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Abstract

Background: Phage display is a leading technology for selection of binders with affinity for specific target molecules.
Polypeptides are normally displayed as fusions to the major coat protein VIII (pVIII) or the minor coat protein III (pIII).
Whereas pVIII display suffers from drawbacks such as heterogeneity in display levels and polypeptide fusion size limitations,
toxicity and infection interference effects have been described for pIII display. Thus, display on other coat proteins such as
pVII or pIX might be more attractive. Neither pVII nor pIX display have gained widespread use or been characterized in
detail like pIII and pVIII display.

Methodology/Principal Findings: Here we present a side-by-side comparison of display on pIII with display on pVII and pIX.
Polypeptides of interest (POIs) are fused to pVII or pIX. The N-terminal periplasmic signal sequence, which is required for
phage integration of pIII and pVIII and that has been added to pVII and pIX in earlier studies, is omitted altogether. Although
the POI display level on pIII is higher than on pVII and pIX, affinity selection with pVII and pIX display libraries is shown to be
particularly efficient.

Conclusions/Significance: Display through pVII and/or pIX represent platforms with characteristics that differ from those of
the pIII platform. We have explored this to increase the performance and expand the use of phage display. In the paper, we
describe effective affinity selection of folded domains displayed on pVII or pIX. This makes both platforms more attractive
alternatives to conventional pIII and pVIII display than they were before.

Citation: Løset GÅ, Roos N, Bogen B, Sandlie I (2011) Expanding the Versatility of Phage Display II: Improved Affinity Selection of Folded Domains on Protein VII
and IX of the Filamentous Phage. PLoS ONE 6(2): e17433. doi:10.1371/journal.pone.0017433

Editor: Cameron Neylon, Science and Technology Facilities Council, United Kingdom

Received January 24, 2011; Accepted February 3, 2011; Published February 24, 2011

Copyright: � 2011 Løset et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
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Introduction

Phage display is a leading technology for selection of binders

with affinity for specific target molecules [1]. Libraries of

polypeptides are created as fusions to phage coat proteins that

are solvent exposed. The phage particle withstands physicochem-

ical challenges that allow for highly diverse and versatile selection

regimes [2,3]. Thus, there is a clear-cut motivation for further

increasing the performance and expanding the use of phage

display.

The wt filamentous phage virions of M13, fd and f1 are

composed of a small genome surrounded by a cylinder of coat

proteins that measures about 1 mm in length and 8–10 nm in

diameter, and has a total of about 2,700 copies of the major coat

protein pVIII. In addition, the virion harbors approximately 3–5

copies of each of pIII, pVI, pVII and pIX; pIII and pVI on one

virion tip and pVII and pIX on the other (Fig. 1) [4]. pIII is of

particular importance since it is the critical component for the

early events of E. coli host entry [5]. All are integral E. coli inner

membrane proteins before virion assembly [6], but only pIII and

pVIII are synthesized as precursors containing classical N-terminal

signal sequences [4]. pVII and pIX appear to be synthesized

without such signal peptides and consequently do not undergo

post-translational processing [4].

Polypeptides have been displayed on all five structural proteins,

but only pIII and pVIII display have gained widespread use. In

both cases, the POI is normally placed in-frame between the N-

terminal signal sequence and the mature form of the viral protein.

POI-phage coat proteins may be encoded either in a phage

genome or by a phagemid; in the latter case, complementation by

a helper phage is needed to support virion production. Whenever

a helper phage is utilized, it is an advantage during subsequent

selection that the phagemid encoding the POI-fusion, and not the

helper phage genome, is preferentially packaged in virions that

display the POIs.

In pVIII display, there are polypeptide fusion size limitations

that restrict its use primarily to small peptide fusions [7,8]. The

minor coat protein pIII tolerates larger fusions and pIII display

performs better than pVIII display in high affinity selection [2,9].

However, pIII is the critical viral protein for E. coli host infection,
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and POI fusion to pIII affects phage propagation, infectivity and

causes repertoire bias [10,11,12]. Display on pVII or pIX might

therefore be more attractive. In an early attempt to investigate

pVII and pIX display, glutathione S-transferase was chosen as the

POI and unsuccessful display was reported [6]. Later, successful

display was shown to depend on a periplasmic signal sequence

(pelB or ompA), being added to the N-terminus of the fusion

protein [13]. Subsequent reports have therefore all utilized pelB-

mediated periplasmic targeting of pVII and pIX fusions

[14,15,16]. In an accompanying paper, we report that pVII

displays a number of different peptide fusions without the need of

an N-terminal signal sequence. The peptides (AviTag, FLAG and

HIS6) were up to 17aa in length and have different charge and pI.

