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Abstract

Genome-wide association studies (GWAS) have identified multiple single nucleotide polymorphisms (SNPs) associated with
prostate cancer risk. However, whether these associations can be consistently replicated, vary with disease aggressiveness
(tumor stage and grade) and/or interact with non-genetic potential risk factors or other SNPs is unknown. We therefore
genotyped 39 SNPs from regions identified by several prostate cancer GWAS in 10,501 prostate cancer cases and 10,831
controls from the NCI Breast and Prostate Cancer Cohort Consortium (BPC3). We replicated 36 out of 39 SNPs (P-values
ranging from 0.01 to 10228). Two SNPs located near KLK3 associated with PSA levels showed differential association with
Gleason grade (rs2735839, P = 0.0001 and rs266849, P = 0.0004; case-only test), where the alleles associated with decreasing
PSA levels were inversely associated with low-grade (as defined by Gleason grade ,8) tumors but positively associated with
high-grade tumors. No other SNP showed differential associations according to disease stage or grade. We observed no
effect modification by SNP for association with age at diagnosis, family history of prostate cancer, diabetes, BMI, height,
smoking or alcohol intake. Moreover, we found no evidence of pair-wise SNP-SNP interactions. While these SNPs represent
new independent risk factors for prostate cancer, we saw little evidence for effect modification by other SNPs or by the
environmental factors examined.
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Introduction

Prostate cancer is the most common non-skin cancer among

men in industrialized countries, but beyond age, ethnicity and

family history, very little is known about its etiology. Observed

familial aggregation together with evidence from both twin and

epidemiological studies demonstrate a key role for inherited

genetic variants [1].

Genome-wide association studies (GWAS) conducted within the

last few years have identified multiple common single nucleotide

polymorphisms (SNPs) associated with prostate cancer risk [2–15].

However, the function of these SNPs (or the causal variants these

SNPs serve as proxies for) remains largely unknown and data

describing their correlation with clinical factors or their interplay

with other genetic and non-genetic factors are sparse, mainly due

to the large sample sizes needed for sufficient statistical power.

To this end, we selected 39 SNPs from regions identified in

previous GWAS and genotyped them in 10,501 prostate cancer

cases and 10,831 controls within the NCI Breast and Prostate

Cancer Cohort Consortium (BPC3). We tested each SNP for

association with two strongly predictive clinical factors: Gleason

grade and tumor stage. We investigated interactions between

SNPs and known and potential environmental risk factors. Finally,

we performed exploratory analysis to identify possible pair-wise

SNP-SNP interactions.

Results

Association between SNPs and prostate cancer risk
Subject characteristics are displayed in Table 1. All 39 SNPs

were significantly associated with prostate cancer risk (Table 2)

and directions of associations were consistent with previous

findings [2–4,6–8,10,12,14]. Although risk estimates varied

somewhat between different cohorts (Table S1 and Figure S1),

we observed overall no strong statistical evidence for heterogeneity

(P.0.01). Risk effects per allele ranged from 1.06 (rs2928679) to

1.44 (rs16901979). Carriers of two copies of the rare ‘A’ allele of

rs16901979 had a 3-fold increased risk to develop prostate cancer

in this population. The allele frequency of rs16901979 varies

widely across ethnicities (Hapmap population frequencies: 0.03 in

CEU, 0.26 in CHB and 0.58 in YRI), and thus might explain a

part of the differences seen in prostate cancer incidence across

populations. Based on p-value, we observed the strongest

association for rs4430796 located in HNF1B/TCF2 (OR: 0.80

(95% CI: 0.77–0.83), P = 2.09N10228) and the weakest association

for rs4961199 near CPNE3 (OR: 1.07 (95% CI: 1.02–1.14),

P = 0.012). In addition, rs266849 near KLK3 was only weakly

associated with prostate cancer risk (OR: 0.93 (95% CI: 0.89–

0.98), P = 0.009). rs266849 was initially identified in a GWAS

using controls selected for low prostate-specific antigen (PSA) levels

(,0.5 ng/ml) [4] and it has been suggested that rs266849 is a

marker for circulating PSA levels rather than for prostate cancer

risk [16,17].

The primary analysis in most GWAS assumes an additive

increase in risk for each risk allele carried. rs4961199 (P = 0.02)

was the only SNP showing nominally significant evidence of

departure from additivity in our data. This was not unexpected

since rs4961199 was initially identified using a recessive inheri-

tance model [12].

Replication in non-CGEMS cohorts
Eleven of the 39 SNPs included in this paper were identified

through the Cancer Genetic Markers of Susceptibility (CGEMS)

project (http://cgems.cancer.gov/) which has partial overlap with

BPC3. Eight of these eleven SNPs were identified through

CGEMS stage 2 including ATBC, CPS-II, HPFS and PLCO.

We attempted to replicate these SNPs in the other cohorts (EPIC,

MCCS, MEC and PHS) which collectively comprise 4,661

prostate cancer cases and 5,288 controls. Out of these eight SNPs,

six replicated (Table S2) and two did not (rs4961199 near CPNE3

(OR: 0.99 (95% CI: 0.91–1.08), P = 0.82) and rs4962416 in

CTBP2 (OR: 1.01 (95% CI: 0.95–1.08), P = 0.73)). Three SNPs

(rs4857841 (EFFSEC), rs7841060 (8q24) and rs620861 (8q24))

were identified in CGEMS stage 3 (that in addition to ATBC,

CPS-II, HPFS and PLCO included EPIC and MEC). Therefore,

we tested these three SNPs in MCCS and PHS only (2,700 cases

and 2,412 controls). Both rs7841060 (OR: 1.25 (95% CI: 1.12–

1.40), P = 8.8N1025) and rs620861 (OR: 0.89 (95% CI: 0.80–0.98),

P = 0.01) were associated with prostate cancer risk whereas

rs4857841 was not (OR: 1.03 (95% CI: 0.93–1.15), P = 0.52).

