

[37–51]. However, 18 of the 34 proteins in the LC dataset did not

overlap with any of the HT-Y2H [1–3] or PCA [4] studies.

Discussion

Large-scale, genome-wide yeast binary protein interaction

networks contain thousands of PPIs suggesting comprehensive

and complete investigations of the yeast interactome. We mined

the existing databases, containing PPIs from all HT-Y2H [1–3,5],

PCA [4] and LC [37–51] yeast interactome studies to date for

Table 1. Number of SSU processome proteins (nodes) and the interactions between them (edges) identified in the HT-Y2H, PCA
and LC datasets.

Screen # of nodes % of nodes # of edges % of predicted edges

Uetz et al. [1] (Y2H) 6 8.3 6 2.8

Ito et al. [2] (Y2H) 6 8.3 4 1.9

Yu et al. [3] (Y2H) 2 2.8 1 0.5

Hazbun et al. [5] (Y2H) 3 4.2 2 2.7

Tarassov et al. [4] (PCA) 25 34.7 27 12.5

Literature-curated [37–51] (Y2H) 34 47.2 44 20.4

All merged (not including standalone proteins) 46 63.9 67 31.0

Predicted total 72 100 216 100

Redundant edges were not counted twice. Self-interactions, shown as looped edges in Figs. 1 to 4, were included in the tabulation. The predicted total number of edges
is derived by estimating 3 interactions per protein [3] for each of the 72 SSU processome proteins (7263 = 216).
doi:10.1371/journal.pone.0017701.t001
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interactions among the 72 SSU processome proteins. Individual

datasets were analyzed for the extent of PPI coverage and overlap

and were merged to generate one comprehensive interaction

dataset. Individual datasets and their amalgamation were each

drawn into interactome maps using Cytoscape. Our results show

that filtering the current HT-Y2H [1–3,5], PCA [4] and LC [37–

51] datasets for SSU processome PPIs provided sparse data, with

as many as 36.1% (26 of 72 SSU processome proteins) of the

protein components having no currently known interaction

partner. A strategy similar to ours has successfully been used to

draw an interaction map of promyelocytic leukaemia protein

nuclear bodies (PML-NBs) [78].

Figure 2. Interaction map of the SSU processome proteins from the PCA dataset. Nodes are colored as in Fig. 1.
doi:10.1371/journal.pone.0017701.g002

Figure 3. Interaction map of the SSU processome proteins from the LC dataset. Nodes are depicted as in Fig. 1.
doi:10.1371/journal.pone.0017701.g003
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How many protein-protein interactions are expected?
There are approximately 6,000 proteins and a conservative

estimate of 18,000+/24500 PPIs in the entire yeast interactome

[3,79–81], equaling an average of 3 to 3.5 interactions per protein

(though this number may be as high as five interactions per protein

[82]). By this calculation, for 72 SSU processome proteins, we

expected roughly 216 to 252 PPIs in total (Table 1). Based on the

lower end of the theoretical number of expected PPIs, the 67 PPIs

that we obtained from the merged datasets represent at most

31.0% of the predicted interactions in the SSU processome

(Table 1). This number is in line with similar estimates from

merged HT-Y2H datasets suggesting ,20% coverage of the entire

yeast interactome [3]. From these values, it is clear that we do not

yet have an interactome of the SSU processome that is nearly

complete.

Comparing the HT-Y2H, PCA and LC datasets
Among the genome-wide studies, the PCA dataset of Tarassov

et al. [4] reports the highest PPI coverage when compared to the

three HT-Y2H-based approaches [1–3], accounting for 25 SSU

processome proteins and 12.5 percent of the predicted edges

(Table 1). This might be attributed to the distinctiveness of the

PCA method [83] and to the screening strategy, which involved a

one-by-one matrix array where each bait-containing strain was

individually mated to each prey-containing strain [4]. In contrast,

the prey pooling approach used in the Uetz et al. [1], Ito et al. [2]

and Yu et al. [3] HT-Y2H studies has potentially lower quality data

and coverage, possibly because: i) some prey plasmids may

replicate faster due to their smaller size, and can overtake the

population in the pool by outcompeting larger prey plasmids that

take longer or are more difficult to replicate, ii) some proteins,

when over-expressed, may be toxic to the cell resulting in a

dominant negative phenotype, while other proteins can enhance

cell growth (cells with improved growth can outcompete other

cells, while those with a dominant negative phenotype will be

eliminated from the pool) and iii) there may be transformation and

mating differences among different prey fusion protein plasmids

[35,52]. Furthermore, array-based screened may be more sensitive

and more easily screened to saturation [35,52]. Thus, the

individualized mating process used by Tarassov et al. [4], which

avoids many of the potential problems associated with the pooling

approach, could explain their higher coverage of the SSU

processome protein interactome.

