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Abstract

Background: Identifying associated phenotypes of proteins is a challenge of the modern genetics since the multifactorial
trait often results from contributions of many proteins. Besides the high-through phenotype assays, the computational
methods are alternative ways to identify the phenotypes of proteins.

Methodology/Principal Findings: Here, we proposed a new method for predicting protein phenotypes in yeast based on
protein-protein interaction network. Instead of only the most likely phenotype, a series of possible phenotypes for the query
protein were generated and ranked acording to the tethering potential score. As a result, the first order prediction accuracy
of our method achieved 65.4% evaluated by Jackknife test of 1,267 proteins in budding yeast, much higher than the success
rate (15.4%) of a random guess. And the likelihood of the first 3 predicted phenotypes including all the real phenotypes of
the proteins was 70.6%.

Conclusions/Significance: The candidate phenotypes predicted by our method provided useful clues for the further
validation. In addition, the method can be easily applied to the prediction of protein associated phenotypes in other
organisms.

Citation: Hu L, Huang T, Liu X-J, Cai Y-D (2011) Predicting Protein Phenotypes Based on Protein-Protein Interaction Network. PLoS ONE 6(3): e17668. doi:10.1371/
journal.pone.0017668

Editor: Hitoshi Okazawa, Tokyo Medical and Dental University, Japan

Received September 7, 2010; Accepted February 10, 2011; Published March 10, 2011

Copyright: � 2011 Hu et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: The authors have no support or funding to report.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: xiaojun.liu@ed.ac.uk (XJL); cai_yud@yahoo.com.cn (YDC)

. These authors contributed equally to this work.

Introduction

Identifying phenotypes of proteins is a central challenge of the

modern genetics in post-genome era. The study on phenotypes

always involves many major diseases, such as HIV [1,2,3,4,5],

different kinds of cancers [6,7,8,9], chronic liver diseases [10],

Gaucher disease [11]. The high-throughput phenotype assays

[12,13] combining with gene perturbation technology [14,15]

provide fast identification for gene active in a response [16]. For

example, yeast mutant strain collections has become increasingly

used to identify the phenotypes [17]. However, these assays are

often trapped in the high false negative rates [18]. On the other

hand, the study on phenotypes is highly complex for the

multifactorial trait often results from contributions of many

proteins. Consequently, using experimental approaches alone is

insufficient, and the computational methods should be applied for

the identification of protein phenotypes [18].

In principle, there are two kinds of computational methods:

the sequence-based methods and network-based methods. A

sequence-based method is often designed on a benchmark

dataset, sequence features such as amino acid composition [19],

pseudo amino acid [20] (PseAAC), are used to represent the data

(e.g. protein sequence), then a prediction model can be built

according to the machine learning algorithm (e.g. nearest

neighbor algorithm). In the past decade, a series of predictors

have been designed for phenotype prediction. For example,

Resch W et al. used a neural network model to identify the

phenotype of HIV type 1 from loop 3 sequences [21]. Pillai S

et al. proposed a classifier based on support vector machine for

V3 phenotype prediction [22]. Recently, Onuki R et al. also

employed a support vector machine method for predicting

phenotype from genotype data [23]. With the ever-increasing

build-up of high-throughput techniques, biological data acquisi-

tion has never increased more rapidly. More and more biological

networks, such as gene-regulatory networks and metabolic

networks are constructed from multi data sources (e.g. micro-

arrays, literature mining, and protein-protein interaction).

Consequently, many network-based methods are proposed to

contribute to various aspects of biology, including phenotype

prediction. For instance, Keleta C et al. implemented the

prediction of the 16 different growth phenotypes in E.coli based

on regulated metabolic networks [24]. McGary KL et al.

demonstrate that the loss-of function Saccharomyces cerevisiae

phenotypes are predictable in the functional gene network, and

the proposed network-based method succeeded in the identifi-

cation of yeast orthologs of human disease genes.
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In this research, we presented a new network-based method for

predicting budding yeast protein phenotypes. Unlike previous

methods, our method can rank the possible phenotypes associated

with the query protein and shows a more comprehensive view of

the protein’s biological effects. With the results, we also

demonstrated that using protein-protein network is effective for

predicting protein phenotypes. Owing to many protein-protein

network of other organisms are available, we suggest that this

method will be widely applied.