Since we did not replicate rs4857841, rs4961199 and rs4962416 in

the non-CGEMS studies, we did not pursue these SNPs in further

analysis

SNP associations by tumor stage and grade
We next examined whether any SNP was differentially

associated with tumor grade or stage at diagnosis (Table 3). A

total of 1,717 cases were classified as high-stage (stage C or D at

diagnosis) and 1,388 were classified as high-grade (Gleason grade

8–10 or equivalent, i.e. coded as poorly differentiated or

undifferentiated). For 15% of the cases, we did not have

information about tumor stage or Gleason grade. The minor

alleles of two SNPs in the KLK3 gene (rs266849 and rs2735839),

which have been previously associated with decreasing PSA levels

[16,17], were inversely associated with low-grade disease (Gleason

,8) (OR: 0.91 (0.86–0.96) for rs266489, OR: 0.84 (0.79–0.89) for

rs2735839) but associated with increased risk for high-grade

disease (OR: 1.10 (1.00–1.22) for rs266489, OR: 1.07 (0.95–1.19)

for rs2735839). The differences in SNP associations between low-

grade and high-grade disease were statistically significant in case-

only analysis (P = 0.0004 for rs266849 and P = 0.0001 for
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Table 2. Associations between selected SNPs and prostate cancer risk.

SNP Pos Chr Gene
N
Cases

N
Controls

MAF
Cases

MAF
Controls OR Het OR Hom OR allele P-value Ref

rs721048 62,985,235 2 EHBP1 10160 10474 0.19 0.18 1.12
(1.06–1.19)

1.22
(1.04–1.42)

1.11
(1.06–1.17)

2.47E-05 1

rs1465618 43,407,453 2 THADA 9758 9627 0.23 0.21 1.09
(1.00–1.19)

1.18
(0.97–1.43)

1.12
(1.06–1.17)

1.02E-05 12

rs12621278 173,019,799 2 ITGA6 9822 9667 0.05 0.06 0.88
(0.76–1.02)

0.32
(0.13–0.83)

0.86
(0.78–0.94)

0.0010 12

rs2660753 87,193,364 3 – 10000 10502 0.12 0.11 1.12
(1.05–1.20)

1.32
(1.05–1.66)

1.13
(1.06–1.20)

9.18E-05 2

rs4857841 129,529,333 3 EEFSEC 9589 10103 0.30 0.28 1.13
(1.07–1.20)

1.28
(1.15–1.42)

1.13
(1.08–1.18)

2.32E-08 3

rs17021918 95,781,900 4 PDLIM5 9791 9702 0.32 0.34 0.88
(0.81–0.96)

0.84
(0.73–0.97)

0.92
(0.88–0.96)

5.35E-05 12

rs12500426 95,733,632 4 PDLIM5 9784 9643 0.48 0.47 1.07
(0.97–1.19)

1.14
(1.02–1.29)

1.07
(1.02–1.11)

0.0021 12

rs7679673 106,280,983 4 TET2 9772 9613 0.39 0.42 0.82
(0.74–0.89)

0.74
(0.65–0.85)

0.88
(0.84–0.92)

6.74E-10 12

rs9364554 160,753,654 6 SLC22A3 9994 10464 0.29 0.28 1.08
(1.02–1.15)

1.15
(1.04–1.27)

1.08
(1.03–1.12)

0.00086 2

rs10486567 27,943,088 7 JAZF1 10242 10618 0.21 0.24 0.82
(0.78–0.87)

0.73
(0.64–0.83)

0.84
(0.80–0.88)

7.05E-14 4

rs6465657 97,654,263 7 LMTK2 9994 10465 0.48 0.46 1.13
(1.06–1.21)

1.23
(1.14–1.33)

1.11
(1.07–1.16)

1.52E-07 2

rs1512268 23,582,408 8 NKX3–1 9849 9732 0.46 0.44 1.12
(1.02–1.23)

1.28
(1.14–1.44)

1.11
(1.06–1.15)

5.52E-07 12

rs2928679 23,494,920 8 SLC25A37 9845 9697 0.46 0.44 1.01
(0.91–1.11)

1.16
(1.03–1.30)

1.06
(1.02–1.11)

0.0036 12

rs4961199 87,650,060 8 CPNE3,CNGB3 9184 9147 0.17 0.16 1.03
(0.97–1.10)

1.36
(1.13–1.64)

1.07
(1.02–1.14)

0.012 4

rs1016343 128,162,479 8 – 9636 10116 0.24 0.20 1.22
(1.15–1.30)

1.64
(1.44–1.88)

1.25
(1.19–1.31)

1.54E-19 2

rs7841060 128,165,659 8 – 9341 9859 0.24 0.20 1.22
(1.15–1.30)

1.63
(1.42–1.86)

1.24
(1.18–1.31)

1.43E-18 3

rs16901979 128,194,098 8 – 9120 9079 0.05 0.03 1.41
(1.26–1.58)

3.02 (1.47–
6.23)

1.44
(1.29–1.60)

1.55E-11 5

rs620861 128,404,855 8 – 9097 9611 0.34 0.37 0.86
(0.81–0.92)

0.75
(0.68–0.82)

0.87
(0.83–0.90)

3.59E-11 3

rs6983267 128,482,487 8 – 10186 10521 0.44 0.49 0.82
(0.77–0.87)

0.66
(0.61–0.71)

0.81
(0.78–0.84)

6.62E-26 4

rs1447295 128,554,220 8 – 9640 10098 0.14 0.10 1.38
(1.29–1.48)

1.94
(1.53–2.47)

1.38
(1.30–1.47)

