
Opposing Roles for Membrane Bound and Soluble Fas
Ligand in Glaucoma-Associated Retinal Ganglion Cell
Death
Meredith S. Gregory1, Caroline G. Hackett1, Emma F. Abernathy1, Karen S. Lee2, Rebecca R. Saff3,

Andreas M. Hohlbaum2, Krishna-sulayman L. Moody2,4, Maura W. Hobson1,2, Alexander Jones1,

Paraskevi Kolovou1, Saoussen Karray5, Andrea Giani6, Simon W. M. John7, Dong Feng Chen1, Ann

Marshak-Rothstein4*., Bruce R. Ksander1*.

1 The Schepens Eye Research Institute, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America, 2 Department of

Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America, 3 Department of Medicine, Harvard Medical School, Boston,

Massachusetts, United States of America, 4 Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America,

5 Institut National de la Sante et de la Recherche Medicale (INSERM) Unite 580, Hopital Necker, Paris, France, 6 Massachusetts Eye and Ear Infirmary, Department of

Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America, 7 Howard Hughes Medical Institute, Jackson Laboratory, Bar Harbor, Maine,

United States of America

Abstract

Glaucoma, the most frequent optic neuropathy, is a leading cause of blindness worldwide. Death of retinal ganglion cells
(RGCs) occurs in all forms of glaucoma and accounts for the loss of vision, however the molecular mechanisms that cause
RGC loss remain unclear. The pro-apoptotic molecule, Fas ligand, is a transmembrane protein that can be cleaved from the
cell surface by metalloproteinases to release a soluble protein with antagonistic activity. Previous studies documented that
constitutive ocular expression of FasL maintained immune privilege and prevented neoangeogenesis. We now show that
FasL also plays a major role in retinal neurotoxicity. Importantly, in both TNFa triggered RGC death and a spontaneous
model of glaucoma, gene-targeted mice that express only full-length FasL exhibit accelerated RGC death. By contrast, FasL-
deficiency, or administration of soluble FasL, protected RGCs from cell death. These data identify membrane-bound FasL as
a critical effector molecule and potential therapeutic target in glaucoma.
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Introduction

Glaucoma is one of the most common causes of blindness

worldwide and, while there are many different forms of glaucoma

that differ significantly in clinical presentation and disease

progression, they all share a common endpoint which is the loss

of retinal ganglion cells (RGCs) [1]. One of the most common forms

of glaucoma, primary open angle glaucoma, is associated with

increased intraocular pressure. However, patients with low or

normal intraocular pressure can also develop glaucoma, indicating

that mechanisms independent of elevated pressure contribute to the

death of RGCs. In spite of extensive research, the pathobiology of

glaucoma is poorly understood. Recent evidence indicates the loss of

RGCs is due to apoptosis [2], nevertheless, the actual molecular

mechanism that triggers apoptosis is controversial.

Data from clinical studies and animal models of induced

elevated intraocular pressure (IOP) support the hypothesis that

there is an inflammatory component to glaucoma and that

TNFa contributes to disease progression. Elevated levels of

TNFa have been detected in the aqueous humor and retinal

layers of glaucoma patients with primary open angle, normal

tension, and exfoliation glaucoma [3][4]. In addition, TNFa
polymorphisms have been associated with primary open angle

glaucoma in Japanese and Chinese populations [5,6]. Develop-

ment of glaucoma also coincided with increased levels of TNFa
and TNFa-inducible genes in laser induced rodent models of

elevated IOP [7][8]. However, in this model, TNFa did not

appear to directly induce cytolysis of RGCs, although it could

be shown to activate microglia [7]. Moreover, a single injection

of TNFa into the vitreous of eyes with normal pressure triggered

the loss of RGCs. Together, these data indicate that ocular

stress, such as elevated intraocular pressure, can trigger the

release of TNFa, which in turn activates microglia to become

neurotoxic for RGCs. However, the direct effector mechanism

responsible for microglia mediated RGC neurotoxicity is not

TNFa.

Fas Ligand (FasL) is one candidate that may link activation of

microglia with the induction of apoptosis in RGCs. Fas Ligand
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(FasL) is a 40 kDa type II transmembrane protein of the TNF

family, originally identified by its capacity to induce apoptosis in

Fas receptor positive cells [9] and mediate activation induced

cell death in T cells [10]. FasL is expressed by activated T cells

and constitutively expressed on ocular tissues where it is thought

to contribute to the immune privileged status of the eye, either

by inducing apoptosis of infiltrating inflammatory cells or by

preventing neoangeogenesis [11]. In addition to its pro-

apoptotic activity, FasL can also induce the release of

proinflammatory cytokines [12,13,14]. Importantly, in a rat

model of heat-shock protein-induced RGC degeneration, FasL+
autoreactive T cells have been implicated in the damage of Fas+
RGCs [15]. By contrast, RGC degeneration in the laser-induced

ocular hypertension models does not appear to involve T cells.

However, other cells of the innate immune system, notably

macrophages and retinal microglia, can express FasL upon

activation [16,17]. Thus FasL+ effector cells could be involved

in T-independent destruction of RGCs. Such a pathogenic role

for FasL appears to be in conflict with its purported role in

immune privilege.