Materials and Methods

Data Set
Because of the complexity of phenotype research, we selected

the budding yeast Saccharomyces cerevisiae (a well studied model

organism [25,26]) as a model system. The protein data used here

was taken from CYGD [27] (the MIPS Comprehensive Yeast

Genome Database, ftp://ftpmips.gsf.de/yeast/), which dedicated

to information on the molecular structure and functional network

of the budding yeast. Among the 6,732 proteins of the yeast

proteome, only those with both sequence and phenotypic

annotations were selected. Thus we obtained 1,460 such proteins

belonging to 11 phenotypic categories (see Table S1). The number

of proteins in each category was listed in the Table 1, from which

we can easily find that the total number of proteins (2,397) in 11

phenotypic categories is much larger than the total number of

proteins (1,460). That is because many proteins exhibit more than

one phenotype and this is the reason why we developed this

method to predict the possible phenotypes with ranked scores,

rather than only one predicted phenotype like previous tools.

The yeast protein-protein interaction (PPI) network used here

was retrieved from STRING [28] (http://string.embl.de/), whose

primary mission is to provide researchers with both physical

(direct) and functional (indirect) interactions. For each species, a

PPI network is constructed by integrating huge information

derived from numerous sources such as experimental repositories,

computational methods, and text-mining methods. In the

functional protein association network, the interaction unit consists

of two nodes (proteins) and an edge between them. The interaction

confidence score is used as the edge weight to represent the

likelihood that a predicted association exists between two nodes.

Weight confidence limits are as follows: low confidence 215% (or

better), medium confidence 240%, high confidence 270%,

highest confidence 290%. In this research, we chose the highest

confidence limit 290% to obtain reliable yeast PPI network (see

Table S2), which contains 32,513 functional linkages among 4,209

yeast proteins.

Among the 1,460 proteins with phenotypic annotations, 1,267

proteins could be mapped to the yeast PPI network downloaded

from STRING. Thus, the nodes in the network could be grouped

into two kinds: those with phenotypic information, others without

phenotypic information. Here, we called the protein with

phenotypic annotation in the PPI network ‘‘seed protein’’, and

the dataset consisting of 1,267 seed proteins ‘‘seed set’’, which

were then used to test the network-based method.

The availability of using the PPI network to predict
protein phenotypes

In the functional network, PPI contains both physical (direct)

and functional (indirect) interactions. Physically interacting

proteins exist in the same complex, while functional interacting

proteins tend to participate in the same pathway or cellular

process. Here, we investigated the relationships between complex/

pathway and phenotype to explain the availability of using the PPI

network to predict protein phenotypes. In order to analyze the

relationship conveniently, we selected the proteins with single

phenotype. The complex annotation of proteins was also

downloaded from CYGD [27], and the pathway annotation of

proteins was retrieved from KEGG [29] (Kyoto Encyclopedia of

Genes and Genomes) (see Table S3 and Table S4). Totally, these

proteins belonged to 733 complexes and 86 pathways. Each

protein was coded by the vectors:

Vcomplex~½v1,v2,:::,vi,:::v733�
Vpathway~½v1,v2,:::,vi,:::v86�

�
ð1Þ

where vi~1 if the protein belonged to the i-th complex/pathway,

otherwise vi~0. Then m-th phenotype can be represented by the

protein complex/pathway information as the vector:

Vm~

Pn
1

Vj

n
ð2Þ

where n is the number of proteins that had the m-th phenotype.