8.06E-25 6

rs4242382 128,586,755 8 – 10296 10630 0.14 0.10 1.41
(1.31–1.51)

1.95
(1.55–2.47)

1.40
(1.32–1.49)

4.17E-28 4

rs7837688 128,608,542 8 – 9624 10133 0.13 0.10 1.34
(1.25–1.44)

1.96
(1.54–2.50)

1.36
(1.27–1.44)

6.70E-22 7

rs16902094 128,389,528 8 8407 8378 0.18 0.16 1.23
(1.11–1.36)

1.10
(0.81–1.48)

1.18
(1.11–1.25)

4.78E-08 13

rs1571801 123,467,194 9 – 9961 9833 0.27 0.25 1.08
(1.02–1.15)

1.11
(0.99–1.24)

1.07
(1.02–1.12)

0.0049 8

rs10993994 51,219,502 10 MSMB 9982 10493 0.44 0.39 1.20
(1.12–1.27)

1.53
(1.41–1.66)

1.23
(1.18–1.28)

5.95E-25 4

rs4962416 126,686,862 10 CTBP2 10020 10348 0.29 0.27 1.07
(1.01–1.13)

1.23
(1.11–1.37)

1.09
(1.05–1.14)

7.92E-05 4

rs7127900 2190150 11 9793 9694 0.22 0.20 1.20
(1.09–1.31)

1.62
(1.31–2.00)

1.14
(1.09–1.20)

2.01E-07 12

rs12418451 68,691,995 11 – 9641 10129 0.31 0.29 1.12
(1.05–1.19)

1.27
(1.15–1.41)

1.12
(1.08–1.17)

1.42E-07 9
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rs2735839). These results remained significant after Bonferroni

correction (P = 0.014 for rs266849 and P = 0.0036 for rs2735839).

No other SNP was differentially associated with tumor grade or

stage after adjusting for multiple testing.

Association between non-genetic factors and prostate
cancer risk

We tested for association between prostate cancer risk and

potential non-genetic risk factors including family history of

prostate cancer, diabetes, BMI, height, smoking and alcohol

consumption. As expected, we observed a strong association

between family history of prostate cancer and prostate cancer risk

(OR: 1.77, 95% CI: 1.59–1.96, P = 1.88N10227) as well as between

diabetes and prostate cancer risk (OR: 0.73, 95% CI: 0.64–0.83,

P = 1.61N1026). Adjusting for BMI did not alter the association

between diabetes and prostate cancer (data not shown). BMI was

inversely associated with prostate cancer risk (OR: 0.996 (95% CI:

0.994–0.998) per BMI unit increase, P = 0.0004). This association

was limited to obese men (BMI .30) compared to normal weight

men (BMI,25) (OR: 0.86, 95% CI: 0.79–0.94, P = 0.0009), and

we observed no association for being overweight (OR: 0.99, 95%

CI: 0.93–1.05, P = 0.64). Adjusting for diabetes and smoking

attenuated the association between obesity and prostate cancer risk

(OR: 0.89, 95% CI: 0.82–0.98, P = 0.02). The inverse association

between BMI and prostate cancer risk was restricted to non-

aggressive cases as defined by Gleason grade ,8 and tumor stages

A and B (data not shown). Height was not associated with prostate

cancer risk, when analyzed as a continuous variable (OR: 1.001,

95% CI: 1.000–1.002 per cm increase, P = 0.12) or in tertiles (OR:

1.02, 95% CI: 0.99–1.06, P = 0.24). We observed a non-significant

reduced prostate cancer risk among both former smokers (OR:

0.95, 95% CI: 0.89–1.01, P = 0.08) and current smokers (OR:

0.91, 95% CI: 0.82–1.00, P = 0.06) compared to never smokers.

Adjusting for alcohol consumption or BMI did not change the

results (data not shown). Finally, consuming more than 30 g

alcohol per day (corresponding to two drinks) was associated with

an increased prostate cancer risk (OR: 1.09, 95% CI: 1.01–1.18,

P = 0.03). Adjusting for smoking did not alter this association (data

not shown).

SNP-environment and SNP-SNP interactions
To investigate if the associations with family history of prostate

cancer, diabetes and BMI were stronger in specific genetic strata,

we tested for effect modification by including a SNPxE interaction

term in the model. We also tested for SNP effect modification of

age at diagnosis (studying the main effect of age is not appropriate

SNP Pos Chr Gene
N
Cases

N
Controls

MAF
Cases

MAF
Controls OR Het OR Hom OR allele P-value Ref

rs7931342 68,751,073 11 – 9765 10226 0.45 0.49 0.86
(0.81–0.92)

0.71
(0.66–0.77)

0.85
(0.81–0.88)

1.11E-16 2

rs10896449 68,751,243 11 – 10122 10504 0.45 0.50 0.86
(0.80–0.91)

0.70
(0.65–0.76)

0.84
(0.81–0.87)

3.58E-19 4

rs11649743 33,149,092 17 TCF2 10184 10538 0.17 0.19 0.87
(0.82–0.92)

0.76
(0.65–0.89)

0.87
(0.83–0.92)

7.55E-08 10

rs4430796 33,172,153 17 TCF2 9984 9785 0.44 0.49 0.80
(0.75–0.85)

0.64
(0.59–0.69)

0.80
(0.77–0.83)

2.09E-28 11

rs7501939 33,175,269 17 TCF2 9557 10082 0.36 0.40 0.80
(0.76–0.86)

0.69
(0.63–0.75)

0.82
(0.79–0.86)

2.78E-20 2

rs1859962 66,620,348 17 – 10202 10547 0.53 0.48 1.23
(1.15–1.32)

1.41
(1.31–1.53)

1.19
(1.14–1.24)