This finding prompted us to compare display of large folded

domains, such as single chain Fv (scFv) and single chain T cell

receptor (scTCR), on pIII with display on pVII and pIX in the

absence and presence of pelB. We demonstrate that the display

level is higher on pIII than on pVII and pIX, and that the display

level on pVII and pIX increases by including pelB. However, the

presence of the signal sequence on pVII and pIX introduces a

problem in that the helper phage genome, rather than the

phagemid encoding the POI, is preferentially packaged in the

virions after E. coli super-infection. In contrast, phagemid is

preferentially packaged when it encodes the POIs fused to pVII

and pIX without an N-terminal signal sequence. Importantly, both

pVII and pIX display perform better than pIII display in affinity

selection. This makes both an attractive alternative to conventional

pIII and pVIII display for constructing libraries and subsequent

selection of binders.

Results

Functional Display of Folded Domains on pVII and pIX
To study how pVII and pIX perform in phage display of folded

domains, we tested display of three different folded domains and

compared with conventional pIII display. Despite the fact that

both pVII and pIX are expressed without N-terminal signal

sequences and processing [4], they are inserted into and span the

inner membrane of E. coli prior to virion incorporation. To study

virion assembly, host cell viability as well as the ability of pVII and

pIX to display folded domain fusions, a series of phagemid vectors

were constructed with N-terminal POI fusions to pVII and pIX

with or without the N-terminal signal sequence pelB (Fig. 2). The

three POIs were two antibody scFvs (anti-phOx and anti-NIP) and

a scTCR [17], which differ with regard to periplasmic expression

efficiency in E. coli, ranging from very good (anti-phOx) to poor

(scTCR) (Fig. S1).

E. coli XL1-Blue was transformed with the various phagemids

and host cell viability (measured as end culture cell density) and

resulting phagemid titers were assessed following phagemid rescue.

Transcription of the POI-capsid fusions was at lacPO basal level or

after IPTG induction (Fig. 3A and B). In most cases, fusion to

neither pVII nor pIX affected host cell viability, regardless of the

presence of signal sequence. Whenever reduced host cell viability

was observed, it did not translate into reduced production of

virions. The virion yield was high throughout, except for in two

cases: A marked reduction was observed upon pVIIpelB display of

scFv anti-phOx and the scTCR.

The ability of the phage-borne POIs to bind their cognate

ligands was investigated by semi quantitative phage capture

ELISA as described in Methods (Fig. 3C–E). All POIs were found to

bind specifically to antigen. Low phage yield reduced the signal.

Thus, particularly low binding was observed for the scTCR, which

is also poorly expressed as soluble protein (Fig. S1). We have

previously demonstrated that over-expression of the periplasmic

chaperone FkpA increases display of scTCRs when fused to pIII

[17]. Here, we tested the effect of FkpA over-expression on pVII

and pIX scTCR display (Fig. 3E), and demonstrate increased

display on pVII, but not on pIX.

Virions produced after E. coli super-infection may have

incorporated helper phage genome or phagemid encoding the

POI fusion protein during assembly. The incorporation of

phagemid is preferable since this increases the probability for

successful affinity selection. We therefore investigated the genome

content of the virions. The ratio of phagemid to helper phage

containing particles was scored by measuring the titers of ampR

and kanR colony forming units (cfu) in each case (Fig. 3F). A score

value at or above 100 indicates that at least 50% of the virion

population contains the phagemid. For both pVII and pIX display

this was always the case, also after IPTG induction. In the

presence of signal sequence on pVII and pIX, on the other hand, it

was not. Here, helper phage was preferentially packaged. For pIII,

the majority of virions contained helper phage in one case (scFv

anti-NIP) and phagemid in two cases (scFv-anti-phOx and

scTCR). Whenever the helper phage was preferentially packaged,

the effect was most dramatic after IPTG induction.

The large variation in phagemid to helper phage packaging

ratios observed was surprising; hence to verify the result, rescued

phagemid samples (scFv anti-phOx) were separated according to

size on an agarose gel and the genomes visualized after phage

particle denaturation in the gel (Fig. 4A). The approach was based

on the fact that the virions accommodate to the size of the ssDNA

they encapsulate. Virions that contain either phagemid encoding

pVII or pIX fusions were 537658 nm and 529641 nm long,

respectively. This is approximately 100 nm shorter than the length

of the virions that contain the pIII fusion encoding phagemid

(665655 nm), and more than 700 nm shorter than the M13K07

helper phage genome containing virions (12566138 nm) (Fig. S2).

Distinct bands of ssDNA clearly demonstrated the presence of

predominantly phagemid (pIII, pVII and pIX display), predom-

Figure 1. Schematic drawing of the filamentous phage
structure. (A) The wt virion is made up of five structural proteins
that coat a single stranded DNA genome of about 6.4 kb. (B) In the wt
phage there is about 2,700 copies of pVIII and approximately 3–5 copies
each of the four proteins pIII, pVI, pVII and pIX, which are found at each
tip of the virion [4,35]. The virion size depends on the genome size at
approx. 2.3 nucleotides per pVIII, and hence the length of the particle
changes as a function of genome length [36]. The theoretical MW of the
mature capsid proteins were calculated from the sequence of VCSM13
(GenBank accession no.: AY598820).
doi:10.1371/journal.pone.0017433.g001
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inantly helper phage (pVIIpelB display) or a mixture of equal

amounts of phagemid and helper phage (pIXpelB display). Again,

IPTG induction was shown to increase packaging of helper phage

in pIII display. Subsequent infectious titration of the same samples

almost perfectly mirrored the results from the ssDNA visualization

(Fig. 4B and C). Furthermore, immunolabeling with anti-Ll chain

Ab and protein A gold in electron microscopy revealed that both

short phagemid-containing and long helper phage-containing

virions displayed fusion proteins (Fig. S3).