The diverse activities of FasL could result from functional

differences in cell-bound vs soluble forms of the molecule, as is

true for other TNF family members [18,19,20]. Moreover, FasL

can be released from the cell by at least two mechanisms. FasL

can be cleaved from the cell surface by metalloproteinases to

produce a truncated soluble product derived from the

extracellular domain (sFasL) [21]. In addition, cell lines and

activated T cells have been reported to release full-length FasL

in the form of microvesicles [22,23]. Both truncated sFasL and

full-length vesicle-associated FasL can be detected as cell-free

FasL by standard ELISA readouts, leading to some confusion as

to the valency and functional activity of cell-free FasL. There is

considerable data to suggest that murine sFasL is non-apoptotic

and anti-inflammatory, and in some instances, sFasL has even

been shown to antagonize the activity of mFasL. This is in

contrast to an experimental form of FasL that corresponds to

the entire extracellular domain [24,25]. On the other hand,

sFasL bound to extracellular matrix proteins is cytotoxic and

FasL has been localized to the extracellular matrix in the

anterior chamber of the eye [26]. Thus, whether FasL

accumulates in the ocular environment as full-length mFasL

or truncated sFasL, matrix-associated or not, could influence its

functional consequences. Remarkably, the relative levels of full-

length and cleaved FasL in the eye have not been carefully

evaluated.

Most direct functional comparisons of mFasL and sFasL have

been carried out by using transfected cells that express only wild

type FasL, mFasL or sFasL. In the current study, we have used

FasL-deficient mice as well as mice from a gene-targeted line in

which the FasL metalloproteinase cleavage sites were mutated to

prevent cleavage of the membrane-bound protein. We have

compared the ability of these mice to develop RGC degeneration

following intraocular TNFa treatment and in a spontaneous

model of glaucoma. Overall our data reveal a critical neurotoxic

effector function for mFasL and neuroprotective function of

sFasL.

Results

TNFa triggered loss of RGCs is dependent upon FasL
To examine the role of Fas/FasL interactions in the death of

RGCs, we used the intravitreal TNFa injection model developed

by Nakazawa et al (see Figure 1A) [7]. Recipients included a

FasL knockout (KO) line, developed in our laboratory (Figure

S1). As the more commonly used point mutation encoded by the

FasLgld locus does not completely eliminate Fas receptor

engagement [27]. Groups of wild-type C57BL/6J (WT-B6) and

FasL KO mice were given a single intravitreal injection of TNFa
(1 ng/0.5 ml). As negative controls, mice were either untreated, or

injected with normal saline. At four weeks post injection, retinal

sections were stained with an anti-b-III-tubulin antibody to

identify RGCs (Figure 1 B–E). The number of RGCs was

determined quantitatively in representative retinal sections as

described in the methods (Figure 1F). There was no significant

difference in the number of RGCs between either untreated WT,

WT mice given an intravitreal injection of saline, or untreated

FasL KO mice. Therefore the absence of FasL did not have any

spontaneous effect on the number of RGCs. However, consistent

with previous studies, a single intravitreal injection of TNFa
resulted in a significant loss of RGCs in the WT-B6 mice by four

weeks post TNFa injection. By contrast, there was no loss of

RGCs in TNFa treated FasL KO mice. We conclude from these

experiments that FasL is required for the TNFa triggered loss of

RGCs.

DCS mice express only mFasL and maintain normal
ocular histology

To examine the importance of sFasL in ocular homeostasis and

RGC degeneration, we constructed a membrane-only FasL gene-

targeted mouse in which the FasL metalloproteinase cleavage sites

in exon 2 were mutated (Figure S1). This mouse line was

designated as DCS. WT and DCS mice were tested for expression

of mFasL and sFasL. Cell lysates and culture supernatants

prepared from activated T cells were analyzed by Western blot.

A 38 kDa mFasL band was detected in the WT lysate and a

27 kDa sFasL band was detected in the WT supernatant. By

contrast, cell lysates from the DCS T cells contained more of the

38 kDa mFasL protein and the DCS supernatant contained no

detectable sFasL (Figure 2A). Whole eye lysates were also

prepared from WT and DCS mutant mice to test for ocular

expression of mFasL and sFasL by Western blot (Figure 2B). Two

mFasL bands (38 kD and 34 kD) were detected at low levels in

whole eye lysates from WT mice. As an important specificity

control, both mFasL bands were missing from eye lysates that were

prepared from FasL knockout mice [27]. Therefore, the two bands

most likely represent differential glycosylation, previously reported

for mFasL [24,28,29]. In comparison to WT mice the expression

of both the 38 kD and 34 kD mFasL bands were significantly

increased in DCS mice (Figure 2B and 2C). It is important to

note, that sFasL was not detected by Western blot in the whole

lysates from WT mice, possibly reflecting clearance from the eye

or instability of the soluble form.

Altogether, these data demonstrate that DCS mutant mice

express increased levels of mFasL and no detectable sFasL.

Importantly, the DCS mutant mice display no clinically

detectable spontaneous systemic phenotype. Extensive histologi-

cal studies of ocular tissues did not reveal any detectable

spontaneous eye phenotype in either the anterior or posterior

segment.

Accelerated loss of RGCs in DCS mice
Groups of WT and DCS mice received a single intravitreal

injection of TNFa (1 ng/0.5 ml) and 1 week later mice were

euthanized and the eyes evaluated histologically for RGC

degeneration (Figure 2 D–H). Untreated DCS and WT mice

displayed no significant difference in the number of RGCs,

indicating the DCS mutation had no visible effect on RGC

development in healthy mice. As expected from the previous

FasL Cleavage and Glaucoma
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work of Nakazawa [7], WT mice treated with TNFa did not

display any significant loss of RGCs 1 week after administration;

normally a reduction of RGCs in WT mice is not observed until 4

weeks after TNFa treatment. By contrast, there was a significant

reduction in the number of RGCs in DCS mice treated with

TNFa. Moreover, there was a small, but significant reduction in

the number of RGCs in DCS mice that received an intravitreal

saline injection. In this case, RGC loss is most likely due to a

hypersensitive response to the modest release of TNFa that is

triggered by the injection procedure. These data indicate that the

increased expression of mFasL by microglia (or other effector

cells), and/or the absence of sFasL in the ocular microenviron-

ment, results in an accelerated loss of RGCs in response to

TNFa.

