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Abstract

Background and Aims: Deoxynivalenol (DON) is a Fusarium derived mycotoxin, often occurring on cereals used for human
and animal nutrition. The intestine, as prominent barrier for nutritional toxins, has to handle the mycotoxin from the mucosa
protected luminal side (apical exposure), as well as already absorbed toxin, reaching the cells from basolateral side via the
blood stream. In the present study, the impact of the direction of DON exposure on epithelial cell behaviour and intestinal
barrier integrity was elucidated.

Methods: A non-transformed intestinal porcine epithelial cell line (IPEC-J2), cultured in membrane inserts, serving as a
polarised in vitro model to determine the effects of deoxynivalenol (DON) on cellular viability and tight junction integrity.

Results: Application of DON in concentrations up to 4000 ng/mL for 24, 48 and 72 hours on the basolateral side of
membrane cultured polarised IPEC-J2 cells resulted in a breakdown of the integrity of cell connections measured by
transepithelial electrical resistance (TEER), as well as a reduced expression of the tight junction proteins ZO-1 and claudin 3.
Epithelial cell number decreased and nuclei size was enlarged after 72 h incubation of 4000 ng/mL DON from basolateral.
Although necrosis or caspase 3 mediated apoptosis was not detectable after basolateral DON application, cell cycle analysis
revealed a significant increase in DNA fragmentation, decrease in G0/G1 phase and slight increase in G2/M phase after
72 hours incubation with DON 2000 ng/mL.

Conclusions: Severity of impact of the mycotoxin deoxynivalenol on the intestinal epithelial barrier is dependent on route
of application. The epithelium appears to be rather resistant towards apical (luminal) DON application whereas the same
toxin dose from basolateral severely undermines barrier integrity.
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Introduction

Deoxynivalenol (DON), a mycotoxin belonging to type B

trichothecenes, is a secondary metabolite of the fungal plant

pathogens Fusarium graminearum and F. culmorum and occurs

predominantly on grains, such as wheat, triticale and maize [1–

4]. It is the most prevalent trichothecene in crop production in

Europe and contaminates common cereal-based diets [5].

Deoxynivalenol is implicated in acute and chronic mycotoxico-

sis in both humans and farm animals [6]. In humans,

deoxynivalenol produces emetic effects and is suspected to induce

more severe diseases such as alimentary toxic aleukia (ATA) or

increased occurrence of oesophageal cancer [7–11]. In animals,

low DON concentrations induce anorexia and alter immune

function, whereas high DON doses induce vomiting, diarrhoea

and malabsorption of nutrients [12,13]. Pigs were identified to be

the most susceptible species [14].

Deoxynivalenol enters the body usually via the oral route and

subsequently encounters the intestinal epithelial cells, representing

the primary target for alimentary intoxication. In vivo and in vitro

experiments report a rapid absorption in the upper gastrointestinal

tract (GIT) [15], a decrease in protein synthesis [16,17] and

various transporters, like GLUT, SGLT-1 and amino acid

transporters [18]. Furthermore, organs belonging to the immune

system (spleen, thymus, bone marrow) appear to be another target

of this agent [19,20].

Pig experiments showed a rapid and nearly complete systemic

absorption (91.5627.4%), with DON appearing already 15

minutes after oral intake in the serum and reaching peak

concentrations already after 1.6560.79 hours [15]. Gastric
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emptying time (tK) of digesta was estimated at 4.8 hours and at

1.8 hours for DON. This rapid disappearance indicates that DON

leaves the stomach most likely with the liquid phase rather than

with the solid (digesta) phase. Furthermore, DON recovery in

various parts of the porcine gastro-intestinal tract (GIT) showed

the upper GIT, i.e. stomach until proximal jejunum, as the most

prominent absorption site. In stomach 88.5% of the initial oral

DON dose was recovered whereas only 1.5% and 10% could be

detected in the upper small intestine and large intestine,

respectively [21]. The rather high amounts of DON in the large

intestine were attributed to the long digesta retention time in this

part of the gut (6–16 hours) and thus to a likely accumulation of

the mycotoxin. However, another explanation could be a re-

absorption mechanism from the systemic side. Interestingly, effects

on intestinal morphology and cell turnover were seen rather for

the mid and distal jejunum than for the upper part (Dänicke et al.,

unpublished data). This leads to the question how this effect could

take place when DON was already absorbed and thus could not

get in direct contact with the apical (luminal) side of the

epithelium? It could be postulated that DON first enters the

blood circulation when absorbed in the upper GIT and then re-

enters the intestinal lumen, passing through the more distal located

intestinal cells from the blood stream via the basolateral side of the

cell. In vitro trials give evidence for the existence of an active DON

transport in the basolateral to apical direction as opposed to simple

diffusion from apical to basolateral in the epithelial cell [22–24].

