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Abstract

Motivation: New antigen microarray technology enables parallel recording of antibody reactivities with hundreds of
antigens. Such data affords system level analysis of the immune system’s organization using methods and approaches from
network theory. Here we measured the reactivity of 290 antigens (for both the IgG and IgM isotypes) of 10 healthy mothers
and their term newborns. We constructed antigen correlation networks (or immune networks) whose nodes are the
antigens and the edges are the antigen-antigen reactivity correlations, and we also computed their corresponding
minimum spanning trees (MST) – maximal information reduced sub-graphs. We quantify the network organization
(topology) in terms of the network theory divergence rate measure and rank the antigen importance in the full antigen
correlation networks by the eigen-value centrality measure. This analysis makes possible the characterization and
comparison of the IgG and IgM immune networks at birth (newborns) and adulthood (mothers) in terms of topology and
node importance.

Results: Comparison of the immune network topology at birth and adulthood revealed partial conservation of the IgG
immune network topology, and significant reorganization of the IgM immune networks. Inspection of the antigen
importance revealed some dominant (in terms of high centrality) antigens in the IgG and IgM networks at birth, which retain
their importance at adulthood.
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Introduction

The recently introduced new antigen microarray chip enables

detection in parallel of the patterns of antibodies binding to

hundreds of antigens, and so provides a system-level view of the

antibody repertoire [1,2,3]. Recently, we analyzed autoantibody

reactivity data of IgM and IgG isotypes present in the sera of 10

healthy mothers at childbirth and in the sera of the cord bloods of

their offspring. The data were obtained using an antigen chip with

290 antigens (see Supporting Information S1). The antigen-

antigen correlation matrices revealed that the IgG repertoires of

each mother and her offspring were very closely related and

distinct for each mother-newborn pair [4]. The IgM repertoires, in

contrast, differed markedly between mothers and offspring; each

mother manifested a different pattern of IgM reactivities that was

distinct from her offspring’s cord IgM repertoire. However, the

IgM reactivities of each of the newborn samples manifested very

similar antigen-binding profiles indicating that in utero each

developing fetus produced autoantibodies to a similar set of self-

molecules. A subsequent analysis of the data revealed that the

reactivity profiles to certain self-molecules were highly correlated

as sets of functional antigen-reactivity cliques [4].

Here, we extended the study of these data by applying graph

and network theory analysis methods [5,6,7]; the aim was to

confirm the previous findings and search for additional insights

into the internal structures of the natural autoantibody repertoires.

To this end, we present the antigen-antigen correlation matrices in

terms of immune correlation networks (or immune networks).

Each node in these networks represents a specific antigen and the

edges that connect the nodes represent the corresponding antigen-

antigen correlations. To extract the most relevant information, we

evaluated the corresponding Minimum Spanning Trees (MST), or

immune trees, for the networks of antigen correlations computed

from the correlation matrices [5,6,7,8]. The MST is a widely used

sub-graph of the complete network that is constructed using a

special algorithm that enables to extract the most relevant

information from the full network [9]. In the complete network,

every node is linked to all other nodes with most of the links
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representing very weak correlations. Therefore, the complete

graph contains a large amount of non-significant information that

could mask the essential motifs. The objective of the MST

algorithm is to select the subset of more informative links

(regarding the hierarchical structure of the system) and reduce

the complete all-to-all network (that contains N(N-1) links) to a

representative sub-graph (that contains only N-1 links). Hence,

generating the maximum information immune networks (or

immune trees) by the MST, makes it possible to investigate the

essential organization motifs, such as the network topological

organization.

We assessed and compared the topological organization of the

IgG and IgM immune trees of the mothers and newborns. Next,

the networks of the two subject groups, mothers and newborns,

were compared by employing the widely used divergence rate

measure [10]. The analysis revealed high topological similarity

between the newborns’ and mothers’ IgG networks and significant

topological differences between the newborns’ and the mothers’

IgM networks. These results indicate partial conservation of the

IgG immune network topology at birth and adulthood, and

significant reorganization of the IgM immune networks during the

immune system development. This observation is consistent with

the fact that most of the IgG antibodies in cord blood originate

from the mother, as they are actively transported across the

placenta to the developing fetus [11]. In contrast, the IgM

antibodies do not cross the placenta, so IgM autoantibodies in

cord blood are necessarily produced by the developing fetus

during pregnancy before birth [4,12].