To prove the DCS mutation accounted for the accelerated loss

of RGCs via the Fas receptor, we intercrossed DCS mice with Fas-

deficient lpr mice. B6/129DCS/DCS lpr/lpr and wild type littermates

expressing normal FasL and Fas were given intravitreal injections

of either TNFa or normal saline. One week post TNFa injection,

RGC degeneration was evaluated histologically. In Fas-deficient

DCS mice, TNFa was unable to trigger the loss of RGCs

(Figure 2I). Together these data prove that the accelerated loss of

RGCs in TNFa injected DCS mice is dependent upon the Fas/

FasL pathway.

Loss of nerve fibers in the retina of DCS mice
Glaucoma is characterized not only by the loss of RGCs, but

also by the loss of the their axons. The axonal loss is often

visualized clinically as slit-like or wedge-shape defects in the retinal

nerve fiber layer. To evaluate the effect of FasL triggered RGC

death on axonal integrity, we examined the nerve fiber layer of

WT and DCS mice in retinal whole mounts (see diagram in
Figure 1A). There was no significant difference between the nerve

fiber layers of WT and DCS mice that were either uninjected

Figure 1. FasL is required for the loss of RGCs following TNFa injection. (A) Diagram of the cross section of an eye demonstrating: an
intravitreal TNFa injection; the layers of the retina (ILM- inner limiting membrane, GCL- ganglion cell layer, INL- inner nuclear layer, ONL- outer nuclear
layer); a retinal whole mount stained to identify the nerve fiber layer. (B–E) WT C57BL/6 or FasL KO mice were untreated or received intravitreal
injections of saline or TNFa. Eyes were enucleated at 4 weeks and RGCs were identified in retinal sections using an anti-bIII-tubulin antibody (green)
and TOPRO (blue nuclear stain). (F) All bIII-tubulin positive RGCs were counted in each retinal section and the average number RGCs per retinal
section was calculated (10 sections per eye). N = 10 per treatment group. (* P,0.05).
doi:10.1371/journal.pone.0017659.g001

FasL Cleavage and Glaucoma
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(Figure 3 A, B), or administered an intravitreal injection of saline

(data not shown). Moreover, WT mice treated with TNFa
displayed a normal nerve fiber layer one week after treatment

that was not significantly different from the untreated controls

(Figure 3C). By contrast, at 1 week after treatment, the TNFa-

treated DCS mice displayed a significant loss of nerve fibers

(Figure 3D), with some mice displaying very few intact axons

(Figure 3E). Axonal loss in the TNFa treated DCS mice was

abrogated in B6/129DCS/DCS lpr/lpr mice that lacked a functional

Fas receptor (Figure 3F). These data demonstrate that DCS mice

exhibit accelerated loss of both the soma and axon in response to

TNFa.

Figure 2. Loss of RGCs in DCS mice is dependent upon the Fas/FasL pathway. All Western blots displayed are representative of three
independent experiments: (A) CD3 activated T cell lysates and supernatants, (B) whole eye lysates from individual eyes of: WT, DCS, and FasL KO mice,
(C) densitometry of eye lysate Western blots (* and ** P,0.05), (D–G) WT or DCS mice received an intravitreal injection of saline, or TNFa. Retinal
sections were obtained 7 days later and RGCs were stained with bIII-tubulin. Arrow heads highlight the loss of RGCs. (H) All bIII-tubulin positive RGCs
were counted in each retinal section (5 sections per eye; 10 eyes per group) and the average number RGCs per retinal section was calculated. (I) WT or
DCS6lpr mice received intravitreal injections of saline, or TNFa. The number of RGCs was determined 7 days later in retinal sections. Green = Beta
tubulin III and blue = nuclear stain. N = 10 per treatment group. (* p.0.05).
doi:10.1371/journal.pone.0017659.g002

FasL Cleavage and Glaucoma

PLoS ONE | www.plosone.org 4 March 2011 | Volume 6 | Issue 3 | e17659



Exogenous sFasL prevents the accelerated loss of RGC in
DCS mice

We and others demonstrated previously that mFasL is

proinflammatory and proapoptotic, while sFasL is anti-inflamma-

tory and non-apoptotic [24]. To determine whether administra-

tion of recombinant sFasL could prevent the loss of RGCs in

TNFa treated DCS mice, DCS mice received an intravitreal

injection of either sFasL alone (100 ng), TNFa alone (1 ng), or

both sFasL and TNFa. At 7 days post injection, the eyes were

evaluated for axonal degeneration in retinal whole mounts. No

significant loss of nerve fibers was observed in either WT, or DCS

mice treated with sFasL alone as compared with untreated WT

Figure 3. The loss of retinal ganglion cell nerve fibers is accelerated in DCS mice. WT, DCS, or DCS6lpr mice were either untreated, or
received intravitreal TNFa. Seven days later the nerve fibers in retinal whole mounts were stained with SMi32 (anti-neurofilament antibody) and
examined by confocal microscopy. (A) untreated WT retina, (B) untreated DCS retina, (C) WT+TNFa treated retina, (D and E) DCS+TNFa treated retina,
(F) DCS6lpr+TNFa treated retina. Asterisks mark the optic nerve head, Red = SMi32, and blue = nuclear stain. The pictures presented are
representative of individual mice (N = 10 for each group).
doi:10.1371/journal.pone.0017659.g003

FasL Cleavage and Glaucoma
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and DCS mice (data not shown). As expected, a significant loss in

nerve fibers was observed at 7 days post TNFa treatment in DCS

mice compared to the untreated control mice (Figure 4A, 4C).