The functional repertoire of the intestinal cell differs: the apical

side is equipped with the brush border containing a large number

of enzyme and transporter complexes such as lactase, sucrase and

aminopeptidase that facilitate breakdown and absorption of

nutrients from the gut lumen into the blood circulation [25]. On

the basolateral side the transporters for nutrients such as amino

acids or sugars prevail. Consequently, agents intending to enter

the cell might encounter different resistance from the cell

depending on the route of entry and thus differing in its impact

on the cell.

The intestinal epithelium is characterised by tight and adherent

junctions that facilitate cell-cell contact and restrict the para-

cellular transport to small hydrophilic molecules. Transmembrane

and scaffolding proteins such as zonula occludens-1 protein (ZO-1)

and different claudins [26] are responsible for the barrier integrity.

DON was shown to disturb epithelial cell layer integrity measured

by transepithelial electrical resistance in human intestinal CaCo-2

cells [22].

In light of this background it is necessary to investigate the cell

response to the application route of exposure to an agent and thus

help to understand the underlying mechanisms of such a complex

event as mycotoxicosis. Thus we evaluated the effects of DON on

(i) cellular viability and (ii) intestinal barrier integrity, using an in

vitro model of the intestinal porcine epithelial cell line IPEC-J2.

The aim of this study was to evaluate whether DON application

either from the apical or basolateral cell side affects the barrier

function of the intestine more severe.

Materials and Methods

Cell culture conditions
The IPEC-J2 cell line is a non-transformed intestinal porcine

epithelial cell line continuously maintained in cell culture. Cells

were cultured in Dulbecco’s modified eagle medium (DMEM/

Ham’s F-12 [1:1]) supplemented with 5% foetal calf serum (FCS),

1% insulin-transferrin-selenium (ITS), 16 mM HEPES (all PAN-

Biotech, Germany) and 5 ng/mL epidermal growth factor (EGF;

BD Biosciences, Germany) incubated at an atmosphere of 5%

CO2 at 39 uC [27]. Cell cultures were regularly tested by PCR

(VenorH GeM Mycoplasma Detection Kit; Minerva Biolabs,

Germany) and found to be free of mycoplasma contamination.

Cells were routinely seeded at a density of 0.56105/mL in plastic

tissue culture flasks (75 cm2 Nunc, Denmark) and passaged every

3–4 days for a maximum of 20 times (passages 70–90). In our

experiments, IPEC-J2 cells were grown on non-coated, 1 mm pore-

sized culture inserts (6-, 12-, or 24-well ThinCertTM, Greiner bio-

one, Germany) at a density of 1.06105/well for 12 and 24-wells

and 2.06105/well for 6-well inserts, respectively, until reaching

confluence. By using culture inserts, cells were grown in a two-

compartment chamber allowing access from both sides, with an

upper compartment subsequently referred to as apical side and a

lower compartment referred to as basolateral side. Culture

medium, containing increasing concentrations (200, 500, 2000

or 4000 ng/mL) of DON (D0156; Sigma-Aldrich, Germany), was

added either in the apical or basolateral compartment for 24, 48

and 72 hours. Assays were performed in singles in at least three

independent experiments.

Preparation of deoxynivalenol (DON)
Purified DON (D0156; Sigma-Aldrich, Germany) was diluted in

absolute ethanol (99.6%; Roth, Germany) to prepare a 0.2 mg/

mL stock solution. Working solutions were prepared in cell culture

medium. A final concentration of 1% ethanol corresponding to the

ethanol concentration of 2000 ng/mL DON solution was tested in

all assays and results were not significantly different from control.

Assays in 24-well format
Transepithelial electrical resistance (TEER). Measure-

ment of TEER was performed using a Millicell electrical resistance

system (Millipore, France). Cells were deemed to be confluent at a

TEER value of $1 kOhm/well, which was routinely after 4 days.

This value derived from previous trials determining the TEER

kinetics of IPEC-J2 cell line in inserts during 21 days (data not shown).

Lactate dehydrogenase activity (LDH). Cellular mem-

brane integrity was assessed by measurement of medium LDH

activity (Cytotoxicity Detection Kit, Roche, Germany). LDH

assay was performed according to manufacturer’s protocol using

100 ml supernatant of the apical side at different time points

(24, 48, 72 h).