Much effort has been devoted to assessing the importance of

nodes in complex biological networks such as gene transcrip-

tional regulatory networks, protein interaction networks and

neural networks. The commonly used measures of node

importance include node degree, node centrality, betweenness,

and node vulnerability score [13]. Here, we ranked the antigen

importance in the complete correlation networks using the eigen-

value centrality measure [6,14]. This measure assigns a high

score to the nodes that are strongly linked (have high

correlations) with high-score nodes. The node centrality retains

information that could be lost by the construction of the MST

reduced graph. So, we developed a hybrid presentation in which

the node centrality information is superimposed on the evaluated

MST. This is simply done by coloring each node according to its

eigen-value centrality score. The results presented here indicate

that, indeed, the hybrid analysis revealed additional features

beyond those that could be obtained by each analysis (MST and

node centrality) alone.

Methods

Serum samples
Blood samples were obtained by random availability from 10

healthy women at the onset of term labor and from 10 serum

samples of the cord blood of their newborns, in the course of

normal procedures. All samples were collected with informed

consent and approval by the Institutional Review Board (Helsinki

Committee) of the Tel-Aviv Sourasky Medical Center. The

newborns were healthy at the term of pregnancy (weeks 38–42)

and normal in development and weight for gestational age. The

blood samples were allowed to clot at room temperature. After

centrifugation, sera were collected and stored at 220uC [4,12].

Antigens
305 antigens were spotted on each microarray, as described

previously [4,12]. For the most part, we used the same antigens as

in the previous studies of natural autoimmune repertoires [4,12];

these included proteins, synthetic peptides from the sequences of

key proteins, nucleotides, phospholipids, and other self and non-

self molecules. See Supporting Information S1 for the full list.

Antigen microarray
Antigen microarrays were prepared and studied as described

previously [1,2,3].

Data preprocessing and background filtering
Antigen reactivity was defined by the mean intensity of the 4

replicates binding to that antigen on the microarray; however,

antigen intensities with mean value lower than 1000 in removed

from the datasets leaving us with 290 antigens. Each chip was then

normalized by its mean reactivity divided by the standard

deviation. This was done in order to account for differences in

total protein concentrations that affect the background intensity

level [4,12].

The correlation matrices and their collective
normalization

Following Madi et al. [4], we started by calculating the antigen

correlation matrices from the antibody reactivity data obtained

using the antigen microarray technology. The correlations

between the antigen reactivity profiles (the reactivities of the

antigen in all subjects), were calculated by Pearson’s formula [15]:

C(i,j)~
S Xi(n){mið Þ Xj(n){mj

� �
T

n

sisj

: ð1Þ

Where Xi nð Þ and Xj nð Þ are the reactivity of antigens i and j of

subject n and si and sj are the STD of the reactivity profiles of

antigens i and j. Note that the antigen-antigen correlations (or for

simplicity the antigen correlations) for all pairs of antigen define a

symmetric correlation matrix whose (i,j) element is the correlation

between antigens i and j.

Similar to neural and gene networks, the immune system can

exhibit activated and inhibited reactivity responses; both positive

and negative antigen correlations contain important information.

To ease the calculations while retaining the information about

negative correlations, we start by transforming the Pearson

correlation values C(i,j) from the originally computed range of

(21,+1) to the range of (0,1). We saved the original values of the

correlations in the range (21,+1) and used these values in the

visualization of the edges in immune networks as is described in

greater detail below.

Following Baruchi et al. [16], we normalized the correlation

matrices using the following meta-correlations procedure: the

meta-correlation MC(i,j) - the Pearson correlation between

rows i and j of the correlation matrix after reordering. In the

reordering process, the elements C(i,i) and C(j,j) are removed

from the calculation. The correlation vector for i is {C(i,j),
C(i,1), C(i,2),. . .}, and for j it is {C(j,i), C(j,1), C(j,2),. . .}.

In other words, the meta-correlation is a measure of the

similarity between the correlations of antigen i with all other

antigens and the correlations of antigen j with all other

antigens. To ease the following calculations the meta-correlation

matrix MC was transformed to the range of (0,1). The meta-

correlations were then used to generate the normalized

correlations Aff (i,j) between antigens i and j, given by

[4,17,18],

The Immune Networks at Birth and Adulthood
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Aff (i,j)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
C(i,j):MC(i,j)

p
: ð2Þ

The collective normalization further signifies features and can

reveal collective motifs related to functional connectivity in the

network [4,17]. Additional comparison to the information

embedded in the normalized correlation matrices using calculation

of eigen-value entropies [19] can be found in Supporting

Information S2. To retrieve the significant negative correlations,

we transformed the normalized correlation to the range of (21,1)

and took the absolute values of the results using

Affabsolute(i,j)~ Aff (i,j):2{1k k. This process amplifies groups

within the data set as is illustrated in Figure 1.

Network representation of the correlation
In the current work we represented the correlation matrices by

employing network theory approaches [5,6,7,8]. In these immune

network representations, each node corresponds to a specific

antigen of the 290 antigens on the chip and the edges represent the

antigen-antigen correlations (or normalized correlations) for a

certain group of subjects (mothers or newborns).