The similarity between any two phenotypes was calculated as:

C~
Vp
:Vq

jjVpjj:jjVqjj
(p~1,2,:::,11; q~1,2,:::,11; p=q) ð3Þ

where Vp
:Vq is the vectors’ inner product, jjV jj is the module of

vector. Generally, two phenotypes are difficult to discriminated

from each other using the complex/pathway if the value of the

similarity of them is larger than 0.5. Using the protein complex

information, the distribution of the similarities of 11 phenotypes

was shown in Figure 1. Clearly, all the 55 similarities are smaller

than 0.5. Because the proteins with the phenotype of sensitivity to

immunosuppressants lacked the pathway annotation, the similar-

ities of other 10 phenotypes were calculated using the protein

pathway information. The distribution of the similarities of 10

phenotypes was shown in Figure 2, where two thirds of the

Table 1. Breakdown of 1,460 budding yeast proteins
according to their 11 phenotypes.

Number Phenotype category
Number of
proteins

1 Conditional phenotypes 536

2 Cell cycle defects 271

3 Mating and sporulation defects 198

4 Auxotrophies, carbon and nitrogen
utilization defects

266

5 Cell morphology and organelle mutants 534

6 Stress response defects 147

7 Carbohydrate and lipid biosynthesis
defects

46

8 Nucleic acid metabolism defects 218

9 Sensitivity to amino acid analogs and
other drugs

124

10 Sensitivity to antibiotics 43

11 Sensitivity to immunosuppressants 14

See the texts of the paper for further explanation.
doi:10.1371/journal.pone.0017668.t001
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similarities are smaller than 0.5. The results indicate the

phenotypes can be classified by using protein complex/pathway

information. Therefore, protein phenotypes can be predicted by

using the functional PPI network.

Network-based Method
In the PPI network, when we were to predict the phenotypes of

a node (protein), just like the weighted vote, not only the number

of its neighbor nodes, but also the strengths of interactions (i.e., the

edge weights) were considered by the method. The phenotypic

categories of each protein in the network can be predicted as

following.

First, let us consider the PPI network consisting of n proteins

fP1,P2,:::,Png, in which seed proteins belonged to 11 phenotypic

categories (T~½T1,T2,:::,T11�), where T1 represents the ‘‘Condi-

tional phenotypes’’ category, T2 the ‘‘Cell cycle defects’’, T3 the

‘‘Mating and sporulation defects’’, and so forth (cf. Table 1).

And the phenotypes of the i-th protein in the network can be

denoted by

T(Pi)~½ti,1,ti,2,:::,ti,j ,:::,ti,11�T(i~1,2,:::,n; j~1,2,:::,11) ð4Þ

where

ti,j~
1, if Pi belongsto j-th phenotype

0, otherwise

�
ð5Þ

Towards a query protein Pk, its interaction weights with m seed

proteins can be defined as follows

W (Pk)~½wk,1,wk,2,:::,wk,i,:::,wk,m�T(i~1,2,:::m) ð6Þ

where wk,i is the interaction weight (confidence score [28])

between Pk and the i-th protein in the seed set. If there is no edge

between them, wk,i~0. Since we did not consider the self-

interaction of protein, wk,i~0 when k~i. Subsequently, we

Figure 1. The distribution of the similarities of 11 phenotypes that were represented by protein complex information.
doi:10.1371/journal.pone.0017668.g001

Figure 2. The distribution of the similarities of 10 phenotypes that were represented by protein pathway information.
doi:10.1371/journal.pone.0017668.g002
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proposed a new concept called ‘‘tethering potential’’ of protein Pk

to the j-th phenotype to reflect the potential of protein Pk

belonging to the j-th phenotype, which can be calculated as

follows

S(Pk[j)~
Xm

i~1
wk,iti,j (j~1,2,:::,11) ð7Þ

From this equation, we know that the proteins in seed set

without association with the query protein do not contribute to

the score of S(Pk[j). Thus the tethering potential of protein Pk

to the j-th phenotype can be also described as the sum of

interaction weights of it with neighbor proteins of the j-th
phenotype in seed set. Obviously, the larger the value of S(Pk[j)
is, the more likely the protein Pk belongs to the j-th phenotypic