Immunohistochemical determination of DNA syn-

thesis. DNA-synthesis was detected by 5’-brome-2’-

deoxyuridine (BrdU; Roche, Germany) incorporation during the

last 6 h of incubation. Membranes were fixed in absolute ethanol

at 4uC for 30 min and in acetone for 3 min, detached, washed in

Tris-buffered saline (TBS, pH 7.6) with 0.05% Tween and

blocked with 1% normal goat serum (NGS, Axxora, Germany)

for 10 min. In general, after each individual step membranes were

washed in TBS/Tween. Membranes were treated with 2 M HCl

at 37 uC for 30 min and neutralised at room temperature in 0.1 M

sodium borate (pH 8.5) twice for 5 min. After 30 min at 4 uC in

TBS/Tween (0.05%) membranes were incubated with a mouse

monoclonal antibody against BrdU (1:100; BD Pharmingen, USA)

for 30 min. A secondary biotin-labelled goat anti-mouse IgG1

antibody (1:50; Southern biotech, USA) was added for 30 min and

thereafter an ABC-reagent (ABC Elite, Vector Laboratories, USA)

for 60 min at room temperature. Diaminobenzidine solution

(DAB, in 0.1 M PBS, freshly added 0.015% H2O2) was added for

1 min and membranes were subsequently counter-stained with

haematoxylin. The immuno-labelled (brown) and haematoxylin-

stained nuclei (blue) were counted manually.

Cell count. Detached membranes were fixed in absolute

ethanol and acetone. Cells were washed three times with
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phosphate buffered saline (PBS, pH 7.4 and nuclei stained

with the DNA-intercalating fluorescent dye 4’,6-diamidino-2-

phenylindole (DAPI, Partec, Germany). Fluorescence microscopy

and photographs were performed using an Axiovert 200 M (Zeiss,

Germany) equipped with an AxioCam MRm camera and

corresponding Axiovision software. DAPI-stained nuclei were

counted manually and their respective nucleus area was measured

using Axiovision software.

Assays in 12-well format
Analysis of tight junction structure using immuno-

fluorescence. DON concentration used for immunofo-

fluorescence was 2000 ng/mL. Membranes were detached from

the culture insert and fixed in absolute ethanol and subsequently in

acetone. Cells were washed with phosphate-buffered saline (PBS,

pH 7.4) and blocked for 10 min with 1% NGS. Rabbit anti-ZO-1

or rabbit anti-claudin-3, both diluted at 1:100 (Invitrogen,

Germany), were applied as primary and Alexa fluor 488 goat

anti-rabbit (green), diluted at 1:200 (Invitrogen, Germany) as

secondary antibody. Nuclei were stained with DAPI (Partec,

Germany). Fluorescence microscopy and photographs were done

using an Axiovert 200 M (Zeiss, Germany) with an AxioCam

MRm camera and corresponding Axiovision software.

Assays in 6-well format
Protein isolation and immunoblotting of ZO-1, claudin-3

and caspase 3. DON concentrations used for immunoblotting

comprised 200 and 2000 ng/mL and times were set at 6 and

24 hours for caspase 3. ZO-1 blotting was done for 2000 ng/mL

DON at 24, 48 and 72 hours. Cell homogenate protein was

obtained by 10 min incubation on ice with SDS-gel loading buffer

(1 M Tris base pH 6.8; 1% Glycerol, 10% SDS, 0.1%

Bromophenol blue; freshly added with 0.05% b-mercaptoethanol

and 1% protease inhibitors; Complete, Roche, Germany) and cells

were collected with a cell scraper. Samples were denatured at

95 uC for 5 min and loaded together with a prestained protein

ladder (SM1811; Fermentas, Germany) onto 10% SDS-

polyacrylamide gels. After electrophoresis and semi-dry blotting

onto 0.45 mm nitrocellulose membranes (Whatman, Germany) the

primary rabbit anti-ZO-1 antibody (1:500; Invitrogen, Germany),

rabbit anti-caspase 3 antibody (1:1000, Cell Signaling, Germany)

or rabbit anti-claudin-3 antibody (1:1000; Invitrogen, Germany)

were used in blocking reagent of the corresponding detection kit.