Packaging Ratio May Influence Selection Efficiency
The actual display levels, defined as antigen specific binding in a

phage capture ELISA with dilution series of virions, were then

assessed for two specificities, scFv anti-phOx ((Fig. 5A) and scFv

anti-NIP (Fig. 5B), and for each of the three coat proteins, pIII, pVII

and pIX. Display of pVII and pIX fusion proteins were tested in the

presence and absence of pelB mediated periplasmic targeting. For

both specificities, the display on pVII and pIX were lower than on

pIII. Periplasmic targeting improved pIX, but not pVII display.

We have previously shown that increased functional pIII display

may translate into increased selection efficiency [18]. Here, we

study the effect of the packaging ratio on selection using POI-display

level-matched samples. Mixtures of virions that were helper phage-

dominated or phagemid-dominated were subjected to a single

round mock selection. Samples of scFv anti-phOx fused to pVII

(dominated by phagemid virions) or pVIIpelB (dominated by helper

phage virions) were used in antigen specific phage capture ELISA as

above. The virion input was either high (1010 virions) or low (105

virions). Following antigen binding and high stringency washing,

captured virions were retrieved by in-well host cell infection, and the

resulting cfuampR determined by selective propagation (Table 1).

The results show that all samples were efficiently retrieved with high

virion input, while only the pVII samples were retrieved with low

virion input. The infectious (cfuampR and cfukanR) virion input is

given in Table S1. These data show that the lack of pVIIpelB

retrieval at low virion input is likely due to the low number of

phagemid containing virions in the input mixture (e.g. the actual

phagemid pVIIpelB input in Experiment 2 was only 52 cfuampR).

Improved Affinity Selection of Binders Displayed on pVII
and pIX

To elucidate how pVII and pIX display perform in affinity

selection, we again compared them with conventional pIII display.

Virions were produced in the presence or absence of IPTG

induction, the POIs being either scFv anti-phOx or anti-NIP,

respectively. Thus, a total of 6 phage populations were evaluated

for the two antigens phOx- and NIP-BSA. In each case, the

Figure 2. Schematic drawing of the pVII and pIX display phagemids. The full-length pIII of pSEX81 (GenBank accession no.: Y14584) was
exchanged with either full-length pVII (N-MEQVADFDTIYQAMIQISVVLCFALGIIAGGQR-C) or pIX (N- MSVLVYSFASFVLGWCLRSGITYFTRLMETSS-C)
retrieved from the M13K07 genome giving rise to pGALD7 (A and B) and pGALD9 (C and D), respectively. Moreover, both pGALD7 and pGALD9 were
made such that the recombinant fusion was targeted either to the periplasm by a pelB signal sequence (A and C), or not (B and D). The phagemids
can accommodate in-frame exogenous sequences (e.g. variable gene segments from Abs creating single chain Fv (scFv)) introduced through cassette
exchange on NcoI/HindIII or MluI/NotI, respectively, thereby creating a continuous open reading frame (ORF). The two cassettes are connected by a
21aa synthetic linker containing the mAb Yol1/34 tubulin epitope (bold underlined) [18]. The heterologous polypeptide is fused to the capsid
through a 9aa spacer containing a trypsin protease site (bold underlined). Unique restriction sites are indicated. Abbreviations: lacPO, lac promoter;
SD, Shine-Dalgarno sequence; pelB, signal sequence of bacterial pectate lyase; t, T7 transcriptional terminator.
doi:10.1371/journal.pone.0017433.g002
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antigen specific virions were mixed with the specificity irrelevant

virion at a ratio of 1:107. The two scFvs do not cross-react (data not

shown). Two rounds of affinity selection were then carried out. We

used three different elution strategies; high pH, proteolysis with

trypsin or direct infection. Enrichment was analysed by comparing

the signals from the unselected mock library (R0) with the outputs

of the first (R1) and second (R2) round of selection using an

antigen specific phage capture ELISA (Fig. 6). The results showed

that pVII and pIX perform better than pIII in affinity selection in

all but one case, namely phOx selection using elution by direct

infection. The standard pIII display route employing high pH

(TEA) or proteolytic (trypsin) elution exhibited poor enrichment

compared to pVII and pIX. Selection was more efficient without

than with IPTG induction, independently of display route and

elution conditions, and the negative effect of IPTG induction was

most severe for pIII display route.