2.74E-18 11

rs266849 56,040,902 19 KLK3 10015 10348 0.18 0.19 0.91
(0.86–0.97)

0.94
(0.81–1.09)

0.93
(0.89–0.98)

0.0085 2

rs2735839 56,056,435 19 KLK3 9862 10366 0.13 0.15 0.90
(0.84–0.96)

0.67
(0.54–0.82)

0.87
(0.82–0.92)

3.05E-06 2

rs5759167 41,830,156 22 BIK 9843 9729 0.47 0.50 0.83
(0.75–0.91)

0.70
(0.62–0.79)

0.87
(0.83–0.90)

1.30E-12 12

rs5945572 51,246,423 X NUDT11 9338 9830 0.40 0.35 1.22
(1.15–1.29)

6.17E-11 1

rs5945619 51,258,412 X NUDT11 9999 10456 0.41 0.36 1.23
(1.16–1.31)

8.27E-13 2

1.Gudmundsson, et al. 2008.
2.Eeles, et al. 2008.
3.Yeager, et al. 2009.
4.Thomas, et al. 2008.
5.Gudmundsson, et al. 2007.
6.Amundadottir, et al. 2006.
7.Yeager, et al. 2007.
8.Duggan, et al. 2007.
9.Zheng, et al. 2009.
10.Sun, et al. 2009.
11.Gudmundsson, et al. 2007.
12. Eeles et al. 2009
13.Gudmundsson et al 2009
doi:10.1371/journal.pone.0017142.t002
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since our population comprises of a series of nested case-control

studies matched on age). After adjusting for multiple testing, no

SNP showed significant statistical interaction with any of the non-

genetic factors tested (Table S3 and Table S4). Of note, two SNPs

in the 8q24 region (rs620861, P = 0.05 and rs6983267, P = 0.004)

showed nominally significant interactions with age at diagnosis,

with the association being stronger in younger men. These results

are in line with previous reports of stronger associations with

earlier onset of disease for SNPs in the 8q24 region [6,18,19]. We

observed marginally significant interactions between diabetes and

rs10486567 in JAZF1 (P = 0.04) and between BMI and

rs10486567 (P = 0.03). This is of particular interest since genetic

variation in JAFF1 has been associated with diabetes, albeit not the

same genetic variants. In this study, obesity was associated with a

reduced risk for prostate cancer. It has been shown that BMI is

inversely associated with PSA levels [20] and thus, obese men are

Table 3. Associations between selected SNPs and Gleason grade and Stage.

Odds Ratio1 (95% CI) Odds Ratio1 (95% CI)

SNP Gleason ,8 Gleason 8–10 P case-only test Stage AB StageCD P case-only test

rs721048 1.13 (1.07–1.20) 1.07 (0.96–1.19) 0.30 1.13 (1.07–1.20) 1.09 (0.99–1.19) 0.5

rs1465618 1.10 (1.05–1.16) 1.17 (1.06–1.30) 0.15 1.13 (1.07–1.19) 1.07 (0.97–1.17) 0.34

rs12621278 0.87 (0.79–0.96) 0.77 (0.62–0.95) 0.27 0.87 (0.78–0.96) 0.85 (0.71–1.02) 0.86

rs2660753 1.10 (1.03–1.18) 1.11 (0.98–1.26) 0.81 1.13 (1.05–1.21) 1.14 (1.01–1.27) 0.82

rs4857841 1.13 (1.07–1.18) 1.15 (1.05–1.26) 0.54 1.14 (1.09–1.20) 1.15 (1.06–1.25) 0.53

rs17021918 0.91 (0.87–0.95) 0.96 (0.88–1.05) 0.22 0.89 (0.58–0.93) 1.01 (0.93–1.09) 0.004

rs12500426 1.07 (1.03–1.12) 0.99 (0.91–1.08) 0.09 1.08 (1.04–1.13) 0.97 (0.89–1.04) 0.007

rs7679673 0.88 (0.84–0.92) 0.86 (0.79–0.94) 0.63 0.88 (0.84–0.92) 0.85 (0.78–0.92) 0.49

rs9364554 1.10 (1.05–1.15) 1.03 (0.94–1.13) 0.28 1.07 (1.02–1.12) 1.13 (1.04–1.22) 0.30

rs10486567 0.83 (0.78–0.88) 0.93 (0.83–1.05) 0.06 0.81 (0.77–0.85) 0.91 (0.84–1.00) 0.02

rs6465657 1.10 (1.05–1.15) 1.09 (1.01–1.18) 0.80 1.12 (1.07–1.17) 1.03 (0.96–1.11) 0.02

rs1512268 1.11 (1.06–1.16) 1.02 (0.94–1.11) 0.08 1.12 (1.07–1.17) 1.05 (0.97–1.13) 0.05

rs2928679 1.07 (1.03–1.12) 1.09 (1.00–1.19) 0.81 1.08 (1.03–1.12) 1.05 (0.97–1.14) 0.78

rs4961199 1.10 (1.04–1.17) 1.08 (0.97–1.22) 0.82 1.08 (1.01–1.15) 1.10 (0.99–1.22) 0.70

rs1016343 1.24 (1.17–1.31) 1.31 (1.18–1.45) 0.33 1.26 (1.19–1.33) 1.25 (1.15–1.37) 0.92

rs7841060 1.23 (1.17–1.30) 1.31 (1.18–1.45) 0.32 1.26 (1.19–1.33) 1.24 (1.13–1.36) 0.82

rs16901979 1.43 (1.27–1.60) 1.39 (1.12–1.72) 0.91 1.40 (1.24–1.58) 1.55 (1.29–1.86) 0.33

rs620861 0.85 (0.81–0.89) 0.89 (0.81–0.97) 0.34 0.87 (0.83–0.91) 0.82 (0.75–0.89) 0.37