category. Therefore, the most likely phenotype of the query

protein Pk can be predicted to belong to the m-th phenotypic

category as follows

m~arg maxj S(Pk[j) j j~1,2,:::,11f g ð8Þ

where m stands for the argument of j that maximizes the value of

S(Pk[j). However, many proteins in yeast give rise to more

than one phenotype; the prediction result with only the most

likely candidate phenotype is insufficient. In view of this, to make

the method able to handle the proteins with multiple phenotypes

and benefit biologists with more flexible information in

prioritizing candidate phenotypes, we introduced a 11-D

(dimensional) vector to reflect the likelihood that the query

protein may give rise to each of the 11 phenotypes, which can be

formulated as follows

D; S(Pk[j) j j~1,2,:::,11f g~V~

m1

m2

..

.

mj

..

.

m10

m11

2
66666666666664

3
77777777777775

ð9Þ

where D; is a descending operator to sort the 11 scores of

S(Pk[j) in descending order. Hence, we have

m1§m2§ � � �§mj§ � � �§m11. Accordingly, if m1~S(Pk[1),

m2~S(Pk[7), m3~S(Pk[5), …, then that the query protein

Pk gives rise to the 1st phenotype (Conditional phenotypes) will

have the maximum likelihood, that Pk gives rise to the 7th

phenotype (Carbohydrate and lipid biosynthesis defects) will

have the second maximum likelihood, that Pk gives rise to the

5th phenotype (Cell morphology and organelle mutants) will have

the third maximum likelihood, and so forth (cf. Table 1). In rare

cases, when more than one element of the vector in Eq.6 has the

same value, the order will be randomly sorted. Based on the

descending order of Eq.6, the predicted results are respectively

called the 1st-order predicted result, the 2nd-order predicted

result, the 3rd-order predicted result, and so forth.

Jackknife Cross-validation and Evaluation
In statistical prediction, three cross-validation methods are

often used to examine the prediction quality: subsampling

(K-fold) test, independent dataset test and jackknife test [30].

Among the three methods, jackknife test is regarded as the

most objective as discussed in Chou’s work [31,32] and has been

used more and more frequently to test and evaluate various

predictors [33,34,35,36,37,38,39,40,41,42]. In this research,

the jackknife cross-validation was also applied to test the

network-based method. During the validation, each protein in

the seed set is in turn knocked out as a query protein sample,

and the remaining proteins of the seed set in the PPI

network are used for prediction by the network-based method.

Thus, the i-th order prediction accuracy Qi can be calculated

as follows

Qi~

P11

j~1

Mij

N
(i~1,2,:::,11) ð10Þ

Where Mij is the number of correctly predicted proteins of the j-

th phenotypic category in the seed set, and N is the total number of

proteins in the seed set. Finally, the 11-order prediction accuracies

are obtained to evaluate the network-based method. The large Qi

with a small i and the small Qi with a large i imply a good

performance of the method.

The average number of phenotypes that each protein in the

network exhibits can be calculated as follows

N~
X11

i~1

Qi ð11Þ

Therefore, another evaluation for the network-based method

was proposed as the likelihood that the first r-order predicted results

include all the phenotypes of proteins, which can be calculated as

follows

Pr~

Pr
i~1

Qr

P11

i~1

Qi

ð12Þ

A large Pr accompanied with a small r also implies a good

performance of the method for the protein phenotype prediction.

Prediction
Besides the seed proteins, there are also 2,942 proteins in the

PPI network. The tethering potential of such protein to the each

phenotype can be calculated according to Eq. (7) and then ranked

in descending order. In this manner, the phenotypes of these

proteins can be predicted by the network-based method.

Results and Discussion

Performance of Network-based method
Through leave-one-out cross-validation, the overall 11-order

success rates by the network-based method on the aforemen-

tioned 1,267 seed proteins are listed in Table 2. As we can see

from the table, the most likely (first-order) prediction accuracy is

65.4%, and the least likely (last-order) one is 3.39%. The former

minus the latter equals 61%. Based on the prediction criteria,

the bigger the difference value is, the better the method

performs. According to Table 2, a downward-slope curve is

Predicting Protein Phenotypes
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drawn in the Figure 3, showing that higher-order phenotype

prediction is better than the lower-order one. This is the exact

phenomenon that we want to see, and it may imply that the

predicted phenotypic categories of proteins are well arranged by

the method according to the prediction criteria.