Discussion

Phage display on pIII and pVIII is based on signal sequence

dependent translocation of the POI-capsid fusion from the cytosol

to the periplasm of the E. coli host. We show here display and

efficient affinity selection using two alternative capsid proteins,

pVII and pIX. In contrast to earlier reports, this was achieved

without the aid of a conventional post-translationally cleaved N-

terminal signal sequence. Both pVII and pIX lack known signal

sequences and are yet inserted into and span the inner E. coli

plasma membrane prior to virion incorporation without post-

translational processing [4,6]. The discrepancy between the

current study and an earlier report [6] regarding the feasibility

of genomic pVII fusion protein display may at least partly be due

to the nature of the fusion protein used previously, namely

glutathione-S-transferase, which is a globular protein that readily

folds and dimerizes in the cytosol [19]. This may have hampered

its periplasmic targeting.

Two different scFvs and one scTCR were displayed on pIII as

well as on pVII and pIX in the absence or presence of a

periplasmic signal sequence. All were expressed from phagemids.

A recent report of signal sequence mediated genomic scFv-pVII

display described reduced virion titers [20]. Here we extend this

observation, as viral titers were reduced when two of three POIs

(scFv anti-phOx and scTCR) were displayed on pVII in the

presence, but not in the absence, of signal sequence.

We found the display level to vary in virion populations with the

POIs displayed on pIII, pVII or pIX. In all cases, it was higher on

pIII than on pVII and pIX. The addition of an N-terminal signal

sequence increased display on pIX, but not on pVII. However,

helper phages were preferentially packaged after super-infection.

Display may well differ between the two populations of phages

(either long, containing helper phages, or short, containing

phagemid), and in a first step, we were able to confirm by

electron microscopy that both long and short particles were able to

display POI-fusions. The relative display levels on the two

populations are not known. However, specific antigen binding

for pIXpelB and VIIpelB was seen despite the fact that both had

highly unfavorable phagemid to helper phage ratios.

In a selection regime ‘‘the retrievable virions’’, those that contain

phagemid in the input population, coexist with the virions that

contain helper phage genomes in a single mixed population. When

specific binders are present in low numbers, or are expressed at low

levels, as part of a library with large diversity, consistently high yields

of phagemid titers are crucial for successful retrieval. Given the

solubility threshold before spontaneous virion precipitation at about

Figure 3. Evaluation of pIII, pVII and pIX mediated display of folded domains. (A) The cell density (A600 nm) of the individual phagemid
packaging cultures was measured (as 1/4th dilutions and the undiluted OD back-calculated) after ON growth at 30uC. (B) Phagemid titers in culture
supernatants were determined by infectious titration. Transcription of the POI-capsid fusions, controlled by lacPO, was at basal level only after
removal of repressor (glucose) from the growth medium (uninduced), or also induced by addition of 1 mM IPTG (IPTG induction). (C – E) Samples of
cleared supernatant after phagemid rescue were used to assess antigen reactivity by phage capture ELISA. mAbs F23.2 and GB113 are conformation
specific and clonotypic for the scTCR, respectively. NC is the anti-M13 detection Ab only and an irrelevant scTCR (7A10B2) was included as a negative
control (¤). (F) The phagemid to helper phage ratio for the samples in B shown as cfuampR/cfukanR based on infectious titration.
doi:10.1371/journal.pone.0017433.g003
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1013 virions/ml, the actual phagemid titer of samples with

unfavorable phagemid to helper phage ratios may fall below a

threshold that ensures their representation. Thus, antigen-specific

library members exhibiting preferentially helper phage packaging

may be lost during selection both through unsuccessful competition

for available antigen, the lack of a POI encoding genome, or a

combination of both. This is illustrated by the results from a single

round mock selection procedure, designed to mimic varying library

complexity. The virion input was constant, but the number of

phagemid containing particles within the samples differed,

depending on the packaging preferences (phagemid or helper

phage) in each case. Notably, all samples with low phagemid titer

consistently exhibited high helper phage titers, which in effect

yielded high total virion content (determined by absorbance at

A268 nm). Samples of pVII and pVIIpelB virions at high and low titers

were investigated for antigen specific retrieval. While one sample

was helper phage dominated (pVIIpelB), the other was phagemid

dominated (pVII). Indeed, the helper phage dominated pVIIpelB

sample was lost, while virions from the pVII sample were retrieved,

after selection carried out with low virion input.

The scTCR chosen as one of three POIs studied in the present

work is displayed poorly as fusion to all viral proteins investigated

[17]. In general, display constraints may be alleviated by

manipulating the periplasmic chaperone environment [21],

altering the periplasmic targeting propensity [22], or route [23].

Here we show that over-expression of the periplasmic protein

FkpA increased display on pVII, as well as on pIII as

demonstrated previously [17]. Surprisingly, pIX display was not

improved. The reason for this is not known. Nonetheless, the data

show that both pVII and pIX functionally display all three POIs

despite their varying soluble expression characteristics, and this is

important when considering future library design [24].