The weighted adjacency matrix
In network theory, an adjacency matrix commonly describes the

network topology by containing the information of whether a link

between two nodes exists or not. In the case of activity networks

(e.g. correlations between stocks in financial networks [5] or

synchronization between neuron activity patterns [14]), a weighted

adjacency matrix, in which the "distances" between the nodes

represent the activity similarity, is constructed. Here we used the

ultrametric distance, suggested by Mantegna et al. [5], by

transforming the normalized correlation between two nodes,

Affabsolute(i,j), into a distance by

D(i,j)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2: 1{Affabsolute(i,j)½ �

p
: ð3Þ

Defined this way, the distance
ffiffiffi
2
p

§Dij§0 satisfies the metric

requirements: 1.) Dij = 0 if and only if i = j, 2.) Dij = Dji, 3.)

Dij§DikzDkj , and also the requirements for ultrametricity [5].

In correlation based networks, such as the one described here, a

weight, which is monotonically related to the correlation

coefficient of each pair of elements, can be associated with each

link. Therefore one can directly associate a weighted complete

graph with the correlation matrix among N elements of interest.

The reduced adjacency matrix and eigen-value centrality
Another approach to extract relevant information is by

reduction of the weighted adjacency matrix into a reduced binary

matrix, the elements of which are assigned values A(i,j)~1, if the

Figure 1. The process of transforming antigen-reactivity correlations into correlation-based distance: (A) correlation matrix; (B)
normalized correlation matrix; (C) absolute value of the normalized correlation matrix after transformation to the range of (21,1);
and (D) distance matrix. The matrices presented here are for the mothers’ IgM dataset. We note that for visualization proposes, the original
correlation matrix (A) was reordered using the dendrogram algorithm, while all other matrices were reordered according to it.
doi:10.1371/journal.pone.0017445.g001
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nodes i and j have a distance shorter than a threshold level, and

A(i,j)~0. In simple words, this adjacency matrix describes a

network in which two nodes i and j are linked if they are strongly

correlated - the correlation between them is above a threshold

level. Determining which threshold to use is not a simple task.

Here we have chosen to use a measure of normalized STD of the

principle eigenvector.

We begin by choosing a correlation threshold, and use it to

create an adjacency matrix A as described above. We diagonalize

the adjacency matrix, and focus on the principle eigenvector (the

eigenvector corresponding to the largest eigenvalue). The

centrality of each variable is defined as the weight of each variable

in the principle eigenvector. We then compute the STD of the

components for the principle eigenvector, and normalize it by the

number of variables with a non-zero component. This allows us to

search for a threshold that gives a compromise between high

values of centrality and a small number of variables; in so doing,

we can identify a significant sub-group of variables with the highest

centrality in the network.

We then calculate the normalized STD of the eigenvalue

centrality for different thresholds, ranging from 0 to 0.95

correlations. We test the normalized STD as a function of the

correlation threshold for each of the datasets. The evaluation

continues by investigating the second derivative of the resulting

normalized STD’s. This process revealed that the fluctuations in

the second derivative of the STD begin at thresholds above 0.79

and more specifically above 0.82 for the maternal IgM, above 0.82

for the cord IgM, above 0.79 for the maternal IgG and above 0.86

for the cord IgG (see Supporting Information S3, Figures S1, S2

for additional explanations).

We used the information embedded in the reduced adjacency matrix

described above to sort the antigens according to their reactivity

dominance by their eigenvalue centrality score in the full

correlation network. Mathematically, the eigenvector centrality

l
i

of node (i) is the largest eigen-value of the matrix equation

liXi~
1

l

Xn

j~1

A
ij

X
j
, ð4Þ

where Xi is the corresponding eigen-vector centrality of node i and

A is the reduced adjacency matrix. According to the Perron–

Frobenius theorem, li is positive [6].

Minimum Spanning Tree
As was mentioned, a complete graph (in which each node is

linked to all other nodes), contains too much irrelevant

information (links that correspond to very weak correlations);

hence, relevant information can be obscured [9]. The Minimum

Spanning Tree (MST), is an algorithm designed to identify the

informative links and reduce the complete network that contains

N(N{1) links to N{1 links.

Here we applied the commonly used Kruskal algorithm [20,21]

to compute the MST, but other algorithms can also be used

[22,23,24]. This algorithm looks for a subset of the branches

forming a tree that includes every node, where the total weight of

all the branches in the tree, namely the score that is derived from

the correlation, is minimized (see Supporting Information S4,

Figure S3 for additional information).

Network comparison based on divergence rate
We performed quantitative comparisons between the IgM and

the IgG immune trees (Minimal Spanning Tree or MSTs) of the

newborns and the mothers using the divergence rate measure

developed by Lee et al. [10].