However, intravitreal injection of recombinant soluble Fas ligand

together with TNFa prevented the loss of nerve fibers (Figure 4E).

It is important to note that the mouse recombinant sFasL used in

these experiments corresponds with the physiological cleavage

product (Pro 132 to Leu 279) and has weak or no cytolytic activity

against A20 target cells.

Spectral domain optical coherence tomography (SD-OCT)

provides a noninvasive method to assess the thickness of the retinal

nerve fiber layer [30]. In the clinic, the retinal nerve fiber layer

thickness is an essential measure for objective glaucoma assessment

[31,32]. However, the use of SD-OCT to measure the retinal

nerve fiber layer thickness in the mouse is a relatively new area of

investigation. In the current study, SD-OCT was used to assess the

retinal nerve fiber layer thickness prior to enucleation and

preparation of retinal whole mounts. Sectorial areas containing

retinal defects were identified in retinal whole mounts stained with

SMI32 (quadrant #1 in Figure 4A, 4C, and 4E). The

corresponding retinal areas were identified in the OCT-based en-

face fundus reconstruction and nerve fiber thickness was assessed

as described in the methods (Figure 4B, 4D, and 4F). SD-OCT

measurements indicated a significant thinning of the nerve fiber

layer in TNFa treated, but not TNFa+sFasL treated mice

(Figure 4G). These data indicate that sFasL can block the

neurotoxic effects of membrane FasL and prevent nerve fiber loss

in DCS mice. Moreover, these date indicate that SD-OCT can be

used as a non-invasive method to assess retinal nerve fiber layer

thickness in mice.

Retinal microglia express mFasL
Retinal tissue from TNFa treated WT and DCS mice were

examined by immuno-histochemical staining for Fas and FasL to

confirm that Fas+ target cells were present within the ganglion cell

layer and to determine which cell types were potential FasL

effector cells. As expected, Fas was highly expressed in the

ganglion cell layer and the level of Fas was similar in TNFa treated

WT and DCS mice (Figure 5A).

In contrast to Fas, FasL was expressed at much higher levels in

DCS mice as compared to WT mice. Moreover, the most intense

staining was observed in the ganglion cell layer, with some staining

also observed in the inner nuclear layer (Figure 5B). Double

staining for microglia (Iba1) and astrocytes (GFAP) clearly

demonstrated that FasL expression in the ganglion cell layer was

primarily restricted to retinal microglia (Figure 5C) and

minimally, if at all, in astrocytes (Figure 5D). These data indicate

that DCS retinal microglia express higher than normal levels of

mFasL and/or that greater numbers of FasL+ microglial cells

accumulate in the TNF-treated DCS retinae [33].

RGCs are susceptible to mFasL induced apoptosis
We verified that the Fas+ human retinal ganglion cell line,

RGC5, was susceptible to mFasL induced apoptosis using mFasL

expressing microvesicles (Figure S2). To determine whether

TNFa treatment of DCS mice triggered apoptosis of RGCs in

vivo, DCS and WT mice were treated with TNFa and at 24 hrs

post injection histological sections were stained with TUNEL and

examined for apoptotic cells. No apoptotic cells were detected in

sections from untreated WT or untreated DCS mice (data not

shown). In addition, little to no apoptosis was observed in saline

treated WT and DCS mice. However, a significant number of

apoptotic cells were detected in the retinal ganglion cell layer of

TNFa treated DCS mice (Figure 5 E, F). Together these data

support the hypothesis that TNFa activated retinal microglia

express mFasL that triggers apoptosis of Fas receptor positive

RGCs.

mFasL induced retinal degeneration in a spontaneous
model of glaucoma

DBA/2 mice spontaneously develop age-related elevated

intraocular pressure due to mutations in the Gpnmb and Tyrp1

genes that trigger iris stromal atrophy and pigment dispersion,

respectively. This results in closure of the iridocorneal angle and

elevated IOP by approximately 6–8 months of age, followed by the

loss of RGCs and nerve fibers between 11 and 15 months [34,35].

To determine if mFasL also accelerates RGC degeneration in this

spontaneous model of glaucoma, we backcrossed the DCS

mutation onto the DBA/2J background. The 5th generation

backcross mice were intercrossed to obtain DCS/DCS mice

(DBA/2J- DCS), and a WT/WT littermate control group (DBA/

2J-wt). Both the DBA/2J-wt and DBA/2J- DCS mice developed

high intraocular pressure with age (Figure 6A), pigment

dispersion (Figure 6B), an enlarged anterior chamber

(Figure 6C), and angle closure (Figure 6D). The appearance

of these symptoms was not significantly different from fully

backcrossed DBA/2J mice as reported previously [34,35]. Thus

the failure to cleave FasL in DBA/2J- DCS mice did not

ameliorate these glaucoma-inducing phenotypes.