Figure 4. Agarose gel of virion ssDNA content and infectious titration analysis. (A) Equal volumes of PEG precipitated M13K07-rescued
scFv anti-phOx display samples were separated on a 1% agarose gel, the virions denaturated and the ssDNA content visualized as described in
Methods. The titer in-puts were not normalized; hence the band intensities directly reflect the ssDNA type and amount. The larger sized band is the
helper phage genome, whereas the smaller sized bands are the phagemids. The M13K07 helper phage was included as a control (K). The actual
phagemid/helper phage genome sizes are: pGALD7DL, 3679 bp; pGALD7, 3739 bp; pGALD9DL, 3679 bp; pGALD9, 3739 bp; pSEX81, 4882 bp and
M13K07, 8669 bp. (B) The phagemid to helper phage ratio for the samples in A shown as cfuampR/cfukanR based on infectious titration. (C) The
primary infection titers in cfu/ml of the samples in A, which were used to determine the ratios depicted in B.
doi:10.1371/journal.pone.0017433.g004
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Affinity selection of specific binders was highly efficient using

both pVII and pIX fusions without an N-terminal signal sequence.

In five out of six cases, it was more efficient than pIII mediated

affinity selection. Thus, the low display levels observed for pVII

and pIX did not translate into poor selection. Small differences in

display level observed between pVII and pIX did not translate into

differences in selection efficiency. Rather, the preferential

phagemid packaging contributed to efficient retrieval.

Figure 5. POI-capsid fusion display level determined as antigen specific binding. Serial dilutions of phagemid-rescued samples displaying
either scFv anti-phOx (A), or scFv anti-NIP (B) were applied in a phage capture ELISA. Antigen-bound virions were detected by anti-M13-HRP and the
data shown as a function of the number of virions applied per well. For all samples, the virion titer was determined by absorbance at A268 nm and
hence does not discriminate between phagemid or helper phage containing virions.
doi:10.1371/journal.pone.0017433.g005
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The lower display levels on pVII and pIX are not necessarily a

disadvantage. On the contrary, low level display may be desirable

during selection of strong binders from complex libraries due to

true monovalent display [10,25]. Furthermore, by leaving pIII

unaltered and fully solvent exposed, virion rescue following

selection may be performed effectively without breaking the

virion-antigen bond, making the elution step redundant and

speeding up high through put protocols. The latter may also

facilitate the isolation of high affinity binders, the elution of which

may be resistant to a variety of strategies [26]. Combined with

complete absence of pIII-mediated immunity effects [12] and

heterogeneous signal sequence cleavage [7,27,28] that cause

random library repertoire bias, the pVII and pIX display

platforms may outperform pIII during affinity selection. Thus,

pVII and pIX display extends the utility of phage display.

Materials and Methods

Plasmids, bacterial strains, phage and materials
The phOx-BSA and pSEX81 phagemid vector (GenBank

accession no.: Y14584) harboring a phOx-BSA specific affinity

matured human scFv was kindly provided by Affitech Research

AS (Oslo, Norway). The pSEX and pFKPDN phagemids

harboring either the scTCR Vab4B2A1 or 7A10B2 have been

described previously [17]. The pHOG21 derivative pSG1

harboring a NIP-BSA specific murine scFv were constructed in-

house (unpublished). The E. coli strain XL1-Blue (recA1 endA1 gyrA96

thi-1 hsdR17 supE44 relA1 lac [F’ proAB lacIqZDM15 Tn10 (Tetr)]

and the M13K07 helper phage were purchased from Stratagene

(LaJolla, CA, USA) and GE Healthcare (Uppsala, Sweden),

respectively. All restriction enzymes were purchased from New

England Biolabs (Ipswich, MA, USA). DNA oligos were purchased

from MWG Biotech AG (Ebersberg, Germany). Pfu Ultra and

Phusion DNA polymerases were purchased from Stratagene

Table 1. Infectious output (cfuampR) after monoclonal mock
selection.

Experiment
no.*

Display
type

Input:
1010 virions**

Input:
105 virions**

1 pVII ‘ 6

1 pVIIpelB ‘ 0

2 pVII ‘ 9

2 pVIIpelB 1728 0

*Two independent experiments were performed, both using freshly prepared
samples.
**Determined by A268 nm.

doi:10.1371/journal.pone.0017433.t001

Figure 6. Antigen-specific enrichment in affinity selection depends on capsid display scaffold. Two rounds of affinity selection were
performed using two different scFv specificities displayed on either of pIII, pVII or pIX. In each library, a total of 12, the specific scFv was spiked into a
large background of virions (1:107) as described in Methods. All selections were done in parallel on both antigens (phOx-BSA and NIP-BSA) employing
three different virion elution conditions following antigen binding; high pH (TEA), direct in-well infection, or proteolytic antigen-virion disruption
(trypsin). Following amplification, equal volumes of virion-containing culture supernatants from selection round 1 and 2 were assessed for antigen
reactivity by phage capture ELISA. Round 0 corresponds to the spiked input of 161010 cfuampR. To estimate maximum possible response (100%
enrichment of the specific scFv), culture supernatants from the pure specific virions that were spiked into the libraries were used as reference for the
corresponding selection. The results are given as fraction of the maximum, indicated by cone shape. Importantly, the virion titers of all supernatants
were roughly equal (data not shown).
doi:10.1371/journal.pone.0017433.g006
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(LaJolla, CA, USA) and Sigma-Aldrich (Oslo, Norway), respec-

tively. The NIP-BSA conjugate was prepared as described [29].