The average number of phenotypes that each seed protein has is

1.7 according to Eq. (11). The chance that a random guess of a

protein phenotype will succeed is 1.7/11 = 15.4%, much lower

than the first order prediction success rate. As is shown in the

Table 2, the first 3 prediction accuracies are larger than the

success rates of random guess. And the likelihood of the first 3-

order predicted results including the phenotypic categories of the

proteins in seed set is 70.6% according to the Eq. (12). These

results may imply that our method performs well in the prediction

of protein phenotypes in budding yeast.

In genetics, mutations that cause the same phenotype are

inferred to functionally associated, and vice versa [18]. Phenotype

is a multifactorial trait that often results from the contribution of

many proteins. Because the interacting proteins are often in the

same complex or pathway, it is rational to expect that interacting

proteins often share the common phenotypes. For example, the

interactions of seed protein YBR039W with the other seed

proteins are listed in Table 3. The complex information about

those proteins is retrieved from CYGD [27]. We can easily see

that protein YBR039W and its neighbors YBL099W, YDL004W,

YDR298C, YLR295C, YML081C-A, YPL078C, YPL271W are

members of the same F0/F1 ATP synthase (complex V) complex.

Additionally, proteins YDR298C and YPL078C are also

members of complex in [43], and protein YPR024W is

component of Yme1 protease complex. And these proteins share

the common phenotype auxotrophies, carbon and nitrogen

utilization defects. Therefore, when protein YBR039W is

predicted as a test sample by the method, the first candidate

phenotype will be assigned its real phenotype. For another

example, the interactions of seed protein YDL028C with the

other seed proteins are listed in Table 4. The information of

pathways that yeast proteins participate in is retrieved from

Kyoto Encyclopedia of Genes and Genomes [44] (KEGG).

Except proteins YDR168W, YKL042W, YPL209C with no

pathway annotation, proteins YDL028C, YBL084C, YGL116W,

YGR113W, YGR188C, YIL106W, YKL022C, YMR055C,

YOR026W involve in the same pathway sce04111 (Cell cycle

in budding yeast). The loss-of-function of any one of these 9

proteins likely disrupts the mitotic cell cycle progression and lead

to cell cycle defects. Based on the interactions listed in the table,

we can arrange the first, second candidate phenotype of protein

YDL028C as the cell cycle defects, cell morphology and organelle

mutants respectively according to the prediction criteria. The

correct phenotype predictions of proteins YBR039W and

YDL028C support the hypothesis that the functional associated

proteins often share the same phenotypes. Therefore, the protein

phenotypes can be predicted from the phenotypes of its

interacting proteins by the method.

Table 2. The leave-one-out cross-validation (Jackknife test)
success rates by a random guess and the network-based
method.

Most likely category

Order 1 2 3 4 5 6

Random Guess Accuracy
(%)

15.5 15.5 15.5 15.5 15.5 15.5

Network-based Method 65.4 34.1 20.7 13.3 8.76 6.47

Least likely category

Order 7 8 9 10 11

Random Guess Accuracy
(%)

15.5 15.5 15.5 15.5 15.5

Network-based Method 5.84 5.21 3.47 3.39 3.39

doi:10.1371/journal.pone.0017668.t002

Figure 3. A downward-slope curve to show the relations among the different order prediction accuracies.
doi:10.1371/journal.pone.0017668.g003
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Protein phenotype prediction with inactivating its
interacting protein

Here, we discuss the robustness of our method by applying the

method to the proteins whose interacting proteins are inactivated.