However, while there was no detectable loss of nerve fibers in 5

month old DBA/2J-wt mice, there was marked thinning of the

nerve fibers in the DBA/2J- DCS mice (Figure 6E arrows),

indicative of accelerated loss of axons. Previous extensive analysis

of 12 month old DBA/2J mice by Jakobs and coworkers indicated

that elevated intraocular pressure coincided with loss of only

RGCs; no other retinal neurons were affected [36]. This is evident

from the loss of cells in the ganglion cell layer in 12 month old

DBA/2J-wt mice (Figure 6F, arrows). Unexpectedly, when the

DBA/2J- DCS mice reached 12 months of age, they displayed not

only a greater loss of ganglion cells and nerve fibers, but also

extensive retinal degeneration in all layers of the retina

(Figure 6F). This was not due to the presence of the DCS

mutation alone, since 10 month old DCS B66129 mice displayed

normal retinal architecture and no loss of RGCs. Together, these

data indicate that in a spontaneous elevated intraocular pressure

model of glaucoma, mFasL is also highly neurotoxic.

Discussion

Fas ligand is a potent pro-apoptotic molecule expressed by

cytotoxic effector T and NK cells that is known for its ability to

eliminate virally infected target populations, tumor cells, and

autoreactive T and B cells [11]. However, persistent expression of

FasL by Fas-deficient T cells in mice with Fas+ non-T cell

populations can result in graft-vs-host-like disease [37], total

elimination of wild type lymphocytes [38], or can even cause

pulmonary fibrosis [39]. In addition, FasL has also been shown to

rapidly induce the production of proinflammatory cytokines by a

variety of Fas+ cell types and to promote T lymphocyte activation

[13]. Therefore it is not surprising that expression of FasL on T

and NK cells is tightly regulated either at the transcriptional level

[40], by sequestration in cytoplasmic vesicles [41], or by

metalloprotease cleavage [13].

Remarkably, in contrast to T cells and NK cells, FasL is

constitutively expressed at sites of immune privilege, such as the

eye. Ocular expression of FasL is thought to be required for the

maintenance of immune privilege by limiting ocular inflamma-

FasL Cleavage and Glaucoma
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Figure 4. sFasL protects retinal ganglion cell nerve fibers in DCS mice. DCS mice were either untreated, or received intravitreal: TNFa (1 ng)
alone, or TNFa+sFasL. Seven days later SD-OCT measurements were made and subsequently the nerve fibers in retinal whole mounts were stained
with Smi32 (anti-neurofilament antibody). Displayed are a low power composite montage photograph of the entire Smi32 stained retina and a higher
power (620 magnification) of quadrant #1 (Q1). (A) untreated, (C) TNFa alone, and (E) TNFa+sFasL. Asterisks (*) indicate areas where retinas were
dissected. Arrows highlight nerve fiber thinning. Pictures are representative of a single mouse from each group (N = 10 per group). The quadrant #1
was identified in the OCT en-face fundus reconstruction in (B) untreated, and (D) TNFa alone, and (F) TNFa+sFasL. Six sections within the quadrant
were chosen and the nerve fiber thickness measured at two points in each section (identified by an X). A single OCT retinal section and the
corresponding nerve fiber measurements are displayed. (G) A summary of the OCT measurements for each group (N = 3 per group; two experiments
performed). (* p.0.05).
doi:10.1371/journal.pone.0017659.g004
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tion [42] and/or neoangeogenesis [43]. Consistent with this

notion, FasL deficient mice develop a more severe inflammatory

response in a murine model of acquired ocular taxoplasmosis

[44]. Natural expression of ocular FasL (i) promotes engraftment

of allogeneic corneal transplants by inducing apoptosis of

infiltrating Fas+ activated T cells [42], and (ii) prevents suture

induced neovascularization by inducing apoptosis of vascular

endothelial cells [45]. By contrast, FasL-deficient mice present

with increased corneal graft rejection and suture induced

neovascularization [45,46]. More recent studies, however, reveal

an apparent paradox in FasL function within the ocular

environment, where ocular expression of membrane-bound FasL

actually promotes immunoreactivity. For example: (i) over

expression of non-cleavable FasL in the cornea triggers

accelerated transplant rejection [47], and (ii) tumor cells that

express a membrane-only form of FasL induce a severe ocular

inflammatory response [48] Moreover, a number of studies have

shown that the soluble form of FasL antagonizes the functional

outcome of membrane-bound FasL [24,25,49], while others

reported that sFasL could bind to ocular matrix proteins and

thereby acquire potent apoptotic activity [26]. Thus it is unclear

how immune privileged sites regulate FasL activity and control its

potentially dangerous effects related to inflammation and

apoptosis of host tissues.

As previously documented [50] and confirmed in the current

report, whether or not a mouse either fails to express FasL, or over

expresses membrane-bound FasL, does not appear to affect ocular

development or normal lymphocyte homeostasis. Since numerous

cell types in the eye constitutively express Fas, the functional

outcome of Fas engagement must be constrained, either by

cytokines present in the ocular microenvironment, such as TGFb
[51], and/or by some other mechanism. Based on our character-

ization of the DCS mFasL mice, we propose that cleavage of the

membrane form of FasL is a critical factor in the regulation of

ocular FasL activity in the immune privileged environment of the

eye.