rs6983267 0.80 (0.77–0.84) 0.84 (0.77–0.91) 0.62 0.82 (0.78–0.85) 0.82 (0.76–0.89) 0.54

rs1447295 1.41 (1.32–1.51) 1.31 (1.16–1.49) 0.35 1.36 (1.27–1.46) 1.51 (1.36–1.68) 0.06

rs4242382 1.43 (1.34–1.53) 1.38 (1.22–1.55) 0.73 1.39 (1.30–1.49) 1.49 (1.34–1.66) 0.24

rs7837688 1.39 (1.30–1.49) 1.33 (1.18–1.51) 0.72 1.34 (1.25–1.44) 1.47 (1.32–1.64) 0.09

rs16902094 1.19 (1.12–1.27) 1.07 (0.94–1.21) 0.08 1.18 (1.10–1.26) 1.18 (1.06–1.31) 0.74

rs1571801 1.07 (1.02–1.13) 1.10 (1.01–1.21) 0.50 1.07 (1.02–1.13) 1.09 (1.00–1.19) 0.62

rs10993994 1.23 (1.18–1.29) 1.21 (1.12–1.32) 0.94 1.25 (1.19–1.30) 1.20 (1.11–1.29) 0.29

rs4962416 1.10 (1.05–1.16) 1.09 (1.00–1.20) 0.93 1.10 (1.05–1.15) 1.10 (1.01–1.19) 0.88

rs7127900 1.14 (1.08–1.21) 1.05 (0.95–1.17) 0.14 1.14 (1.08–1.20) 1.16 (1.06–1.28) 0.81

rs12418451 1.11 (1.06–1.17) 1.20 (1.10–1.31) 0.09 1.14 (1.08–1.19) 1.06 (0.97–1.15) 0.14

rs7931342 0.86 (0.82–0.90) 0.81 (0.75–0.88) 0.21 0.85 (0.81–0.89) 0.88 (0.81–0.94) 0.33

rs10896449 0.85 (0.82–0.89) 0.80 (0.74–0.87) 0.13 0.84 (0.80–0.87) 0.86 (0.80–0.93) 0.34

rs11649743 0.88 (0.83–0.93) 0.93 (0.84–1.03) 0.40 0.89 (0.84–0.94) 0.84 (0.76–0.93) 0.21

rs4430796 0.78 (0.75–0.81) 0.84 (0.77–0.91) 0.05 0.81 (0.77–0.84) 0.78 (0.73–0.85) 0.47

rs7501939 0.81 (0.77–0.85) 0.85 (0.77–0.92) 0.30 0.83 (0.80–0.87) 0.80 (0.74–0.86) 0.28

rs1859962 1.20 (1.15–1.25) 1.17 (1.08–1.27) 0.70 1.18 (1.13–1.24) 1.22 (1.13–1.31) 0.58

rs266849 0.91 (0.86–0.96) 1.10 (1.00–1.22) 0.0004 0.92 (0.87–0.97) 0.98 (0.89–1.08) 0.18

rs2735839 0.84 (0.79–0.89) 1.07 (0.95–1.19) 0.0001 0.85 (0.80–0.91) 0.92 (0.83–1.03) 0.17

rs5759167 0.87 (0.83–0.91) 0.85 (0.78–0.93) 0.59 0.88 (0.84–0.92) 0.82 (0.76–0.89) 0.11

rs5945572 1.24 (1.16–1.32) 1.20 (1.06–1.36) 0.56 1.22 (1.14–1.31) 1.27 (1.14–1.42) 0.57

rs5945619 1.26 (1.19–1.34) 1.19 (1.05–1.34) 0.26 1.22 (1.14–1.30) 1.33 (1.20–1.28) 0.16

1Odds ratios were estimated using multinomial regression.
doi:10.1371/journal.pone.0017142.t003
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less likely to get diagnosed through PSA screening. Because BMI

was associated with non-aggressive disease, we also looked at

possible SNP-BMI interactions stratified by disease aggressiveness

but observed no significant interactions (data not shown).

To assess if the ambiguous associations between prostate cancer

risk and height, smoking and alcohol consumption are due to

hidden SNP-environment interactions, we conducted a joint test of

the environmental main effect and the SNP-environment

interaction effect. This test has proven powerful when the non-

genetic effect is limited to a specific genetic stratum [21]. Across

SNPs, the joint test was not significant for either alcohol or

smoking after adjustment for multiple testing (Table S5, Table S6

and Table S7). Similarly, standard interaction tests between SNPs

and height, SNPs and smoking and SNPs and alcohol consump-

tion were not significant. Exploratory analyses of all possible pair-

wise SNP-SNP interactions revealed no excess in significant

interactions than expected by chance (50 out of 630 tests, Table

S8). Furthermore, no SNP-SNP interaction was significant after

correcting for multiple testing using a Bonferroni correction

(lowest nominal P-value was 0.0005). Yeager and colleagues

identified a SNP-SNP interaction between rs4242382 and

rs620861 (P = 0.002) [13]. We also observe this interaction

(P = 0.02), but not when the analysis was restricted to only MCCS

and PHS (P = 0.75).

Discussion

In this study, we set out to examine whether SNPs identified in

GWAS to be associated with prostate cancer show variation in risk

by disease aggressiveness (tumor stage and grade) and/or interact

with non-genetic and genetic factors. All 39 SNPs tested were

significantly associated with prostate cancer in the overall analysis.