Detection of primary antibody binding on western blot was done

with BM Chemiluminescence Western Blotting Kit mouse/rabbit

(Roche, Germany). After ZO-1, caspase 3 and claudin-3

development, the blots were stripped at 50 uC for 30 min with

stripping buffer (7.58 g Tris base, 20 g SDS, 7 mL ß-

mercaptoethanol, pH 6.8), washed and reprobed with anti-

GAPDH antibody (1:1000, Cell Signaling, Germany). Blots were

analyzed on an Alpha-EaseH FC Imaging System (Alpha Innotech,

Canada).

Cell cycle analysis by flow cytometry. After reaching

confluence cells were synchronised for 24 hours in serum free

media before being exposed to 2000 ng/mL DON. Cells were

trypsinised, pelleted and resuspended in PBS. Ethanol fixation and

propidium iodide (PI; Sigma, Germany) staining proceeding were

performed as previously described [28]. Cells were analysed on a

FACSCalibur flow cytometer using CellQuest ProH software (both

BD Biosciences, Germany).

Statistical analysis
Data were analysed by ANOVA and P values calculated using

Dunnett’s or Tukey’s post hoc test (GraphPad Prism 3.0,

GraphPad Software Inc.). Each value represents a single

measurement of at least three independent experiments. Data

are expressed as means (6SEM). Significant differences between

treated cells and control are indicated by asterisks * p#0.05;

** p#0.01; *** p#0.001.

Results

DON influenced cell number and nucleus area
The cell number, defined by count of DAPI stained nuclei on

membranes, as well as the measured nuclei area, were not

influenced by the application of DON from apical side at any

concentration or time in comparison to the control (DON0). In

contrast, after 24 hours incubation from the basolateral side, we

observed a numerical decrease in number of DAPI-stained nuclei

at 4000 ng/mL DON. However, this decrease reached statistical

significance after 48 hours of DON exposure. After DON

incubation of 72 hours we detected a significantly lower cell count

at 2000 ng/mL and 4000 ng/mL (Fig. 1). Furthermore we

determined the DAPI stained nucleic area. It is noteworthy that

we detected a significant enlargement in nucleus area for 4000 ng/

mL DON from basolateral for 72 hours incubation only (Tab. 1).

DON induced cell proliferation
DNA-synthesis and thus cell proliferation was measured by

BrdU incorporation. We detected a significant relative increase of

proliferation after 48 and 72 h incubation with 2000 ng/mL

DON from basolateral, whereas apical toxin application showed

no effect on DNA synthesis (Fig. 2).

DON did not affect LDH release
Although cell count did change markedly dependent on route of

application of DON we could not observe any alteration in LDH

release at any concentration or incubation time when expressed

relative to control (data not shown).

DON did not induce caspase 3 mediated apoptosis
The protein expression of activated caspase 3, one marker of

cellular apoptosis, was determined using immunoblotting. We did

not see any appearance of the active cleaved caspase 3 protein in

response to DON exposure independent of time, route or

concentration (Fig. 3). The protein expression of the housekeeping

glycolytic protein GAPDH remained stable under all concentra-

tions or times and staurosporine (100 mM) induced detectable

caspase 3 activation.

DON stimulated DNA-fragmentation and G2/M arrest
(Cell cycle analysis)

Analysis of the cell cycle phases by PI-staining using flow

cytometry revealed a marked role of the route of DON exposure

on the toxin effect. Apical toxin exposure did not alter the DNA

content in comparison to control. Cell exposure to DON

2000 ng/mL from basolateral resulted in a significant decrease

in the G0/G1 phase after 48 and 72 hours as well as a significant

increase in preG1 phase after 72 hours (Fig. 4). Although we

observed a numerical increase in cells in G2/M phase after

72 hour DON-treatment this finding was not statistically signifi-

cant.

DON induced breakdown of intestinal barrier integrity
TEER is an indicator for the tight junction integrity of a

confluent epithelial cell layer. In control cells TEER was

essentially constant throughout the experimental period. In our

Deoxynivalenol and Polarised Intestinal Epithelium
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trials with apical DON exposure we did not see a significant

change in TEER even with highest concentrations (4000 ng/mL)

applied. It is noteworthy that DON added to the basolateral side

showed a significant decrease in TEER at 2000 ng/mL and

4000 ng/mL DON already after 24 hours. TEER did not recover

throughout prolonged incubation times (Fig. 5).