Figure 5. Expression of Fas and FasL in the neural retina of WT and DCS mice. Frozen retinal sections were prepared from WT and DCS mice
that were either (i) untreated, or (ii) received a prior (7 days) intravitreal injection of TNFa. (A) Fas receptor expression using an anti Fas antibody (Red)
and TOPRO (blue nuclear stain). (B) FasL expression using an anti FasL antibody (red) and TOPRO (blue nuclear stain). Identically treated retinal
sections from FasL KO mice were used as a negative control. (C) Double staining for microglia (Iba1-green) and FasL (red) revealed retinal microglia
(arrowhead) express FasL. (D) Double staining for astrocytes (GFAP-red) and FasL (green) revealed retinal astrocytes (arrowhead) were FasL negative.
(E) Representative TUNEL staining in DCS mice at 24 hours post TNFa injection. Red = TUNEL, Blue = nuclear stain. GCL- ganglion cell layer; INL- inner
nuclear layer; ONL- outer nuclear layer. (F) Percentages of TUNEL positive cells in the retina. (N = 5 per group). (* p.0.05). See also Figure S2.
doi:10.1371/journal.pone.0017659.g005
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Figure 6. mFasL induced retinal degeneration in DBA/2J mice. The DCS mutation was backcrossed to DBA/2J mice (DBA/2J-DCS) and
compared with littermate controls (DBA/2J-WT). (A) intraocular pressure (IOP) (N$10 mice per group; mean +/2 SEM). DBA/2J-WT and DBA/2J-DCS
(12 mons old) were compared with young (4 mons old) DBA/2J mice for: (B) pigment dispersion and iris atrophy, (C) size of the anterior chamber, and
(D) H&E sections of the iridocorneal angle revealing pigment laden cells (arrow) blocking the aqueous outflow pathway. (E) retinal whole mounts
stained with Smi32 (anti-neurofilament antibody); arrows identify thinning of the nerve fibers. (F) H&E stained retinal sections from: B66129 DCS mice
(10 mons old), DBA/2J-WT (12 mons old), and DBA/2J-DCS (12 mons old). The pictures presented are representative of individual mice in each group
(N = 10).
doi:10.1371/journal.pone.0017659.g006
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While it is well established that FasL is constitutively expressed

in the eye, little is known about the extent of cleavage. Cell-free

FasL has been identified by ELISA in the ocular fluids of the eye

[52,53]. However, the ELISA assay can not distinguish cleaved

sFasL from full-length FasL released from the cell in the form of

microvesicles [22]. These studies have been further confounded by

irrelevant cross-reactivities of many of the commercially available

FasL-specific antibodies. In the current study we rigorously

compared whole cell lysates from wild type, DCS, and FasL KO

mice for FasL expression using a highly specific anti-peptide rabbit

antiserum for Western blot analysis [24]. The DCS mFasL mice

express a gene-targeted form of FasL in which the major cleavage

sites were mutated to render the molecule resistant to metallo-

proteinases. While we were able to distinguish clearly two bands

corresponding to full-length FasL in lysates from DCS mice, we

could barely detect a comparable band in lysates derived from wild

type mice. Thus it appears that most ocular FasL is cleaved under

normal physiological conditions. Our inability to detect sFasL in

the eye lysates from WT mice may reflect increased clearance or

instability of the soluble form.

There is general agreement that RGCs die via apoptosis in

glaucoma, although the molecular events underlying RGC loss are

still debated. The participation of glial cells in the death of RGCs

was demonstrated in work from Nakazawa and colleagues linking

increased intraocular pressure with a rapid upregulation of retina-

associated TNFa and subsequent activation of microglia in the

optic nerve head [7]. While both TNFa and activated microglia

were required for the death of RGCs, the direct cytotoxic effector

mechanism remained unclear. TNFa is detected by 2 receptors;

engagement of TNFR1 is thought to trigger apoptosis and

engagement of TNFR2 is thought to trigger the Akt signaling

cascade and promote survival. TNFR2-deficient, but not TNFR1-

deficient mice fail to exhibit RGCs loss following experimentally

induced elevated intraocular pressure or TNFa injection,

consistent with the premise that TNFa indirectly promotes RGC

death [7]. A potential role for FasL, another TNF family member,

in glaucoma was suggested by immunohistological examination of

the retina in a rat model of glaucoma indicating an increased

expression of FasL on microglia in the glaucomatous retina [17].

In the current study we clearly demonstrate that FasL-deficient

mice are resistant to TNFa-triggered loss of RGCs subsequent to

intravitreal injection. Moreover, TNFa treated DCS mice

displayed a more rapid loss of retinal ganglion cells and nerve

fibers (1 week in DCS mice versus 4 weeks in wild type mice). Our

observations were not limited to TNFa treated mice. Using the

spontaneous DBA/2J model of glaucoma [35], we again observed

a significant increase and acceleration in the loss of RGCs and

nerve fibers in mice expressing the DCS mutation. Unexpectedly,

we also observed a dramatic degeneration in all layers of the retina

in 12 month old DBA/2J-DCS mice. While it is generally accepted

that retinal damage in glaucoma patients is restricted to the

ganglion cells, there are reports of damage to other types of retinal

cells [54]. Taken together, these studies establish the membrane-

bound form of FasL as a key neurotoxic effector molecule in

glaucoma and suggest that cleavage of FasL is important in

protecting retinal tissue from extensive degeneration.

Based on our immunohistological examination of the retina, we

further concluded that FasL expression in the retina was

predominantly associated with microglial cells and not astrocytes.

Prior studies had demonstrated that brain microglia express FasL

[55], and therefore it was not surprising to find that retinal

microglial cells also expressed FasL. In addition, the neurotoxic

effects of FasL in the brain had been previously described in a

model of chronic idiopathic demyelinating polyneuropathy, where

macrophage-mediated demyelination was shown to be dependent

upon FasL mediated death of Schwann cells [56]. Together these

data support the hypothesis that RGC-neurotoxic FasL is

expressed by retinal microglia. Whether the increased expression

of FasL in the retina of TNFa treated mice reflects increased

migration of FasL+ microglial cells to the retina and/or increased

level of FasL expression/cell remains to be determined. Letellier et

al recently demonstrated that FasL triggers migration of Fas+
macrophages and neutrophils into the site of spinal cord injury via

activation of the Syk kinase [33]. Importantly, the increased

migration triggered via FasL resulted in increased inflammation

and tissue damage at the injury site, indicating that FasL triggered

migration is a new mechanism by which FasL can trigger

destructive inflammation. Whether FasL triggered migration is

due to the membrane and/or soluble form of FasL is unknown.