However, the CGEMS project, which included four and six BPC3

studies in its second and third stage stages, respectively,

contributed to identification of eleven SNPs investigated in the

present study. We tested whether associations for these eleven

SNPs could be confirmed in the remaining studies and with the

exception of three SNPs, the findings were replicated with risk

magnitudes similar to those in the CGEMS analysis. We could not

replicate rs4961149 using data from three of the non-CGEMS

cohorts. Since rs4961199 was included in CGEMS stage 2 based

on its recessive association, we also tested the recessive model in

the non-CGEMS studies and observed a non-significant associa-

tion similar but weaker as compared with CGEMS (OR: 1.10,

95% CI: 0.82–1.47, P = 0.54).

Few of the observed associations differed by disease stage, tumor

grade or environmental exposures. The most noteworthy finding

was the qualitatively altered association according to Gleason

grade for two SNPs near KLK3 (rs266849 and rs2735839), where

the minor alleles were associated with lower risk of low-grade

disease but higher risk of Gleason 8–10 tumors. This was

previously observed by Kader and colleagues [22] who studied

5,000 patients and found a strong association between Gleason

grade and rs2735839 (P = 3.7N1027). The minor alleles of these

SNPs have been associated with lower PSA levels indicating that

carriers are less likely to be diagnosed at an early stage through

PSA screening [16,17]. However, we did not observe any

difference in the association of these two SNPs by disease stage,

suggesting that delayed diagnosis might not fully explain these

associations. Interestingly, the significant positive association of

these two SNPs with Gleason 8–10 tumors support the clinical

observations that PSA expression is lower in malignant than in

normal prostatic epithelium and is further reduced in poorly

differentiated tumors [23,24]. Together, these results suggest that

KLK variation might influence high-grade prostate cancer risk

through a yet unidentified pathway or simply as a genetic marker

of the probability of a diagnosis of high versus low-grade prostate

cancer diagnosis through its influence on PSA levels. To test this

hypothesis, we performed case-only analysis based on year of

diagnosis to reflect the introduction of wide-spread PSA screening

(up to 1992 (670 men) vs. after 1992 (9831 men)). If the association

between Gleason grade and KLK3 variation is due to altered PSA

levels, we would expect to see differential associations according to

year of diagnosis. We did not observe such differences, however,

suggesting that the KLK3-prostate cancer association is not

mediated by altered PSA levels. A recent Icelandic study

conducted stratified analysis based on year of diagnosis and

noticed that the association with prostate cancer was confined to

the group of cases diagnosed in 1992 or later. These results suggest

that the association between the KLK3 locus and prostate cancer

is driven by the increasing frequency of PSA testing [25].

After adjusting for multiple testing, no other SNP was associated

with clinical sub-types. Earlier studies had failed to link these SNPs

to clinical characteristics [22,26], suggesting that these SNPs affect

prostate cancer risk overall and not solely for more (or less)

aggressive or advanced cancer.

We found overall no evidence that these SNPs interact with

known or proposed risk factors for prostate cancer including family

history of prostate cancer risk, age of onset, diabetes, BMI, height,

smoking or alcohol consumption. Studying the interactions

between SNPs and diabetes was of particular interest since genetic

variation in JAZF1 and TCF2 has been associated with both

prostate cancer and diabetes [8,11,12,27,28]. We did see a

borderline statistically significant interaction between rs10486567

in JAZF1 and diabetes, but this particular SNP has not been

associated with diabetes risk. A previous study conducted in CPS-

II and PLCO found that diabetes did not mediate the association

between JAZF1 and HNF1B/TCF2 SNPs and prostate cancer risk

[29], and we observed no statistical interaction between diabetes

and three SNPs in HNFIB/TCF2.

We observed no significant associations between prostate cancer

risk and smoking or height and only a weak association between

prostate cancer and alcohol consumption, even after accounting

for the possibility of differences in the effects of these exposures by

genotype. A meta-analysis of 39 studies observed that height was

positively associated with risk (RR 1.05 per 10 cm increment, 95%

CI 1.02–1.09) but the association was only seen in cohort studies

[30]. A recent large meta-analysis of smoking and prostate cancer

incidence found overall no evidence of an association but reported

an increased risk when considering number of cigarettes smoked.

Moreover, they observed a 9% risk increase for former smokers

[31]. We did observe a marginal association between alcohol

intake and prostate cancer risk. This is in line with earlier results

indicating a weak risk increase for men consuming at least 25

grams alcohol per day (OR: 1.05 (95% CI: 1.00–1.08)) and for

men consuming at least 50 grams per day (OR: 1.09 (95% CI:

1.02–1.17)) [32].

Overall, these results imply that the lack of robust associations

between these environmental factors and prostate cancer risk is not

due to interactions between these exposures and variation in any

of the 36 SNPs assessed in this study. However, the lack of

significant interactions does not rule out that gene-environment

interactions exist in prostate cancer. All SNPs under study have

been linked to prostate cancer through their main effects. Agnostic

approaches such as incorporating gene-environment interactions

in a genome-wide association study setting might identify genetic

variants that only affect risk when acting with other factors. The

lack of significant interactions can also reflect the low power to
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detect only modest interaction effects despite our sample size of

10,000 cases and 10,000 controls. It is important to note that our

results do not rule out small departures from a multiplicative odds

model for the joint effect of pairs of individual markers and risk

factors, nor does absence of departure from a multiplicative odds

model necessarily imply that these genetic loci and risk factors do

not interact in some causal manner. Moreover, absence of

interaction as defined here does not imply absence of a ‘‘public

health interaction’’, where the benefit from reducing a risk factor

in terms of absolute risk reduction differs across genotypes [33].