DON influenced expression of tight junction proteins
The expression of ZO-1 and claudin-3, proteins of the tight

junction complex between adjacent cells, was investigated using

immunoblotting and immunofluorescence. We found a slight

difference after 48 hours between 2000 ng/mL DON from apical

or basolateral side, the latter resulting in a lower protein

expression. This difference was markedly enhanced after 72 hours

incubation, i.e. the ZO-1 expression in cells treated with 2000 ng/

mL DON from basolateral disappeared completely from the blot

(Fig. 6). In contrast to these findings, the immunofluorescence

staining of ZO-1 did not change the distribution pattern between

Figure 1. Effect of deoxynivalenol (DON) on total cell count of
IPEC--J2. Cells were grown on inserts and incubated for 24, 48 or
74 hours with DON (0–4000 ng/mL) applied from apical or basolateral
side in complete medium. Data are given as means (6SEM) in triplicates
from three separate experiments. ***p#0.001 vs. DON0.
doi:10.1371/journal.pone.0017472.g001

Table 1. Deoxynivalenol (DON) enlarged nucleic area (mm2)
of IPEC-J2 cells.

DON (ng/
mL) 24 h 48 h 72 h

ap bl ap bl ap bl

0 139610 13466 13764

200 148617 12965 13364 138616 13067 13066

500 13866 127617 148612 148616 140614 134613

2000 14467 13866 150615 143614 13669 170615

4000 14465 165625 151617 163620 13466 225619***

xCells were incubated for 24, 48 or 74 hours with DON (0–4000 ng/mL) in
complete medium applied from apical (ap) or basolateral (bl) side. Data are
given as means (6SEM) from three separate experiments.
***p#0.001 vs control.
doi:10.1371/journal.pone.0017472.t001

Figure 2. Influence of deoxynivalenol (DON) on proliferation of
IPEC-J2 cells. Cells were grown on inserts, synchronised for 24 hours
in serum free medium and subsequently incubated for 24, 48 or
74 hours with DON (0, 200 or 2000 ng/mL) applied from apical or
basolateral side in complete medium. DNA synthesis was assessed by
BrdU incorporation. Data are given as means (6SEM) from four separate
experiments. ***p#0.001 vs. DON0.
doi:10.1371/journal.pone.0017472.g002
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apical or basolateral treated cells with 2000 ng/mL DON at any

investigated time point (Fig. 7). ZO-1 was detected as a continuous

lining around each epithelial cell independent of application route.

However, at 72 hours incubation of 2000 ng/mL DON from

basolateral the confluent cell layer was disturbed and thus only cell

islets were distributed on the membrane. Interestingly, DON

showed a more pronounced impact on claudin-3 protein

expressions (Fig. 6) and structure (Fig. 8). Immunoblotting clearly

demonstrated the absence of a claudin-3 signal when DON was

applied from basolateral at each time point. This effect was absent

at apical application. This was confirmed by the immunofluores-

cence staining, where claudin-3 appeared as a continuous lining

around each cell in controls and in cells treated with DON from

apical. Basolateral application elicited a definite disturbance of the

continuous lining, beginning at 24 h and resulting in a complete

disappearance oat 48 and 72 h.

Discussion

One of the most important functions of the intestinal epithelial

cell layer is to form an effective barrier against the uptake of

nutritional antigens, pathogens and toxins [29]. Intestinal

epithelial cells form a polarised layer which effectively separates

the apical (luminal) from the basolateral compartment, i.e. the

lamina propria. Tight junctions between adjacent cells represent an

integral part of this compartmentalisation and any damage to

them leads to an enhanced permeability of the cell layer and a

decreased TEER which can lead to intestinal disorders.

In vitro, cells grown on permeable filter supports are morpho-

logically different from cells grown on non-permeable dishes. They

exhibit a more columnar cell type which is represented in an

increased layer thickness and a lower contact area to the support

(Nossol et al., unpublished data). This morphology is more

comparable to the in vivo situation where the intestinal barrier is a

simple, columnar epithelium [30]. In general, an epithelial cell

layer is characterised by its polarity and the generation of two

compartments, apical and basolateral, thereby creating a physical

barrier. This is facilitated by cell-cell contact and cell-substrate

contact [31]. More importantly, in vivo the intestinal epithelial cell

receives its nutrients from the basolateral as well as from apical

side. Cells cultured on non-permeable supports cannot form the

two compartments and may not be fully polarised. Additionally,

cells have to rearrange their apical domain to accommodate

nutrient supply from the apical side solely [32]. This also implies

that any agent being exposed to the basolateral side of the

epithelial cell also might interfere with the cell’s nutrient supply in

some way. This emphasises the importance of the cell support

chosen for in vitro experiments investigating epithelial or endothe-

lial cell lines.