Our data also have important implications for the role of sFasL

in glaucoma. The most straightforward explanation for the

accelerated loss of RGCs in DCS versus WT mice is that greater

expression of membrane-bound FasL causes more extensive RGC

death. However, we also found that sFasL could antagonize the

activity of mFasL and, in the context of glaucoma, be

neuroprotective. The opposing activities of membrane and soluble

FasL further suggest that FasL cleavage is a major mechanism for

limiting the neurotoxic activity of FasL in the eye and raises the

intriguing possibility that TNFa may in fact regulate FasL

cleavage. The cleavage of FasL is mediated primarily by MMPs

(MMP7 and MMP3) as well as TIMPs that are the major

endogenous regulators of MMP activities [57]. Both MMPs and

TIMPs are expressed by retinal microglia, RGCs, and their axons

[58]. Therefore, changes in MMP and/or TIMP expression

triggered by TNFa or other factors induced by elevated IOP may

be critical in regulating the ratio of soluble to membrane FasL

expressed by microglia during glaucoma. In conclusion, our data

indicate the enhancement of FasL cleavage and/or forced

expression of sFasL may have therapeutic applications in

preventing RGC apoptosis in glaucoma.

Materials and Methods

Ethics Statement
All animals were treated according to the Association for

Research in Vision and Ophthalmology Resolution on the Use of

Animals in Research. The Schepens IACUC committee approved

all procedures under protocols #S223-1211 and # S230-0312.

Animals
To examine the importance of sFasL in ocular homeostasis and

RGC degeneration, we constructed a FasL-deficient mouse line

(designated as FasL KO) and a membrane-only FasL gene-

targeted mouse line (this cleavage site deleted-mouse line was

designated as DCS). The details of how these mice were produced

are described in the supplemental data (Figure S1). The DCS

founder mice were crossed to C57BL/6 mice for one generation

and then intercrossed for the TNFa studies. Wild-type littermates

were used as WT controls. A second group of mice were

backcrossed to DBA/2J mice (Jackson Laboratories), and then

intercrossed for in vivo analysis. Assessment of the DCS6DBA/2J

and wild-type DBA/2J littermates was performed at the fifth

generation backcross. FasL knockout mice were described

previously [27].

Intravitreal injections
The intravitreal injection, just posterior to the limbus-parallel

conjunctival vessels, were described previously. Mice received a
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0.5 ml intravitreal injection of TNF-a (Millipore/Chemicon)

(1 ng/0.5 mL of sterile saline) or saline alone. Some mice received

recombinant murine soluble FasL alone (R & D Systems) (100 ng/

0.5 ml sterile physiological saline) or in combination with the

TNFa (100 ng sFasL/1 ng TNFa/0.5 ml sterile physiological

saline). The mouse recombinant sFasL corresponds with the

physiological cleavage product (Pro 132 to Leu 279) and has weak

or no cytolytic activity against A20 target cells.

Quantitation of retinal ganglion cells
Enucleated eyes were fixed and cryostat sections (8 mm) sections

were blocked in 2.5% BSA/0.3% triton in PBS, followed by

incubation with a RGC specific primary antibody, anti-bIII-

tubulin (TU-20, Millipore), a biotinylated secondary antibody, and

Cy2-conjugated streptavidin (Jackson Immuno research). Nuclei

were counterstained with To-pro-3 (Molecular Probes). The total

number of b-III-tubulin/To-Pro-3 double positive retinal ganglion

cells were counted throughout the entire RGC layer of each

section. A total of 10 sections were analyzed per eye (10 eyes

analyzed per group). The sections were taken through the central

globe of each eye.

Retinal whole mounts
Neural retina was isolated, fixed, and incubated with an anti-

neurofilament antibody (SMi32, Covance) for 3 days at 4uC
followed by a Rhodamine (TRITC)-conjugated secondary anti-

body for 2 days at 4uC. Nuclei were counter stained with To-Pro-3

(Molecular Probes, Eugene, OR). Following staining, the retinas

were mounted RGC layer side up and examined by confocal

microscopy (Leica Microsystems; Wetzlar, Germany).

Western blots
Protein lysates were prepared from whole eyes (excluding the

lens) and splenic T cells stimulated with plate-bound anti-CD3.

Proteins were separated on 12% Tris-glycine gels (Invitrogen,

Carlsbad, CA), and transferred onto polyvinylidene difluoride

membranes (Invitrogen, Carlsbad, CA). The membranes were

probed for Fas ligand using a polyclonal rabbit anti-Fas ligand

antibody [24] followed by a goat anti-rabbit-HRP secondary

antibody (Santa Cruz Biotechnology, Santa Cruz, CA). L5178Y-R

tumor transfectants served as positive controls for membrane and

soluble FasL.

Immunofluorescent staining
Immunofluorescent staining was performed on frozen retinal

cross sections using primary antibodies to astrocytes (Cy3-

conjugated GFAP, Jackson ImmunoResearch), microglia (Iba1,

Santa Cruz Technology Inc), FasL (C178 and N20, Santa Cruz

technology Inc), and Fas receptor (C20 Santa Cruz technology

Inc). The secondary antibody for Iba1, FasL, and Fas was a Cy3-

conjugated anti-rabbit. In all cases, isotyped matched antibodies

served as negative controls and To-Pro-3 (Molecular Probes,

Eugene, OR) was used to stain all nucleated cells.