The divergence rate measure developed by Lee and Kim, 2006

[6] is based on the idea of quantification of the information

difference between two process (variables) based on the notion of

conditional entropy. In information theory, the specific conditional

entropy h(X jY~y) is the entropy of a process (variable), under

the condition that another process Y is assigned the value y. The

Conditional Entropy H(X jY ) is then the average of h(X jY~y)
over all possible y that Y can take. It can be shown that

H(X jY )~H(X jY ){H(X ), where H(X jY ) is the combined

entropy of processes X and Y and H(X ) is the entropy of process

X. The conditional entropy [6] has been used to define the metric

distance or information distance ID(X ,Y ) between two processes

X and Y as ID(X ,Y ):H(X jY )zH(Y jX ).

Motivated by this idea, Lee and Kim [6], define the notion of

the metric distance MD(GX ,GY ) between two graphs GXf g and

GYf g to be:

MD(GX ,GY ):CDiv(GX jGY )zCDiv(GY jGX ): ð5Þ

Where CDiv(GX jGY ) and CDiv(GY jGX ) can be viewed as

conditional divergences and are calculated as follows: First we

define DGX (i) to be the sum of the topological distances from a

node i to all its neighborhoods nodes if gNN . Then we define the

conditional distances CDiv(GX jGY )(i) to be the sum of the

topological distances in graph GYf g from node i to the group of

nodes if gNN defined in graph GXf g. Note that these nodes, which

are in the neighborhood of i in graph GXf g need not be in the

neighborhood of i in the graph GYf g. We also note that DGY (i)
and CDiv(GY jGX )(i) are defined in a similar way. With these

definition at hand, CDiv(GX jGY ) is defined to be:

CDiv(GX jGY )~
1

N

XN

i~1

log10

CDiv(GX jGY )(i)

DGX (i)

����
����: ð6Þ

Note that in the informative sub-graphs studied here, each

directed link from node i to node j corresponds to a topological

distance 1 from i to j and we take the neighborhoods nodes if gNN

to be the nodes that have a topological distance 1 with node i. The

topological distance between two nodes that are not directly

connected by an edge is the number of directed edges of the

shortest path connecting the two nodes.

Results

We investigated the antigen correlation matrices of the IgG and

IgM isotype antigen-reactivity data of 10 pairs of mothers and

their newborns. We also studied the combined (or integrated) IgG

and IgM correlation networks. The immune trees for the mothers

and their newborns were calculated separately and compared.

Global view of the combined antigen-reactivity networks
Antibodies of the IgM isotype are produced by B cells in the first

phase of an antibody immune response, and IgM antibodies have

been proposed to regulate the development of IgG autoantibodies

[25] and prevent autoimmune diseases [26]. To test whether the

IgM network might influence the IgG network, we analyzed the

integrated correlation matrices of IgM and IgG datasets for the

mothers and cords (see Supporting Information S5, Figure S4 for

additional details).

The Immune Networks at Birth and Adulthood
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Figure 2 shows the merged MST (immune trees) that correspond

to the IgM-IgG integrated antibody correlation matrices. Inspection

of these immune trees reveals a higher integration between the IgG

and IgM isotypes for the mothers (Figure 2A) compared to the

newborns (Figure 2B): for the mothers’ tree, the two isotypes appear

on the same branches, but tend to be segregated into different

branches in the newborns’ tree. To quantify these differences

between the newborn and the maternal merged MSTs, we

measured the topological distances between the different nodes in

each of the trees, where the topological distance is measured in

terms of the number of edges (see Supporting Information S6 for

detailed statistics). The most significant result is that the average

distance between IgG and IgM nodes in the newborns tree is 27.47

with a STD of 1.9 compared to 21.38 with STD of 1.6 in the

maternal tree. This result suggests that natural maturation of the

immune system from the newborn to young adulthood might lead to

the evolution of greater coordination between antibody reactivities

of the IgG and IgM isotypes.

Immune tree architecture and node centrality
Figure 3 shows the separated IgG and IgM MSTs for mothers

and newborns (Figure 3A and 3B, respectively). The node colors

indicated the eigen-value centrality, ranging from dark red for

high centrality to dark blue for low centrality. In the construction

of the trees, we selected the first node in each MST to be that with

the highest centrality. Yet, we note that most of the nodes at the

first levels of the trees (which are selected by the tree construction

algorithm), also manifest a high centrality value. Negative

correlations are indicated by red edges. It can be seen that the

links within a single branch can turn from positive to negative, and

vice versa. This finding indicates that both negative and positive

relations between antigen-reactivities participate in connectivity

throughout the MST network.