In our study we observed a significant impact of the mycotoxin

DON on intestinal barrier integrity as well as cell viability in

dependence on the application route. First, TEER was detrimentally

affected already after 24 hours when exposed to 2000 ng/mL DON

from basolateral that persisted after 48 and 72 hours toxin exposure.

The highest DON level (4000 ng/mL) resulted in a TEER-decrease

even below the level of cellular confluence, i.e. 1 kOhm, after

72 hours exposure. It is noteworthy that any apical application of the

toxin did not alter TEER compared to the control. Other studies

[33,34] reported also an impact of DON on TEER using IPEC-1,

CaCo-2 and HT-29 cells, representing frequently used porcine and

human intestinal epithelial cell lines. In these studies the toxin

elicited a significant response from the apical side as opposed to our

data, but a decrease below the level of confluence was only achieved

at the distinctly higher concentrations of 50 and 100 mM (approx. 15

and 30 mg/mL) after 72 hours DON exposure. The basolateral

administration was not tested by these authors.

Figure 3. Effect of deoxynivalenol (DON) on apoptosis of IPEC-
J2 cells. Cells were grown on inserts and incubated for 24, 48 or
74 hours with DON (0, 200 or 2000 ng/mL) applied from apical or
basolateral side in complete medium. Protein expression of pro caspase
3 (35 kDa) cleaved caspase 3 (17 kDa) was analysed by immunoblot-
ting. The housekeeping protein GAPDH (37 kDa) was used as loading
control. Staurosporine (100 mM) was used as positive control for cleaved
caspase 3.
doi:10.1371/journal.pone.0017472.g003

Figure 4. Cell cycle analysis of IPEC-J2 cells treated with
deoxynivalenol (DON). Cells were grown on inserts and synchro-
nised for 24 hours in serum free medium and then incubated for 24, 48
or 74 hours with DON (0 or 2000 ng/mL) applied from apical or
basolateral side in complete medium. After staining with propidium
iodide DNA content was analysed by FACS. Data given are means
(6SEM) from five separate experiments. **p#0.01 vs. DON0,
***p#0.001 vs. DON0.
doi:10.1371/journal.pone.0017472.g004
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Further indicators for epithelial layer integrity are the

scaffolding protein ZO-1 and the transmembrane protein

claudin-3, both part of the tight junction complex. They facilitate,

besides others, cell-cell contact and the distinction between apical

and basolateral compartment. Furthermore, ZO-1 as a scaffolding

protein is essential for the spatial organisation of claudins which

are primarily responsible for maintenance of TEER [35].

Immunoblotting of ZO-1 showed a fading signal after 48 hours

that literally became annihilated after 72 hours when cells were

exposed to the toxin from basolateral. Even more pronounced was

the impact on claudin-3, which showed a very faint band after

24 h basolateral toxin exposure and complete absence of signals

after 48 and 72 h basolateral application. Apical toxin exposure

did not change the protein expression as compared to control.

This was also reflected in the immunofluorescence of claudin-3.

Moreover, the intestinal barrier function, as characterised by the

coinciding TEER measurements, was detrimentally affected by the

loss of claudin-3. The protein structure of ZO-1 appeared

surprisingly intact as seen by immunofluorescence, but viewing

the entire cell layer revealed great gaps in the layer, accounting for

cell death and disintegration of the epithelium. This also explains

the drop in protein amount shown by immunoblotting: although

ZO-1 structure between two adjacent cells remained intact, cell

losses increased significantly and thus amount of ZO-1 protein

diminished on a large scale. Other authors also reported no effect

of DON on ZO-1 after 48 h apical incubation despite high doses

(30 mM<9 mg/mL) but a marked deterioration of claudin-3 in the

same study [34]. Total cell count dropped significantly after

48 hours exposure to 4000 ng/mL DON from basolateral and

aggravated during 72 hours toxin exposure. Along with this we

also noticed a significant increase in nucleus area after 72 hours

and 4000 ng/mL DON although not in a dose-dependent way.

Some groups also reported a significant decrease in total cell

numbers in a human K562 erythroleukaemia cell line in response

to DON, although stating statistical significance already at

300 ng/mL DON for a 48 hour incubation [36]. However, these

were immune cells that are known to be more sensitive to DON as

compared to epithelial cell lines [37]. Interestingly, we could

neither detect necrotic cell death as measured by LDH assay nor

caspase 3 mediated apoptosis despite the drastic decrease in total

cell count. This lack of LDH release in DON-treated intestinal

epithelial cells (CaCo-2, IPEC-1) despite a marked decrease in

TEER and cell reduction capacity (MTT assay) was earlier

reported [22,34]. In immune cells a significant increase in

apoptotic cell death after 24 hours DON exposure ($10 mg/mL)

was given, but no effect on necrotic cell death [37]. The same

study showed no impact on these parameters on the epithelial cell

lines tested, BHK21 (kidney cells) and MH-22a (liver cells).