SD-OCT (Spectral Domain Optical Coherence Tomogr-

aphy). Optical coherence tomography was performed using a SD-

OCT system (Bioptigen Inc., Durham, NC) at day 7 after intravitreal

TNFa injection. A volume analysis was performed, using 100

horizontal, raster, and consecutive B-scan lines, each one composed

by 1200 A-scans. The volume size was 1.661.6 cm. The software was

able to generate the en-face fundus image using the reflectance

information obtained from the OCT sections (volume intensity

projection), so that the point-to-point correlation between OCT and

fundus position was possible and accurate.

In vivo quantification of retinal nerve fiber layer

thickness. Sectorial areas containing retinal defects were

identified in the retinal whole mount images and the

corresponding retinal areas were identified in the OCT-based

en-face fundus reconstruction. This was achieved by aligning the

two images using the retinal vessels shape and position. Within the

OCT images passing through these areas, six sections from each

eye were randomly chosen and used by a masked operator to

assess the retinal nerve fiber layer thickness. For the meas-

urements, the caliper tool provided by the Bioptigen software was

used in 2 different, and randomly chosen positions on the same

image. The retinal nerve fiber layer thickness was defined as the

interval between the inner and outer boundary of the most

internal retinal hyper-reflective layer visualized in the OCT image.

Measurement was avoided in OCT points that corresponded to

retinal vessels.

RGC apoptosis
Apoptotic cells were identified in 8 mm frozen retinal sections

using a TUNEL In Situ Cell Death detection Kit (TMR red,

Roche Applied Science) and sections were mounted using DAPI

pan-nuclear stain (Vectashield). Following staining, the ratio of

TUNEL positive to total DAPI positive cells was calculated in 6

visual fields at 1006 magnification. These calculations were

repeated in 3 sections per experimental eye with at least 5 animals

per group per time point.

Intraocular (IOP) measurements
IOP was measured using a TonoLab tonometer (Colonial

Medical Supply, Espoo, Finland) and performed as previously

described [34].

Statistics
Where normally distributed, the data were analyzed with an

unpaired t test with a P value of ,0.05 as the basis for rejection of

the null hypothesis. Statistical analysis and graphing were

performed using Microsoft Excel.

Supporting Information

Figure S1 Production of the mutant mice. (A) Targeting

vectors designed to delete the 2 cleavage sites (AA 124/125 and

AA 127/128) located in exon 2 [59,60] were constructed from a

129/OLA P1 genomic clone (Genomesystems Inc, St. Louis) and

used to transfect 129 ES cells. Appropriately targeted cells were

subsequently transfected with the pMC-Cre expression vector to

remove the neo cassette [62]. (B) In the Cre-FasL construct, 8

residues (121–128) were deleted from exon 2. This mutation

resulted in a splicing error and frameshift mutation, thereby

creating a FasL-deficient strain, referred to in the text as FasL KO.

By contrast, the DCS construct replaced the 4 residues that bracket

the 2 potential cleavage sites (designated by the asterisks in the 4

black boxes). These exchange mutations (124SerRThr, 125PHeRLeu,

127LysRArg, and 128GlnRAsn) eliminated the cleavage sites within

the full-length protein and prevented the cleavage of FasL to

produce the soluble form of FasL. (C) RNA was isolated from

activated CD8+ T cells from FasL KO, heterozygous, and wild-

type mice. RT-PCR was performed using primers (designated by

arrows) to amplify the region spanning exon 1, exon 2, and exon 3.

The results demonstrated that wild-type mice expressed a 473 bp

fragment indicating all 3 exons are present, while knockout mice

expressed only a 427 bp fragment indicating the loss of exon 2. As

expected, the heterozygous mice expressed both products. (D)

CD8+ T cells were isolated from the spleen and lymph node of:
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WT, FasL KO heterozygous, and FasL KO homozygous mice. T

cells were activated with anti-CD3, and analyzed for FasL

expression by FACS analysis. Activated CD8+ T cells from wild-

type mice displayed significant levels of FasL, while heterozygous

mice displayed a significant reduction in FasL. Activated CD8+ T

cells from FasL KO mice displayed no detectable staining over the

isotype control antibody, indicating no FasL was expressed on

these cells. Similar data was obtained with activated CD4+ T cells

(data not shown). (E) Phenotypically, the FasL knock-out mice

present with significantly greater splenomegally and lymphade-

nopathy than gld/gld mice.

(TIF)

Figure S2 Apoptosis of RGCs is induced by mFasL in
vitro. RGC5 cells were differentiated in a 96 well microplates

(1.56103 cells per well) as previously described [61]. After

differentiation the media was removed and complete DMEM

was added. Control vesicles or mFasL vesicles prepared as

previously described [13] were added at various dilutions to

differentiated RGC5 cells and at incubated at 37uC for 16 hours.

Cell viability was assessed using the standard 3-[4,5-dimethylthia-

zol-2-yl]-2,5-diphenyltetrazolium (MTT) reduction assay. (A) The

immortalized RGC-5 cell line was differentiated in vitro and

treated with microvesicles expressing membrane-only FasL

(mFasL) or no FasL (neo) at increasing concentrations 1:100,

1:20, 1:7. The MTT cytotoxicity assay was used to measure

viability and revealed significant loss of viability only in RGCs

incubated with mFasL microvesicles. * p.0.05 and ** p.0.01 as

compared to media alone.

(TIF)
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