Quantified comparison between the MSTs (immune trees)

revealed that the maternal (Figure 3C) and newborns (Figure 3D)

IgG immune trees are very similar (with p-value = 0) followed by

the similarity between the different isotypes within the groups

(Figure 3B,D and Figure 3A,C). A moderate level of similarity was

found between the newborns’ IgG immune tree and the mothers’

IgM immune tree and also between the newborns’ IgM immune

tree and the mothers’ IgG immune tree. Significantly lower

similarity was found between the IgM MSTs of the newborns and

the mothers (Figure 3A,B p-value = 0). The similarity between the

IgG immune trees of the mothers and newborns is consistent with

the fact that IgG antibodies are actively transported from mother

to her developing fetus [4,11]. However, the difference between

the IgM immune trees of the newborns and the mothers is a new

observation, and indicates reorganization of the IgM network

topology between birth and adulthood. We note that this result is

consistent with our previous findings regarding the formation of

antigen cliques in the maternal immune network [4].

Central nodes
Analyses of node centrality (see Supporting Information S7,

Figures S5, S6, S7, S8, S9 for details) revealed that about 10–15% of

the nodes are highly ranked (or act as central nodes) - they manifest

significantly higher centralities than those of the other nodes. These

central nodes, or network hubs, are usually located at the first level of

branches of the immune trees, as is seen in Figure 3.

We found that the central nodes of the IgG networks are

prominently constituted by peptides of heat shock proteins (HSPs)

(8 out of 10 for the mothers and 7 out of 10 for the cords) (see

Table 1). In contrast, most of the central antigens of the IgM

networks are associated with tissue and immune-related antigens (9

out of 10 for the mothers and 7 out of 10 for the cords) such as,

cardiolipin, glucocerebroside and interleukin-4. It is conceivable

that the dominance of HSP molecules as IgG hubs might be due to

their over-representation on the antigen chip. However, the lack of

highly ranked HSP molecules in the IgM network suggests that the

dominance of these molecules in the IgG network is not an artifact.

We also note that HSP60 appears to function as a biomarker of

inflammation and stress for the immune system [27,28], which

suits the position of HSPs as hubs in the IgG networks.

Centrality development
To decipher the development of node centrality between birth

and adulthood, we present in Figure 4 the newborns immune trees

shown in Figures 3B and 3D, while coloring the nodes according

to their centrality values as calculated for the maternal networks

(Figures 3A and 3C). Doing so revealed that node centrality is

partially retained between birth and adulthood both for the IgM

and the IgG isotypes. This is mostly reflected by central nodes

located at early levels of the corresponding immune trees. The

result for IgG is expected, since it is consistent with the

conservation of the network organization (similar topology of the

newborns’ and mothers’ IgG immune trees). Regarding the IgM

Figure 2. The IgM-IgG merged Minimal Spanning Trees. (A) The
merged MST for the mothers. (B) The merged MST for the cords. The
green (ellipse) and purple (diamond) nodes represent the IgG and IgM
isotypes respectively. Negative correlations between two nodes are
indicated by red lines.
doi:10.1371/journal.pone.0017445.g002
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network (whose topology does change from birth to adulthood),

the retained centrality suggest that there exist a core of central IgM

reactivities shared by both newborns and mothers, despite the

differences in the immune network overall architectures. These

findings suggest that during the development of the immune

system from birth to adulthood, some cliques of central antigens

are conserved.

As mentioned above, the IgG isotypes are transferred during

pregnancy from the mothers to the fetus. Hence, the findings of

different IgG central nodes in the mothers and in the cords

Figure 3. Hierarchical organization of the separated immune trees for the IgM and IgG isotypes. (A) The MST for of the maternal IgM; (B)
The MST of the cords’ IgM; (C) The MST of the maternal IgG; and (D) The MST of the cords’ IgG. The nodes’ colors indicate their centrality level from
dark red for high centrality to dark blue for low centrality. The first node in the trees is the one with the highest centrality. Negative correlations
between nodes are designated by red edges and constitute about 7–10% of the links.
doi:10.1371/journal.pone.0017445.g003

Table 1. Antigen-reactivity hubs in IgM and IgG networks in maternal and newborns’ sera.