This is, to our knowledge, the first large-scale study to explore

possible interactions between confirmed prostate cancer suscepti-

bility markers and a broad spectrum of known and possible

environmental factors. The SNPs considered in this study show

marginal per-allele odds ratios ranging between 1.07 and 1.44. It is

possible that these odds ratios might be larger in strata defined by

other prostate cancer risk factors, not evaluated in this study. It is

well recognized that exploring such interactions requires large

study populations with well-defined exposure data. With 10,501

prostate cancer cases, 10,831 controls and prospectively collected

data within established cohorts, BPC3 is in a unique position to

explore both gene-gene and gene-environment interactions as

demonstrated here. For example, in the absence of main effects

(which is not the same as assuming no marginal effect and

plausibly consistent with modest marginal genetic or environmen-

tal effects), the BPC3 has 89% power to detect an interaction effect

of 1.2 assuming an allele frequency of 20% and an environmental

exposure with a prevalence of 20%.

As with all studies utilizing environmental exposure data, the

present investigation would be expected to have some degree of

misclassification in the measurement of those factors. It is possible

that alternative modeling of the environmental risk factors or more

precise exposure quantification would increase statistical power

(e.g. analyzing intensity, duration or pack-years of smoking rather

than as never/former/current). However, a critical issue in

conducting pooled analysis across studies is to harmonize data.

As exposure data gets more refined, there is an increasing risk of

discrepancies between cohorts which increases the risk of

‘‘misclassification’’. Since our study cohorts (MEC exempted)

included predominantly men of European ancestry, we were

limited in our ability to study other ethnicities.

Genome-wide association studies have been particularly suc-

cessful for prostate cancer. Recently published secondary analysis

of GWAS has now added ,10 additional prostate cancer SNPs to

those presented here [5,9,11]. At time of this study, we did not

have genotype data for these SNPs in BPC3 and it remains to be

seen if they are differentially associated with clinical subtypes or if

they interact with non-genetic factors.

In summary, we independently replicated the association

between prostate cancer risk and 36 SNPs identified in multi-

stage genome-wide association studies of prostate cancer. Except

for SNPs in KLK3 that were differentially associated with Gleason

grade, we did not detect any differentiation in SNP associations

according to Gleason grade or stage at diagnosis, two clinical

factors strongly predictive of disease outcome. Moreover, we found

no strong evidence that these SNPs interact with age, family

history, diabetes, BMI, height, smoking or alcohol consumption.

Materials and Methods

Study Population
The BPC3 has been described in detail elsewhere [34]. In brief,

the consortium combines resources from seven well-established

cohort studies with blood samples collected as follows: the Alpha-

Tocopherol, Beta-Carotene Cancer Prevention (ATBC) Study in

1992-1993 [35], American Cancer Society Cancer Prevention

Study II (CPS-II) in 1998 [36], the European Prospective

Investigation into Cancer and Nutrition Cohort (EPIC –

comprised of cohorts from Denmark, Great Britain, Germany,

Greece, Italy, the Netherlands, Spain, and Sweden) in 1993 [37],

the Health Professionals Follow-up Study (HPFS) in 1993 [38], the

Multi-Ethnic Cohort (MEC) in 1995 [39], the Physicians’ Health

Study (PHS) in 1982 [40], and the Prostate, Lung, Colorectal, and

Ovarian (PLCO) Cancer Screening Trial in 1993–2001 [41]. In

addition, the Melbourne Collaborative Cohort Study (MCCS)

established in 1990–1994 [42] recently joined the consortium.

Together, these eight cohorts collectively include over 265,000

men who provided a blood sample.

Prostate cancer cases were identified through population-based

cancer registries or self-reports confirmed by medical records,

including pathology reports. Except for the MCCS study, the

BPC3 consists of a series of matched nested case-control studies

within each cohort; controls were matched to cases on a number of

potential confounding factors, such as age, ethnicity, and region of

recruitment, depending on the cohort. MCCS used a case-cohort

design, with a randomly sampled sub-cohort serving as controls.

Written informed consent was obtained from all subjects and each

study was approved by the Institutional Review Boards at their

respective institutions. The IRBs for each study were as follows:

US National Cancer Institute and National Institute for Health

and Welfare (Helsinki, Finland) (ATBC), The Emory University

School of Medicine Institutional Review Board (CPS-II), Ethik-

kommission - Medizinische Fakultät Heidelberg and Imperial

College Research Ethics Committee (EPIC), The Institutional

Review Board of Harvard School of Public Health (HPFS), The

Cancer Council Victoria Human Research Ethics Committee

(MCCS), The Institutional Review Board at the University of

Southern California and the Institutional Review Board at the

University of Hawaii (MEC), The Human Subjects Committee at

Brigham and Women’s Hospital (PHS) and NCI Special Studies

Institutional Review Board (PLCO).

The current study was restricted to individuals who self-reported

as being Caucasian. We had genotype data for a total of 10,501

prostate cancer cases and 10,831 controls. Data on disease stage

and grade at time of diagnosis were collected from each cohort,

wherever possible. A total of 1,717 cases were classified as high-

stage (stage C or D at diagnosis) and 1,388 were classified as high-

grade (Gleason grade .7 or equivalent, i.e. coded as poorly

differentiated or undifferentiated). For 15% of the cases, we did

not have information about tumor stage or Gleason grade.

Baseline information of height and body weight, family history

of prostate cancer, cigarette smoking status (never, past, and

current), alcohol intake (g/day) and information about a pre-

existing diabetes diagnosis were collected by self-report. Family

history, which was defined as having at least one first-degree family

member diagnosed with prostate cancer, was available for all but

two cohort studies (PHS and EPIC). For some countries in EPIC,

weight and height was measured.

Collection and harmonization of non-genetic data
We collected data on family history, diabetes at baseline,

smoking, alcohol consumption, height and BMI for each study.