Contradictory, some authors found a marked LDH release

following DON exposure, but at rather high concentrations of

100 mM (<30 mg/mL) for 48 hours (CaCo-2) and 30 mM (<9 mg/

mL) for 24 hours (HT-29-D4), respectively [23,33].

One possible explanation for the lack of LDH release seen in our

study could be that cells undergo anoikis rather than apoptosis.

Anoikis represents a special form of programmed cell death where

anchorage-dependent cells, such as epithelial cells, detach from their

surrounding cell layer and matrix by severing bonds mediated by

hemidesmosomes or integrins. This way the cell membrane of the

dying cell is still intact and would not release LDH [38,39].

Using flow cytometry we investigated the effect of mycotoxin

exposure route on cell cycle. We observed a significant decrease in

G0/G1 already after 48 h and an increase in preG1 phase after

Figure 5. Impact of deoxynivalenol (DON) on transepithelial
electrical resistance (TEER) in polarised IPEC-J2 layers. Cells
were grown on inserts and incubated for 24, 48 or 72 hours with DON
(0–4000 ng/mL) applied from apical or basolateral side in complete
medium. TEER values are expressed in kOhms per insert (0.3 cm2) with
1 kOhm being the level of confluence. Data are given as means (6SEM)
from at least 14 separate experiments. ***p#0.001 vs. DON0.
doi:10.1371/journal.pone.0017472.g005

Figure 6. Western blot of tight junction proteins ZO-1 and
claudin-3 in IPEC-J2 cells treated with deoxynivalenol (DON).
Cells were grown on inserts and incubated for 24, 48 or 74 hours with
DON (0 or 2000 ng/mL) applied from apical or basolateral side in
complete medium. ZO-1 (225 kDa) and claudin-3 (22 kDa) expression
was analysed by immunoblotting. The housekeeping protein GAPDH
(37 kDa) was used as loading control.
doi:10.1371/journal.pone.0017472.g006
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72 hours basolateral DON application. Other groups reported a

similar impact of the mycotoxin on cell cycle, in particular on cell

cycle arrest in epithelial cells [40,41]. The increase in preG1 phase,

representing subdiploid, apoptotic cells [42], was also reported in

IPEC-1 cells [43]. This increase points towards the apoptotic

pathway rather than a cell cycle arrest. Caspase 3, one of the effector

proteins of apoptosis, was not activated during the investigated time

frame in our study, being somewhat contradictory to the data on cell

cycle. However, caspase 3 was activated after 6, 8 and 12 hours of

DON exposure in IPEC-1 or HT-29 cells grown on non-permeable

plastic dishes [43,44]. Probably either the signal for caspase 3

activation was too weak or the pathway of apoptosis was activated in a

caspase 3 independent manner in cells growing on permeable inserts.

Although caspase-dependent apoptosis seems to be a common type of

cell death it became apparent that cells could also die when caspase

function is blocked. This type of cell death is termed caspase-

independent cell death (CICD) that occurs in response to

mitochondrial outer membrane permeabilisation and disruption of

mitochondrial morphology. In this process death receptor activation

leads to so-called necroptosis (i.e. cell death) through the upregulation

of phospholipase A2 (PLA2) activity that in turn increases oxidative

stress or by effecting autophagy [45]. However, the question of

caspase-independent cell death was not further pursued in our trial.

DNA synthesis was determined on single cell level using the

thymidine-analogue BrdU. Although we observed a significant

decrease in total cell count after 48 and 72 h of basolateral DON

application, nearly all of those remaining cells were proliferating,

possibly attempting to close the gaps in the IPEC-J2 layer. This

resulted in a significant relative increase of proliferation compared to

control. So far we can not decide whether this increased BrdU uptake

is as primary DON effect or a secondary effect due to the cell death

related gaps in the cell layer. Apical DON application elicited no

response in DNA synthesis. This surprising result is in contrast to data

reported in literature [46]. However, in vitro studies used predomi-

nantly BrdU-ELISA that provides information only for the entire cell

population. Furthermore, relationships between the actual cell

number and those of proliferating cells are rarely given and cells

are cultivated on impermeable supports. One study used proliferating

cell nuclear antigen (PCNA) as a single cell marker for proliferation,

however this marker decreased in response to DON [47].