First, we chose a protein and took away one of its interacting

proteins from the PPI network. Then the phenotype of the protein

was predicted by the method based on the broken PPI network. In

this way, the phenotypes of 6 proteins were predicted, as shown in

Table 5. The phenotypes predicted from the unbroken network

and the recent phenotype studies focusing on these proteins are

also listed in Table 5. We found that the phenotypes predicted

from the broken network were different from the phenotypes

predicted from the unbroken network, while the proteins were

verified to have these new phenotypes predicted from broken

network in the recent studies. For example, with protein

YOR196C in the network, the 1st order predicted phenotype of

protein YER178W by the method is ‘‘auxotrophies, carbon and

nitrogen utilization defects’’, which is the same as the annotation

from CYGD [27]. After inactivating protein YOR196C, the

phenotype of protein YER178W is predicted as the ‘‘conditional

phenotypes’’. In the study [45], protein YER178W was reported

to have the phenotype-‘‘Heat sensitivity: increased’’, which is one

kind of ‘‘conditional phenotypes’’ according to the phenotype

classification in CYGD. In the table, the new phenotypes of other

proteins predicted from the broken network can also be supported

by the literatures [13,46,47,48,49,50]. The examples listed in the

table indicate that our method may provide new phenotypes for

proteins and serve as a complementary tool for the existing

resources.

Application and improvement
As is discussed above, the first 3-order predicted results

(approximately double the average number of phenotypes 1.7)

can be considered as the candidate phenotypes of the proteins

concerned by the biologists. Genetic experiments can focus on

these candidate phenotypes of the proteins, which may accelerate

the research progress and decrease the cost. At least, the last three

predicted phenotypes can be excluded because the last 3-order

prediction accuracies are lower than 5% (See Table 2).

The effectiveness of the functional network for predicting

phenotypes of proteins in yeast suggests the possibility of

application to other species. The method is based on the functional

protein association network. Besides an abundance of such

networks in STRING [28] (Version 8.0 of STRING covered

630 networks of different organisms), the PPI networks can also

derived from worm PPI database [51], fly database [52], human

Table 3. Interactions of protein YBR039W with its neighbor proteins.

Protein A Phenotype Complex Protein B Phenotype Complex Weight

YBR039W P1 C1 YBL099W P1 C1 999

YBR039W P1 C1 YDL004W P1 C1 999

YBR039W P1 C1 YDR298C P1 C1; C2 999

YBR039W P1 C1 YLR295C P1 C1 917

YBR039W P1 C1 YML081C-A P1; P2 C1 934

YBR039W P1 C1 YPL078C P1 C1; C2 999

YBR039W P1 C1 YPL271W P1 C1 997

YBR039W P1 C1 YPR024W P1; P2; P3 C3 986

C1 represents F0/F1 ATP synthase (complex V), C2 represents Complex in study [38], C3 represents Yme1 protease complex, P1 represents Auxotrophies, carbon and
nitrogen utilization defects, P2 represents Cell morphology and organelle mutants, P3 represents Conditional phenotypes.
doi:10.1371/journal.pone.0017668.t003

Table 4. Interactions of protein YDL028C with its neighbor proteins.

Protein A Phenotype Pathway Protein B Phenotype Pathway Weight

YDL028C P4; P5 sce04111 YBL084C P4; P6 sce04111; sce04113; sce04120 929

YDL028C P4; P5 sce04111 YDR168W P4 no annotation 999

YDL028C P4; P5 sce04111 YGL116W P4 sce04111; sce04113; sce04120 956

YDL028C P4; P5 sce04111 YGR113W P4; P5 sce04111 999

YDL028C P4; P5 sce04111 YGR188C P5 sce04111; sce04113 999

YDL028C P4; P5 sce04111 YIL106W P4; P5 sce04111 988

YDL028C P4; P5 sce04111 YKL022C P4; P7 sce04111; sce04113; sce04120 929

YDL028C P4; P5 sce04111 YKL042W P4 no annotation 990

YDL028C P4; P5 sce04111 YMR055C P4 sce04111 984

YDL028C P4; P5 sce04111 YOR026W P4; P7 sce04111 978

YDL028C P4; P5 sce04111 YPL209C P4; P5; P7 no annotation 984

P4 represents Cell cycle defects, P5 represents Cell morphology and organelle mutants, P6 represents Nucleic acid metabolism defects, P7 represents Conditional
phenotypes, Sce04111 represents cell cycle pathway in budding yeast.
doi:10.1371/journal.pone.0017668.t004