Protein interactions reported by more than one study, replicated

via distinct methods or reported in different organisms are more

Figure 4. The current, merged SSU processome interactome map from the three HT-Y2H, PCA, LC and interologue datasets.
Interologues identified in Drosophila (D) [6] and C. elegans (C) [10] are also shown, with red and blue edges, respectively. The PPI redundancy (same
interactions identified by different studies, methods or reciprocally) was removed from the figure to highlight the interacting partners. Nodes are
depicted as in Fig. 1. Standalone nodes depict proteins without interaction data from any of the compiled datasets.
doi:10.1371/journal.pone.0017701.g004

Figure 5. Comparison of the overlap between the HT-Y2H, PCA
and LC datasets for the PPIs of the SSU processome. Numbers
within the Venn diagram refer to the number of SSU processome
proteins present and overlapping in the HT-Y2H, PCA and LC datasets.
doi:10.1371/journal.pone.0017701.g005
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likely to be authentic [76–77]. As has been found in other studies

[4,36,83–85], inspection and comparison among the compiled

HT-Y2H, PCA and LC datasets, however, revealed poor overlap,

especially among the genome-wide HT-Y2H datasets [1–3] which

contained very few overlapping PPIs. Due to the large contribu-

tions of the LC [37–51] and PCA [4] datasets to the interaction

map of the SSU processome, most of the overlaps occurred

between the LC and PCA datasets (Figs. 2, 3 and 5). The poor

overlap among the comprehensive HT-Y2H interactomes brings

into question their proposed completeness and suggests that these

screens were not exhaustive nor done to saturation.

The high quality of the LC dataset
Smaller-scale LC datasets provided the highest coverage of the

SSU processome proteins, reporting 34 proteins and 44 interac-

tions (47.2% and 20.4% of the predicted totals, respectively).

While conventional wisdom supports LC datasets to be accurate

and of high-quality, some have remained skeptical, pointing to the

poor overlap among the literature-curated studies, as well as

protein name and species classification errors [19,21,31–32].

Surveys to assess the reliability of literature-curated data by re-

curation revealed roughly half of LC derived data to lack

validation via alternative, independent methods [19,21,31]. In

contrast to these claims, our analysis revealed the LC data to be

the most comprehensive. Furthermore, many of the SSU

processome PPIs from the mined LC dataset were found to be

validated by independent methods such as E. coli pull-downs and

biochemical and biophysical assays (Table 2).

Sparse interologue data for SSU processome
components

The use of interologues in protein-protein interaction maps is

rapidly increasing and constitutes a valid strategy for augmenting

interactome coverage [77]. Some of the PPIs identified by multiple

studies, such as between Imp3 and Mpp10, and Imp4 and Mpp10,

were also reported in different organisms such as Drosophila [6].

Although all 72 SSU processome components were queried in six

additional organisms other than S. cerevisiae, the majority of

retrieved PPIs were with non-SSU processome proteins or with

proteins with no known yeast orthologues. Once the SSU

processome components of various model organisms are better

characterized, and their yeast orthologues determined, additional

conserved interactions may be identified. However, our analysis

suggests that the interactome coverage of C. elegans, D. melanogaster,

S. pombe, P. falciparum, human and mouse may be even less than

that of yeast. This is in line with a recent report suggesting that low

interactome coverage, and not evolutionary divergence and loss of

interologues, as the main obstacle to interactome network

alignment [86].

What does this tell us about the SSU processome
protein-protein interaction map?

A few novel interactions previously undetected by HT-Y2H and

LC studies surfaced in the PCA dataset: between t-Utp4 and t-

Utp10, t-Utp5 and t-Utp8, t-Utp5 and t-Utp9, and t-Utp8 and t-

Utp15 of the UtpA/t-Utp subcomplex and between Utp1 and

Utp12 of the UtpB subcomplex (compare Figs. 2 and 3). The

identification of these interactions in the PCA dataset [4] but not

in the HT-Y2H or LC datasets [38–39] may be due to differences

between the Y2H and PCA methodologies [83] or to differences

resulting from the use of different fusion tags in Y2H and PCA

screening strategies. Indeed, the N- versus C-terminal placement

of fusion tags in Y2H assays has been shown to influence the

outcome of screens [87]. Regardless, validating these PCA derived

interactions will further clarify the assembly of the t-Utp/UtpA

and UtpB subcomplexes of the SSU processome.

Novel interactions were also reported between t-Utp4 of the

UtpA/t-Utp and Utp18 of the UtpB subcomplexes. This

interaction may suggest one of the first PPIs linking the various

subcomplexes of the SSU processome, and is also a candidate for

future validation studies. Interestingly, all genome-wide HT-Y2H

screens [1–3] are missing these interactions, potentially due to

these findings being either an artifact of the PCA approach, or a

false negative of the Y2H methodology. False negatives in Y2H

screens may arise from bait and prey proteins that normally

interact via their N-terminus, since the DNA binding or activation

domains, which are typically attached to the N-terminus of the

proteins, may mask these interaction surfaces.