One striking aspect of former studies reporting on epithelial cells

is that the cell layer was exposed to DON from the apical side in

most cases. Most likely this originated from the idea that this apical

exposure is the result of the oral intake of this mycotoxin whereby

it will encounter the enterocytes from the luminal side.

Furthermore, most assays, with the exception of TEER measure-

ments were conducted on cells grown on non-permeable plastic or

glass dishes. In our study we did see a surprising resilience of

intestinal epithelial cells against DON when added to the apical

side with virtually no effect in the applied assays. In contrast the

basolateral application of the same mycotoxin concentration

elicited a clear, dose-dependent response with impairment of the

epithelial barrier integrity and an increase in apoptotic cell death,

starting with quite lower DON concentrations than applied in

other studies. As all experimental conditions were the same with

the exception of route of toxin application we can assume that the

cell support and the resulting changes in cell layer formation

played a crucial role.

Figure 7. Cellular distribution of the tight junction protein ZO-1 in IPEC-J2 monolayers treated with deoxynivalenol (DON). Cells
were grown on inserts and incubated for 24, 48 or 74 hours either without DON (upper panel) or with 2000 ng/mL DON applied from apical (middle
panel) or basolateral side (lower panel) in complete medium. Monolayers were stained for the tight junction associated protein ZO-1 and nuclei
stained with DAPI, then detected by immunofluorescence microscopy. All micrographs were taken under identical exposure time and in the centre of
each membrane. Micrographs are representative for 3 separate experiments with similar results. Scale bar = 50 mm.
doi:10.1371/journal.pone.0017472.g007
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Other investigations reported that intestinal cells react indeed

more sensitive to agents from the basolateral side as compared to

apical exposure [48]. Interleukin-8 was significantly higher

secreted by CaCo-2 cells grown on filters and exposed to E. coli

from basolateral. This interleukin secretion was even amplified by

DON, although this was only applied apically. The author’s

explanation for this difference in sensitivity was the existence of

toll-like receptor 5 (TLR-5) which is present on the basolateral

side of the epithelial cell and in charge for the detection of

bacterial flagellin [49]. Another study reported about the

difference in impact of adenosine administered either from apical

or basolateral to T84 colonic cells in vitro [50]. Ussing chamber

experiments revealed a more potent effect of adenosine from

basolateral on short-circuit current as well as on cellular cAMP.

The authors explained these differences with distinct receptor

proteins and density as well as different linkage to post-receptor

signalling mechanisms. In vivo, a rapid absorption of DON in the

upper small intestine of growing pigs, confined to the duodenum

and the proximal jejunum, was found. Indicative for this rapid

absorption were the fast serum peak concentrations

(1.65 h60.79 h) and the extremely low recovery of DON (1.5%

of initial dose) after oral ingestion of the mycotoxin [15,21].

Moreover, only 2.5% of the oral DON dose was excreted via

faeces whereas the majority was excreted via the urinary tract. An

efficient urinary excretion indicates a high gastro-intestinal

absorption while a high faecal absorption might be due to an

efficient biliary excretion or a lack of systemic absorption. As

faecal elimination of DON in pigs was very low and systemic

absorption very high we can deduce that a hepatic first pass effect

of DON is negligible [15]. Although the toxin was in direct

contact with the apical cell surface the authors could not see any

alterations in terms of morphology and proliferation of epithelial

cells. However, they reported marked effects in the mid-jejunum

and ileum such as an increase in crypt depth and altered protein

turnover, which in all likelihood could not have come in contact

with substantial luminal amounts of DON. On one hand these in

vivo data support our own results on the resilience of the apical

cell surface towards DON. On the other hand it poses the

question on how these epithelial changes could take place so

distant from the actual site of absorption. One explanation would

be that the mycotoxin enters the jejunal and ileal intestinal cells

from the basolateral, i.e. blood stream side, after absorption in

more proximal parts.

In conclusion, we could demonstrate that the response of the non-

transformed, non-cancerous epithelial cell line IPEC-J2 to the

mycotoxin deoxynivalenol differed dramatically depending on the

route of toxin exposure. In particular, the basolateral domain of the

intestinal barrier was significantly more vulnerable as compared to

their apical counterpart. This result suggests a potential mechanism

for the in vivo changes in intestinal barrier distal from the actual site

of high apical DON exposure as discussed above. Moreover, this

emphasises the importance of establishing a truly polarised cell layer

when addressing physiological and pathophysiological questions of

the intestinal epithelium in vitro.
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