Maternal IgM Association Newborns’ IgM Association Maternal IgG Association Newborns’ IgG Association

GroEL-14 HSP Vasoactive intestinal
Peptide 16

Hormone HSP70-37 HSP HSP60-35 HSP

IFN-gamma Immune Poly aspartyl Enzyme Poly aspartyl C peptide Tissue

Kinetensin Immune Phospho-
ethanolamine

Enzyme GroEL-12 HSP GroEL-24 HSP

Endothelin 2 Tissue Matrix
metalloproteinases
protein

Protease GroEL-29 HSP HSP70-31 HSP

C peptide Tissue C peptide Tissue HSP70-36 HSP somatostatin Hormone

Spectrin Tissue GroEL-33 HSP GroEL-4 HSP Complement C9 Immune

Vasoactive intestinal
peptide 16

Hormone Interleukin 4 Immune HSP60-28 HSP GroEL-31 HSP

Cardiolipin Tissue Glucocerebroside Tissue HSP60-34 HSP HSP60-23 HSP

Elastase Enzyme GroEL-10 HSP Kinetensin Immune GroEL-6 HSP

Alpha 2
macroglubulin

Plasma
protein

HSP60-21 HSP GroEL-6 HSP HSP70-39 HSP

doi:10.1371/journal.pone.0017445.t001

The Immune Networks at Birth and Adulthood
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networks suggest that the IgG antibodies are transferred in a

selective way. Such selective transfer can lead to the differences

between the mothers and newborns IgG immune networks

discovered here.

The immune trees of the immune cliques
To test the consistency between the previously discovered

antigen cliques (subgroups of highly correlated antigens) [4], and

the immune tree organization detected here, we present in Figure 5

the immune trees for the immune cliques. This revealed additional

information about the antigen cliques: the existence of negative

relationships (marked by a red edge) and the relationships between

cliques that are ‘‘mediated’’ by other cliques.

To decipher the functional relations of the immune cliques with

other antigens we re-plotted in Figure 6A the maternal IgM

immune tree (shown in Figure 3A), while coloring the nodes

according to their immune-clique association. We found that most

of the nodes that belong to the same clique are linked and that

most of the central nodes belong to the strongest antigen clique –

the clique with the highest antigen correlations (see Supporting

Information S8 Figures S10, S11 for additional details).

In Figure 6B, we re-plotted the newborns’ IgM immune tree

(shown in Figure 3B), and marked the nodes according to their

antigen clique associations in the maternal IgM network. This

presentation provides a clear illustration of the different network

organization of the newborns’ IgM immune tree compared to the

maternal IgM immune tree.

Individual immune networks
The immune trees described above were derived from the

reactivities of the groups of mothers and newborns. To compare the

antigen-reactivity networks of individuals within a group, we

superimposed on the maternal IgM immune tree (Figure 3A), the

person-specific normalized IgM reactivity profiles (using a color

code) of individual mothers. In Figure 7A and 7B, we show typical

results for randomly selected two mothers. Similar results, of distinct

differences between the individual immune trees, are obtained for

other mothers as well. The results indicate that each mother has her

own personal immune state reflected by the fact that each mother

has her own person-specific reactivity profile to the 290 different

antigens on the chip. Nevertheless, the existence of a well-defined

group immune tree discloses a topological organization that is

shared by the immune systems of the different mothers.

Discussion

We constructed and analyzed the networks of autoantibody

reactivities present in the blood sera of two groups of individuals –

healthy mothers who had just given birth and their term newborn

babies. This type of network analysis provides a powerful tool for

simplifying complex systems, such as the immune system and for

studying their components and their most informative interactions

in order to identify their structure, topology and functions

emerging from the organization of the collective of elements

[29]. The present study is the first to describe the network-

immune tree architecture of the natural autoantibody repertoires

in healthy mothers and newborns. The analyses uncovered

previously unrecognized features of natural autoantibodies in

terms of network architecture and for the differences between

mothers and cords:

1. Mothers and newborns repertoires manifest generally different

network architectures. In the mothers’ immune tree the IgG

and IgM nodes are largely integrated, but remain distinct

clusters in the newborns. The greater difference between IgM

and IgG repertoires at birth could be explained by the fact that

the congenital IgM and IgG repertoires may develop

independently. After birth, the IgM and IgG repertoires

together are influenced by the external antigenic environment.

This result further suggests that natural maturation of the

immune system from the newborn to young adulthood might

lead to the evolution of greater coordination between antibody

reactivities of the IgG and IgM isotypes. As was shown the

networks are also characterized by negative relationships

(correlations). It can be seen that the links within a single

branch can turn from positive to negative, and vice versa. This

finding indicates that both negative and positive relations

Figure 4. Centrality comparison between the immune networks of mothers and cords. In (A) and (B) we re-plot the cords’ immune trees
for the IgM and IgG shown in Figures 3B and 3D, while coloring the nodes according to the centrality calculated for the maternal IgM and IgG
immune trees shown in Figures 3A and 3C.
doi:10.1371/journal.pone.0017445.g004
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between antigen reactivities participate in connectivity

throughout the immune tree network.

2. Comparison of network topology between birth and adulthood

reveals partial conservation of the IgG immune network topology

between birth and adulthood and significant reorganization of

the IgM immune networks. The similarity between the IgG

immune trees of the mothers and newborns is expected as is

explained above [4,11]. However, the difference between the

IgM immune trees of the newborns and the mothers is new and

indicates reorganization of the IgM network topology between

birth and adulthood. This result is consistent and provides

additional support to our previous findings about the formation

of antigen cliques in the maternal immune network [4].