A truly comprehensive interactome map of the SSU processome

will provide us with insight into the complexities of the assembly,

function and regulation of this large ribonucleoprotein complex.

Since the SSU processome is required for the production of

ribosomes in all eukaryotes, understanding its assembly is essential

to elucidating its function in ribosome biogenesis. Our analyses of

the existing databases indicates that ,70% of the PPIs in the SSU

processome have yet to be determined, and because of this we do

not yet have an accurate picture of how this complex is assembled.

Table 2. Y2H-derived PPI data confirmed by alternative and supplementary experimental methods.

Interactor A Interactor B Y2H
GST/His-Tag
pull-down

Biochemical
activation Motif mapping

Surface plasmon
resonance

Imp3 Mpp10 3 [46] 3 [46] 3 [46]

Imp4 Mpp10 3 [46] 3 [46] 3 [46]

Esf2 Dbp8 3 [43] 3 [43] 3 [43]

Pfa1 Prp43 3 [48,89] 3 [89] 3 [89] 3 [89]

t-Utp8 t-Utp9 3 [39,44] 3 [44] 3 [44] 3 [44]

Utp6 Utp21 3 [38] 3 [38] 3 [38]

Utp6 Utp18 3 [38] 3 [38]

Utp25 Utp3 3 [41,51] 3 [41] 3 [41,51]

Many PPIs from the LC data have alternative forms of supporting evidence from experiments that test for binary interactions, including pull-downs, activation of
enzymatic activities, motif mapping by truncations and surface plasmon resonance. This list of protein-protein interactions identified by Y2H and validated by
independent methods is not exhaustive.
doi:10.1371/journal.pone.0017701.t002
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The current lack of data includes both proteins with no known

interactors, and missing PPIs between other connected proteins.

Enhancing the experimental approaches to both the classic

methods — such as the Y2H — and new methods — such as

the PCA — are likely to be crucial for not only deriving an

interactome map of the SSU processome, but a comprehensive

and exhaustively screened yeast PPI map that covers the entire

yeast proteome.

This quantitative survey of existing databases for PPIs from HT-

Y2H [1–3], PCA [4] and LC [37–51] studies reveals a remarkably

sparse coverage of the SSU processome proteins, albeit having

drawn data from interactomes purporting to be highly compre-

hensive. Nevertheless, the absence of a truly comprehensive,

genome-wide interactome is apparent.

The LC dataset, which provided the highest coverage of the

SSU processome proteins, contained PPIs that were confirmed by

alternative methods, such as E. coli pull-downs and biochemical

and biophysical methods that also test for direct binary

interactions. This confirms that PPIs from LC sources, despite

previously proposed skepticism, are largely credible.

Although lacking many proteins and interactions, the up-to-date

SSU processome interaction map compiled in this study can be

applied to generate new hypotheses of subcomplex interactions,

assembly and function. Additionally, approaches to experimentally

determine the domain-domain interactions of the known PPIs [88]

can be applied to better understand the biology of the SSU

processome.

Supporting Information

Table S1 The protein components of the SSU proces-
some. The catalogued proteins are listed based on their

membership in the known subcomplexes of the yeast SSU

processome. Confirmed SSU processome components which have

not been assigned to a specific subcomplex are listed as

unclassified. Candidate SSU processome proteins are listed as

unknown. The yeast SSU r-proteins (Rps4, Rps6, Rps7, Rps9 and

Rps14) that are known components of the SSU processome [54]

are not listed. (?) denotes uncertain membership in an SSU

processome sub-complex. Motif and domain abbreviations

include: glycine/arginine-rich (GAR); coiled-coil (CC); middle

domain of eIF4G (MIF4G); MA3 domain (similar to MIF4G

domains/MI domain); helicase conserved C-terminal domain

(HELICc); helicase associated domain (HA2); glycine-rich nucleic

binding domain (G-patch); RxxxH ssRNA binding motif (R3H);

Pumilio homology RNA binding domain (PUM/PUF); RNA

recognition motif (RRM, RBD or RNP domain); low-temperature

viability protein domain (LTV1); fungal-specific family of rRNA

processing proteins (rRNA processing domain); small domain in a

novel nucleolar family (NUC153); beta-transducin repeats

(WD40); S1 RNA-binding motifs; Half-A-TPR (HAT) repeats; K

homology RNA-binding domain (KH); Down-Regulated In

Metastasis (DRIM); Armadillo (ARM) protein-protein interaction

repeat; CBF/Mak21 family; nucleolar complex (NOC) associated

protein domain. Table modified from Phipps et al. [55].

(DOC)

Table S2 The SSU processome PPIs derived from the
HT-Y2H, PCA and LC datasets.

(XLS)
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