Family history of prostate cancer was dichotomized into ‘‘yes’’

(1,780 subjects) or ‘‘no’’ (12,382 subjects). Age was calculated at

age of diagnosis/selection as control except for MCCS (at baseline

for controls) and MEC (at blood draw for controls) and further

dichotomized into younger or equal to 65 years old or older than

65 years. BMI was calculated based on baseline weight (kg) and
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height (m) categorized into 3 categories: normal weight

(BMI,25 kg/m2, 7,947 subjects), overweight (BMI 25–30 kg/

m2, 10,206 subjects) and obese (BMI.30 kg/m2, 2,771 subjects).

Height was analyzed both as a continuous variable and in tertiles

(,173 cm (7,221 subjects), 173–180 cm (7,324 subjects) and

.180 cm (6,548 subjects).

Smoking was categorized into 3 categories: never (7,725

subjects), former (9,457 subjects) and current (3,989 subjects).

Alcohol was dichotomized into never and moderate drinkers

(,30 g/day or two drinks per day; 17,398 subjects) or heavy

drinkers ($30 g/day or 2 drinks per day; 3,257 subjects). Pre-

existing diabetes was dichotomized into ‘‘yes’’ (982 subjects) or

‘‘no’’ (19,643 subjects).

We agreed on a common protocol prior to data collection based

on data availability in the studies. Each study was responsible for

sending the data in a format as described in the protocol to

facilitate data harmonization. We agreed on collecting as detailed

information as possible without having to exclude any study due to

lack of covariate information (that is, we aimed for the least

common denominator for the variables of interest). Inconsistencies

or clarifications were handled by a dialogue between the data

coordinating center and the individual studies. All studies have

published analysis on these variables earlier and details on quality

checks can be found in study-specific publications. All statistical

analyses were conducted centrally.

SNP selection and genotyping
We selected 39 SNPs based on the literature for prostate cancer

GWAS (Table 2). These include (genomic location in parenthesis):

rs721048 (2p15), rs1465618 (2p21), rs12621278 (2q31.3), rs2660753

(3q12.1), rs4857841 (3q21.3), rs17021918 (4q22.3), rs12500426

(4q22.3), rs7679673 (4q24), rs9364554 (6q25.3), rs10486567

(7p15.2), rs6465657 (7p21.3), rs1512268 (8p21.2), rs2928679

(8p21.2), rs4961199 (8q21.3), rs1016343 (8q24.21), rs7841060

(8q24.21), rs16901979 (8q24.21), rs620861 (8q24.21), rs6983267

(8q24.21), rs1447295 (8q24.21), rs4242382 (8q24.21), rs7837688

(8q24.21), rs16902094 (8q24.21), rs1571801 (9p33.2), rs10993994

(10q11.23), rs4962416 (10q26.13), rs7127900 (11p15.5), rs12418451

(11q13.2), rs7931342 (11q13.2), rs10896449 (11q13.2), rs11649743

(17q12), rs4430796 (17q12), rs7501939 (17q12), rs1859962 (17q24.3),

rs266849 (19p13.33), rs2735839 (19p13.33), rs5759167 (22q13.2),

rs5945572 (Xp11.22) and rs5945619 (Xp11.22). For rs12418451, we

used genotypes from either rs12418451 or rs10896438 (r2 = 0.964 in

HapMap CEU population) and for and rs2928679 we used

genotypes from either and rs2928679 or rs13264338 (r2 = 0.966 in

HapMap CEU population). We did not have genotype data on

rs4961199, rs16901979 and rs16902094 for MCCS.

Genotyping was performed using the TaqMan assay (Applied

Biosystems, Foster City, CA) in five different genotyping

laboratories: Core Genotyping Facility at National Cancer

Institute, Harvard School of Public Health, University of South

California, DKFZ and UK Cancer Research. Blinded duplicated

samples indicated no genotyping error. For each autosomal SNP,

we tested HWE in the controls in each study separately. All

autosomal SNPs were in HWE (P.0.01).

Statistical methods
We tested the association between prostate cancer risk and each

SNP with a likelihood ratio test based on unconditional logistic

regression. We adjusted all analyses for study and age at diagnosis

or selection as a control in five year intervals using indicator

variables. All odds ratios are calculated per copy of the minor

alleles (0,1,2) carried. For each SNP, we used Cochran’s Q statistic

to test for heterogeneity between studies.

To estimate odds ratios for high-grade or low-grade disease, we

performed multinomial regression with an outcome variable coded

as 0 (control), 1 (low-grade) or 2 (high-grade). To test for

differential SNP associations between low-grade and high-grade

disease, we used a likelihood ratio test based on case-only analysis.

We repeated this analysis for high-stage/low-stage disease.

We tested for interaction between SNPs and non-genetic factors

by conducting a one degree-of-freedom likelihood ratio test of a

single interaction term (SNPxE) as implemented in an uncondi-

tional logistic regression. When an environmental factor had more

than two categories (as is the case for smoking, BMI and height),

we used ordinal coding for the interaction term. To explore

whether associations with proposed environmental risk factors

may have been masked by effect heterogeneity, we performed a

joint (2 d.f.) test of the environmental main effect and the

interaction effect. This test has been shown to outperform the

standard marginal test when the environmental effect is restricted

to a genetic stratum [21]. Cohorts with no variability in exposure

(such as ATBC and smoking) were excluded from gene-

environment interaction analyses. We tested for pair-wise SNP-

SNP interactions using a one degree-of-freedom likelihood ratio

test of a single interaction term as described for the SNP-

environment interaction tests.

We tested for dominance deviation from an additive model by

including an additional SNP covariate coded as (0,1,0) for

(homozygote common allele, heterozygote, homozygote rare

allele) respectively. Based on unconditional regression, we

performed a one degree-of-freedom likelihood ratio test where

the full model was tested against a model only including the SNP

covariate with additive coding (0,1,2) as described above. All

reported P values are two-sided and uncorrected for multiple

hypothesis testing. Analyses were conducted in R [43] and SAS

version 9.1.
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