Predicting Protein Phenotypes

PLoS ONE | www.plosone.org 6 March 2011 | Volume 6 | Issue 3 | e17668



PPI database [53,54,55], and so on. When in possession a series of

proteins with known phenotypes, one can predict the possible

phenotypes of other proteins in the networks. Therefore, the

method can be easily applied to the prediction of protein

phenotypes in other organisms, especially model organisms.

The performance of our method can be improved if the

following problems are solved. First, increase the quality of PPI

network and exclude the false positive interaction; currently we

used high confidence score cutoff to filter the network (See section

Data Set). Second, proteins in the same complex or pathway may

exert opposite effects on a phenotype, playing as actors or

repressors [18]. If the network can discriminate the positive or

negative regulation, our method can be modified and the

performance will be improved. Third, the performance of the

network-based method depends on the number of seed proteins.

This problem can be solved in future when the phenotypes of

more proteins are investigated. In summary, identification of

protein phenotypes is an extremely complicated work and there is

a long way to go.

Conclusion
In this research, we proposed a multi-target model [40] to

predict phenotypes of proteins in budding yeast based on the

protein-protein network. Because some proteins can give rise to

more than one phenotype, rather than the most likely phenotype,

a series of candidate phenotypes are predicted for each protein.

With the performance of the method, it is anticipated that the

promising approach may serve as a useful tool for annotating the

phenotypes for uncharacterized protein sequences.
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Table S3 The proteins and the complexes they belong to
in yeast. The information was retrieved from CYGD (the

Comprehensive Yeast Genome Database) (Guldener U, Mun-

sterkotter M, Kastenmuller G, Strack N, van Helden J, et al.

(2005) CYGD: the Comprehensive Yeast Genome Database.

Nucleic acids research 33: D364-368.).

(PDF)

Table S4 The proteins and the pathways they belong to
in yeast. The information was retrieved from KEGG (Kyoto

Encyclopedia of Genes and Genomes) (Kanehisa M, Goto S,

Hattori M, Aoki-Kinoshita KF, Itoh M, et al. (2006) From

genomics to chemical genomics: new developments in KEGG.

Nucleic Acids Res 34: D354-357.).

(PDF)
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Table 5. Phenotypes of proteins predicted by our method with/without inactivating its interacting protein.

Protein Phenotype from CYGD [27]

Phenotype predicted by our
method without inactivating
the interacting protein

Inactivated
interacting
protein

Phenotype predicted by our
method with inactivating
the interacting protein

Phenotype
from literatures

YER178W Auxotrophies, carbon and
nitrogen utilization defects

Auxotrophies, carbon and
nitrogen utilization defects

YOR196C Conditional phenotypes Heat sensitivity:
increased [45]

YML035C Conditional phenotypes Conditional phenotypes YDR226W Cell morphology and
organelle mutants

Toxin resistance:
increased [46]

YMR198W Cell cycle defects Cell cycle defects YPR141C Cell morphology and
organelle mutants

Bud morphology:
abnormal [47]

YOR254C Conditional phenotypes
Cell cycle defects Mating
and sporulation defects

Conditional phenotypes YKL073W Cell morphology and
organelle mutants

Mitochondrial
morphology: abnormal
[48] Telomere length:
increased [49]

YDL198C Conditional phenotypes Conditional phenotypes YPL240C Auxotrophies, carbon
and nitrogen utilization
defects

Utilization of nitrogen
source: absent [50]
Utilization of carbon
source: decreased [13]

YPR166C Auxotrophies, carbon and
nitrogen utilization defects
Cell morphology and organelle
mutants

Auxotrophies, carbon and
nitrogen utilization defects

YHR147C Conditional phenotypes Heat sensitivity:
increased [45]

doi:10.1371/journal.pone.0017668.t005
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