The anti-M13-HRP Ab was purchased from GE Healtcare

(Uppsala, Sweden). The F23.2 mAb was a kind gift from Dr.

Uwe D. Staerz (Department of Medicine, National Jewish Medical

and Research Center, Denver, USA) and the GB113 mAb [30]

was purified from cell supernatant on protein G-sepharose (GE

Healtcare, Uppsala, Sweden). Rabbit anti-human Ll chain Ab was

from DakoCytomation (Glostrup, Denmark) and fish skin gelatine,

protein A gold (w10 nm) solution, as well as Triethylamine (TEA)

and bovine serum albumin (BSA), were from Sigma-Aldrich (Oslo,

Norway). Trypsin/EDTA was purchased from BioWhittaker

(Lonza Group Ltd., Visp, Switzerland). All media and buffers

were prepared essentially as described [31].

Design and construction of pVII and pIX display
phagemids

The pelB signal sequence (N-MKYLLPTAAAGLLLLAAQ-

PAMA-C) encoding stretch of the pSEX81 (GenBank accession

no.: Y14584) scFv anti-phOx phagemid vector was removed by

QuikChangeTM in vitro mutagenesis (Stratagene (LaJolla, CA,

USA)). The mutated region was PCR amplified and re-cloned into

corresponding region in the mother plasmid using standard

techniques and confirmed by DNA sequencing. This step

completely removed the pelB signal sequence encoding portion,

but preserved the start codon and its relative position towards the

lacPO and Shine-Dalgarno sequence important for normal

transcription and translation, as well as adding only one Ala

residue before the exogenous sequence defined by the NcoI/NotI

sites found in the original pSEX81. The new construct was

denoted pSEX81DL. Secondly, the pVII and pXI encoding

sequences were PCR amplified from M13K07 and moved into

both the pSEX81, and pSEX81DL phagemids on the compatible

EcoRV/NheI sites, thereby exchanging the pIII encoding region in

both and resulting in a N-terminal in-frame fusion to either pVII (N-

MEQVADFDTIYQAMIQISVVLCFALGIIAGGQR-C) or pIX

(N- MSVLVYSFASFVLGWCLRSGITYFTRLMETSS-C) of the

upstream NcoI/NotI-defined cassette. The new constructs were

confirmed by DNA sequencing and denoted pGALD7,

pGALD7DL, pGALD9 and pGALD9DL, respectively (Fig. 2).

To switch the scFv anti-phOx unit in the various phagemids

described above, with the scFv anti-NIP unit from pSG1, or the

scTCR from pFKPDN, this was done as NcoI/NotI defined cassette

exchange using standard techniques. All phagemids described

herein were introduced into E. coli XL1-Blue by electroporation

using standard techniques. Primer sequences and GenBank

accession numbers for the constructs are listed in Tables S2 and

S3, respectively.

Virion production
Phagemid rescue from E. coli XL1-Blue was done essentially as

described [32], except for the addition of 1 mM (final concentra-

tion) isopropyl-b-D-thiogalactoside (IPTG) where indicated. Viri-

on assembly was monitored either by infectious spot titration as

described [11], or as total virion titer by optical density at A268 nm

[2]. Where applicable, the virions were purified and concentrated

by PEG/NaCl precipitation as described [33], and resuspended in

PBS, pH 7.4.

Agarose gel electrophoresis of intact virions
Volumes of 25 ml PEG precipitated phage samples were

separated for 3 h at 60 V at RT on a 1% agarose gel in Tris-

Acetate-EDTA (TAE) buffer. Notably, the samples were not titer

normalize. The gel was then incubated with 0.2 M NaOH for 1 h,

rinsed with dH2O water and neutralized with 1 M Tris–HCl,

pH 7.0 for 15 min. The ssDNA bands from denatured phage and

phagemid virions were visualized by 30 min incubation with

SYBR Safe DNA gel stain (Invitrogen, Carlsbad, CA, USA)

solution (1:10,000 v/v in dH2O) and imaged on a Bio-Rad Gel

Doc 2000 work station (Bio-Rad, Hercules, CA, USA).