3. The reactivities to central antigens in the mothers and

newborns show both similarities and differences in both IgG

and IgM isotypes. For example, antibodies to cytokines are

central in the IgM trees of both mothers and newborns, but the

maternal cytokine hub is INF-gamma, and the newborns’

Figure 5. Immune trees of the immune cliques. The correlation matrices for the antigens that belong to the immune cliques identified in (Madi,
et al., 2009), are shown in (A) for the maternal IgG isotypes and (B) for the maternal IgM isotypes. The corresponding immune trees for the maternal
IgG cliques and the maternal IgM cliques are shown in (C) and (D), respectively. Note that the nodes colored green, purple and cyan in panel C
correspond to the top left, middle and lower right clusters in panel A. The nodes colored red, green, blue and yellow in panel D correspond to the
four clusters (from top left to bottom right) in panel B.
doi:10.1371/journal.pone.0017445.g005
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central cytokine is IL-4. Antibodies to heat shock proteins such

as HSP60 are hubs in both maternal and newborns’ IgM trees,

but the HSP60 peptide epitopes differ in each tree (Table 1).

Thus, the classes of antigens in central antibody reactivities can

be conserved in molecular class, although they show differences

in epitope selection. Moreover, in general we see that IgM

reactivities to HSP molecules appear as the prominent central

antigens in both mothers and newborns. We note, that heat

shock proteins were initially discovered as participants in the

cellular response to stress. It is now clear, however, that self and

microbial HSPs also play an important role in the control of

the immune response [30,31]; in contrast, immune system

molecules and tissue molecules are the prominent central

antigens in the IgG immune trees of both mothers and cords.

4. Cliques of antigen reactivities, previously revealed by correla-

tion analysis [4], are more tightly organized and integrated in

the maternal network trees than they are in the newborns’

network trees. However, this analysis further reveals additional

information about the antigen cliques such as the existence of

negative relationships and the relationships between cliques

that are ‘‘mediated’’ by other cliques.

The results presented here illustrate the efficiency of the present

method in revealing new and possibly important motifs of the

Figure 6. The clique association of the nodes on the immune trees. (A) The clique locations for the maternal IgM tree. The cliques association
of the nodes is marked on the trees using different shapes and colors: clique 1 – red square, clique 2 – blue ellipse, clique 3 – dark green rectangle
and clique 4 – yellow diamond. Note that although most of the cliques appear to be linked in the MST presentation, some were not linked, probably
due to the loss of information in the dimension reduction process. (B) The clique locations on the cords’ IgM tree. Panel B shows that maternal clique
members are scattered in the network according to the cord dataset.
doi:10.1371/journal.pone.0017445.g006

Figure 7. Individual immune trees. Hierarchical graph representations of two individual mother immune networks superimposed on the
maternal IgM group dataset, as was presented in Figure 4A. The nodes are colored according to normalized antigen reactivity levels for two selected
mothers, (A) and (B), from the most reactive node (light brown) to the least reactive nodes (dark brown). Note that the first nodes in each of the MSTs
have high centrality value, as was shown previously in Figure 3.
doi:10.1371/journal.pone.0017445.g007
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immune system. For example the findings that show the

persistence of central antigens from birth (newborns) to adulthood

(mothers) might account for the reports that IgM repertoires show

little change from early age [32,33,34]. These other studies,

however, were done using crude tissue blots of undefined self-

molecules; the defined-antigen microarray technology used here

apparently made it possible for us to detect the changes in fine

specificity of the autoimmune repertoire occurring subsequent to

birth.

In general, the results presented here are consistent with the

concept of the Immunological Homunculus, the idea that healthy

immune repertoires contain certain T cells and B cells that have

been positively selected to respond to key body molecules to form a

functional ‘‘internal image’’ of the body [27,28,35,36,37,38]. The

internal image described here consists of natural autoantibodies

interacting specifically with a small group of different extracellular,

membrane, cytoplasmic, and nuclear self-antigens. The homun-

culus theory is based on the regularity of immune self-recognition

consistently observed in healthy individuals. In practice, auto-

reactivity is not the aberration proposed by the Clonal-Selection

Theory (CST) of adaptive immunity, but is actually structured

within the functional architecture of the immune system. The hubs

of self-reactivity we report here would seem to reflect the biases of

selected self-recognition within groups of human populations [39].