Phage capture ELISA
In ELISA, the various antigens (Abs, NIP-BSA and phOx-BSA)

were absorbed to MaxiSorpTM microtiter plate wells (Nunc,

Roskilde, Denmark) in concentrations from 2.5 to 5 mg/ml in

PBS, pH 7.4 overnight at 4uC. The wells were blocked with

PBSTM (PBS supplemented with 0.05% v/v Tween 20 and 4%

w/v skim milk) for 1 h at room temperature (RT), virion

preparations where then added and allowed to react for 1 to 2 h

at RT before captured virions were detected with anti-M13-HRP

(1:5,000) for 1 h at RT. A 36 washing step with PBST (PBS

supplemented with 0.05% v/v Tween 20) was applied between

each incubation step. The wells were developed with ABTS

substrate and the absorbance read at A405 nm. Alternatively, the

wells were developed with TMB soluble (Merck KGaA, Darm-

stadt, Germany), stopped with 1 M HCl, equilibrated and the

absorbance read at A450 nm.

Phage capture ELISA was followed by E.coli infection and the

cfuampR estimated as follows: phOx-BSA or BSA (5 mg/ml) were

used as coat. Blocking was as described above. Samples of 1010 or

105 virions (determined by A268 nm) were added per well and

allowed to react for 2 h at RT before the wells were washed 69 in

PBST followed by 65 in dH2O. Volumes of 200 ml log-phase

(A600 nm ,0.5) E. coli XL1-Blue ($56107 cells) were added to each

well and incubated for 35 min at 37uC before plating on LB-amp.

Resulting cfuampR were counted after overnight incubation at

37uC.

Electron microscopy and POI fusion immunolabeling
Samples normalized to 161010/ml were agitated for 10 sec on a

vortex shaker. 5 ml drops of each sample were applied to a clean

surface and 100 mesh copper grids placed on top of the drops in

order to absorb the particles. The grids were then washed for

10 min on a total of 3 drops of PBS pH 7.4 followed by a 10 min

wash on 6 drops of triple distilled water. The samples were

subsequently stained with a 2% aqueous uranyl-acetate solution

for 3 min and air-dried before observation in a Philips CM100

transmission electron microscope at 80 kV. Images were recorded

at a magnification of 25, 0006 and a measuring grid was

overlayed. Intersections with the grid were counted and the length

of each particle was calculated using p/4 * I * d (I being the

number of intersections and d being the distance between the grid

lines) [34].

For immunolabeling of POI-capsid fusions, samples normalized

to 161010/ml were agitated for 10 sec on a vortex shaker. 5 ml

drops of each sample were then applied onto parafilm slits and 100

mesh copper grids placed on top of the drops in order to absorb

the particles. They were then washed for 5 min on a total of 4

drops of PBS pH 7.4. The grids were subsequently placed on

drops of rabbit anti-human Ll chain Ab diluted 1:25 in 1% fish

skin gelatine w/v PBS for 30 min and washed in 5 drops of PBS

pH 7.4 for a total of 10 min. After the washing step the grids were

exposed to a protein A-gold (w10 nm) solution for 20 min, washed

on 3 subsequent drops of PBS (for a total of 5 min) followed by 5

drops of dH2O (for a total of 10 min). Staining and microscopy

was performed as described above.
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Spiked phOx-/NIP-BSA selection
Fresh virion samples were prepared, either with or without

1 mM IPTG induction, PEG precipitated and titrated as

described. The antigen specific entity was then spiked into an

irrelevant background at a 1:107 level giving a known diversity of

107, corresponding to a medium sized combinatorial library. For

NIP-BSA selection, the scFv anti-NIP was spiked into the scFv

anti-phOx counterpart and vice versa. The initial input was

161010 cfuampR resulting in a complexity level of 103 in panning

round 1 for all the 12 spiked libraries. Briefly, antigen was

immobilized on MaxiSorpTM microtiter plate wells (Nunc,

Roskilde, Denmark) in triplicates on the same plate using

100 ml volumes of 1 mg/ml and 0.1 mg/ml for panning round 1

and 2, respectively. Prior to panning, the wells were blocked with

PBSTM for 1–2 h at RT, before 100 ml of the respective pre-

blocked (in PBSTM) virion preparations where added and

allowed to react for 1.5 h at RT with agitation. The wells were

washed 96 in PBST followed by 56 in dH2O using a microtiter

washer before antigen-bound virions (in triplicate wells) were

eluted by either 1) adding 100 ml/well of 100 mM TEA (pH 12)

for 5 min at RT followed by neutralization by transfer to fresh

well containing 100 ml/well Tris-HCl, pH 6.8; 2) adding 100 ml/

well Tryspin/EDTA for 10 min/RT followed by transfer to

fresh wells; 3) adding 200 ml/well log-phase (A600 nm ,0.5,

corresponds to $56107 cells) E. coli XL1-Blue for 30 min at

37uC with agitation, followed by transfer to 10 ml pre-warmed

YT-TAG (26 YT containing 30 mg/ml tetracycline, 100 mg/ml

ampicillin and 0.1 M glucose) supplemented with AviTag-pVII

modified M13K07 helper phage at MOI10. The incubation was

continued for 15 min at 37uC with low agitation followed by

30 min at 37uC with high agitation. In parallel, the TEA and

Trypsin eluted samples were used to infect log-phase E. coli XL1-

Blue cultures in 9 ml YT-TAG, incubated with low agitation for

15 min at 37uC, before 1 ml YT-TAG supplemented with

AviTag-pVII modified M13K07 helper phage at MOI10 was

added. The incubation was continued for 15 min at 37uC with

low agitation followed by 30 min at 37uC with rigorous

agitation. All samples were then were centrifuged 3000-g/

10 min/RT, the supernatants discarded and the pellets gently

resuspended in 10 ml pre-warmed 26YT containing 100 mg/ml

ampicillin and 50 mg/ml kanamycin. The appropriate samples

were supplemented with 1 mM IPTG (final concentration) and

all samples incubated ON at 30uC with rigorous agitation. The

day after, the cultures were centrifuged 4000-g/10 min/RT and

the supernatant sterile filtered into fresh 15-ml tubes trough

0.2 ml filters. These supernatants where then channeled into next

round of panning as described, using 50 ml volumes/sample

corresponding to an input of at least 109 cfuampR/sample.

Following the 2nd round of selection the virion containing

supernatants were channeled into an antigen-specific ELISA as

described above.

Supporting Information

Figure S1 Soluble scFv and scTCR expression profiles. E. coli

XL1-Blue cells harboring pHOG21 constructs encoding the three

single chain versions were grown and samples prepared

essentially as described [37]. Briefly, 5 ml expression end cultures

were normalized by A600nm to represent the same number of cells

and separated into the medium (M), periplasmic (P) and cytosolic

(C) fractions. Equal volumes of each fraction were separated by

12% SDS-PAGE, blotted onto PVDF membranes and recombi-

nant protein detected with an antibody specific for the C-terminal

myc-tag. Expression was done for 6h (A), or ON (B), before sub-

cellular fractionation. The phage display selected human scFv

anti-phOx exhibits a highly favorable expression pattern, and can

be found both in the periplasm and medium. The murine

hybridoma-derived scFv anti-NIP can be obtained from the

periplasm, but exhibits low to no secretion to the medium. The

murine scTCR 4B2A1 is found exclusively as aggregated material

in the cytosol, but exhibits only modest toxicity effects on the host

cells. Notably, the variable gene segments in the three constructs

(which also apply to the phage displayed versions) are connected

by different synthetic linkers as follows: scFv anti-phOx (N-

SGSASAPKLEEGEFSEARV-C), scFv anti-NIP (N-GGGGS-

GGGGSGGGGS-C) and scTCR (N-KLSGSASAPKLEEGEF-

SEARV-C).

(TIF)

Figure S2 The virion length is proportional to the size of the

genome it encapsulates. (A) Transmission electron micrographs

showing negative stained virions of long, intermediate and short

morphology at a magnification of 25, 000x. (B) Blind selections of

each virion type were measured by transmission electron

microscopy and depicted as the mean (n = 30 - 50) 6 SD of

the population. The theoretical virion length was estimated based

on genome sizes using the formula [(1.435 Å 6 bp) + 175 Å]

[38]. Genome size to virion length correlation was determined

using linear regression and shown to be virtually linear. Thus, the

phagemids encoding pVII and pIX fusion proteins are encapsu-

lated in very small virions (pGALD7DL and pGALD9DL:

537658 and 529641 nm, respectively), which is about 100 nm

shorter than for a pIII phagemid (pSEX81: 665 6 55 nm), almost

800 nm shorter than for a helper phage, M13K07, and 900 nm

shorter than for a genomic pIII display system (fUSE5:

14136138 nm).

(TIF)

Figure S3 Immunolabeling of scFv displayed on pVII and pIX.

Transmission electron micrographs showing negatively stained

phagemid-derived samples displaying the scFv anti-phOx on

either pVII or pIX. The scFv fusion was immunolabeled with

w10nm gold-particles against the human Ll-chain region as

described in Methods. Upper left, signal sequence-dependent pVII

display with the pGALD7-rescued phagemid (phagemid:helper

phage, 1:107). Lower left, signal sequence-dependent pIX display

with the pGALD9-rescued phagemid (phagemid:helper phage,

1:1). Upper right, signal sequence-independent pVII display with

the pGALD7DL-rescued phagemid (phagemid:helper phage,

20:1). Lower right, signal sequence-independent pIX display

with the pGALD9DL-rescued phagemid (phagemid:helper phage,

261:1). As depicted in Fig. S2, the phagemid and helper phage

virions can easily be distinguished based on either short or long

morphology, respectively. Yet only the phagemid encodes the

scFv, both short and long virions display the fusion protein. The

samples exhibit strong variation in phagemid to helper phage

rations (determined by infectious titration) depending on capsid

and presence or absence of the signal sequence on the fusion

protein. Scale bar: 200nm.

(TIF)

Table S1 A268nm vs. infection titer input in the ‘‘monoclonal’’

mock selection.

(DOC)

Table S2 Oligonucleotide sequences.

(DOC)

Table S3 GenBank accession numbers.

(DOC)
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