Note that both the CST and the anti-idiotypic network paradigms

[40,41] are based on individual differences between the immune

repertoires developed by individual subjects; the immunological

homunculus idea, in contrast, highlights the existence of antigen

reactivities shared by individuals within a population. The relative

uniformity of IgM autoantibody repertoires in newborns as a

group [4,11] fits the homunculus idea; the demonstration of

network MSTs with dominant hubs shown here provides an

additional way to view the homunculus.

The analysis of immune system network architecture shown

here and elsewhere [42] serve as an introduction to basic questions

in systems immunology: What mechanisms connect nodes of

antigen-reactivity, including anti-idiotypic networks of autoanti-

bodies [43,44]? What is the dynamic function of the relatively

large number of central nodes that serve as hubs (,10–15%)? And

how is the architecture of the immune network tree modified by

vaccinations, infections, neoplasia, autoimmune diseases, and

other conditions that perturb immune homeostasis? The antigen

microarray provides a tool to help study these questions. We are

presently undertaking a longitudinal study of the evolution of the

antibody repertoires of individual humans from birth with an

array of antigens, including those directed to self-constituents and

to foreign molecules.

Supporting Information

Figure S1 Normalized eigenvalue centrality STD, as
function of correlation threshold. Calculated for the

maternal IgM (A), cords IgM (B), maternal IgG (C), and cords

IgG (D).

(TIF)

Figure S2 Second derivative of the normalized eigen-
value centrality STD, as function of correlation thresh-
old. Calculated for the maternal IgM (A), cords IgM (B), maternal

IgG (C), and cords IgG (D). In all four cases, there is a significant

change in normalized STD for thresholds larger than 0.79 and

more specifically 0.79 for the cords’ IgM, 0.85 for the cords’ IgG,

0.89 for the maternal IgG and 0.85 for the maternal IgM.

(TIF)

Figure S3 Illustration of the Kruskal algorithm.

(TIF)

Figure S4 The integrated correlation matrices of the
IgM and IgG datasets. Shown for (A) the mothers and (B) the

cords. In each matrix, the IgM isotypes are in the top left frame

and the IgG isotypes are in the bottom right frame. Both frames

(isotypes) are ordered using a dendrogram algorithm demonstrat-

ing the relationships between correlated groups of antibodies of

both isotypes.

(TIF)

Figure S5 Antigen centrality values in descending order.
Calculated for the maternal IgM (A), cord IgM (B), maternal IgG

(C), and cord IgG (D). Marked in red dots are the numbers of

antigens whose centrality values constitute 30 percent of the total

centrality values in the network. Note that for clearer visualization

zero values were removed prior to plotting the data.

(TIF)

Figure S6 Zipf plots of node centrality values. Presented

in descending order for the maternal IgM (A), cords’ IgM (B),

maternal IgG (C), and cords’ IgG (D). Note that zero values were

removed prior to plotting the data and the plots are presented in

log scale.

(TIF)

Figure S7 Semi-log plots of node centrality values.
Presented in descending order for the maternal IgM (A), cords

IgM (B), maternal IgG (C), and cords IgG (D). Note that zero

values were removed prior to plotting the data and the plots are

presented in semi-log scale.

(TIF)

Figure S8 Zipf plots of the descending sorted eigenval-
ues of the correlation matrices (absolute values).
Calculated for the maternal IgM (A), cords IgM (B), maternal

IgG (C), and cords’ IgG (D). Note that the plots are presented in

log scale.

(TIF)

Figure S9 Zipf plots of the descending sorted eigenval-
ues of the correlation matrices (absolute values).
Calculated for the maternal IgG and IgM (A), cords IgG and

IgM (B). Note that the plots are presented in log scale.

(TIF)

Figure S10 Robustness of the trees. We calculated the

distance from all nodes to all others and subtracted it from the

original calculated distance (before removal of the random nodes),

this process was repeated 100 times and the results were plotted for

(A) the maternal IgG and (B) maternal IgM.

(TIF)

Figure S11 Maternal conservation of FIGs. For each of

these randomly ‘‘trimmed’’ trees, we also calculated the average

distance between all the nodes (members) within each FIG and

subtracted it from the original calculated distance (before removal

of the random nodes). (A) maternal IgM and (b) maternal IgG.

(TIF)

Supporting Information S1 Complete list of antigens
spotted on the antigen chip.

(PDF)
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Supporting Information S2 The eigen-values’ entropy of
the correlation matrices.

(DOC)

Supporting Information S3 Calculation of the node
centrality.

(DOC)

Supporting Information S4 Construction of the immune
trees by the Kruskal algorithm.

(DOC)

Supporting Information S5 The integrated correlation
matrices.

(DOC)

Supporting Information S6 The topological statistics of
the immune trees.

(DOC)

Supporting Information S7 The central nodes – the
network hubs.
(DOC)

Supporting Information S8 The immune tree robust-
ness.
(DOC)
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