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Abstract

In the NOD mouse, the incidence of type-1 diabetes is thought to be influenced by the degree of cleanliness of the mouse
colony. Studies collectively demonstrate that exposure to bacterial antigen or infection in the neonatal period prevents
diabetes [1,2,3,4,5,6,7,8,9,10], supporting the notion that immunostimulation can benefit the maturation of the postnatal
immune system [11]. A widely accepted extrapolation from this data has been the notion that NOD mice maintained under
germ-free conditions have an increased incidence of diabetes. However, evidence supporting this influential concept is
surprisingly limited [12]. In this study, we demonstrate that the incidence of diabetes in female NOD mice remained
unchanged under germ-free conditions. By contrast, a spontaneous monoculture with a gram-positive aerobic spore-
forming rod delayed the onset and reduced the incidence of diabetes. These findings challenge the view that germ-free
NOD mice have increased diabetes incidence and demonstrate that modulation of intestinal microbiota can prevent the
development of type-1 diabetes.
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Introduction

The development of the postnatal immune system is guided by the

interactions of lymphocytes with self-MHC/peptide ligands derived

from our body’s own tissues and those from the environment, such as

the commensal microbial flora of the gastrointestinal tract and the

diet. The important role of the gastrointestinal microbiota has been

emphasized by the evidence of reduced intestinal lymphatic tissue

and underdeveloped lymphoid organs in germ-free mice

[13,14,15,16]. The interplay between the host immune system and

commensal bacteria is dynamic and continuous since the size and

cellularity of gastrointestinal lymphoid tissues recover following

selective colonization of germ-free animals [13,14]. Studies on local

immune function demonstrate that IgA secreting plasmablasts are

reduced in germ free mice [17] and the induction of commensal

specific IgA [18] has been shown to occur in response to current

bacterial exposure [19]. The molecular basis for the influence of

commensal bacteria on host immune function remains incompletely

understood, but recent studies have revealed a critical role for the

nucleotide-binding oligomerization domain containing 1 (NOD1)

protein [20] and bacterial polysaccharide [21].

The way in which antigenic stimulation guides the development

and maintenance of a healthy immune system is of fundamental

importance to our understanding of immunological tolerance. In

the non-obese diabetic (NOD) mouse strain, the target pancreatic

insulin producing beta cells are attacked and destroyed by

activated immune cells, leading to type-1 diabetes. Several

infectious, and non-infectious agents are known to prevent type-

1 diabetes in NOD mice. They include; persistent viral infection

(MHV [1], LCMV [2]), mycobacterial infection [3], bacterial

antigens [4,5]; Hsp65 [6,7,8] and complete (heat-killed mycobac-

terium-containing) Freunds adjuvant (CFA) [9,10]. Stimulation

with adjuvant containing bacterial extracts in the neonatal period

is known to prevent diabetes and imparts qualitative and

quantitative changes in the immune cell compartments that lasts

throughout adulthood [9,22]. There has been a number of

hypotheses presented that could account for the protective effect of

immunostimulation such as a change in the cytokine milieu [23]

and the increase in T cell numbers or populations of regulatory T

cells [5,22,24,25,26].

Thus, the incidence of type-1 diabetes in NOD mice is thought

to reflect the degree of cleanliness of the colony. A widely accepted

extrapolation from these data has been that NOD mice

maintained under germ-free conditions have an increased

incidence of diabetes. However, there is little evidence to support

this view [12].

Materials and Methods

A germfree caesarean derivation was performed on NOD mice

using 10 females and 5 males. Ceasarean-derived mice were weaned

onto sterile dams and housed in sterile isolators to maintain

germfree status and fed an endotoxin free NIH31-M diet, designed

to provide appropriate nutrition after being autoclaved http://

www.taconic.com/wmspage.cfm?parm1=292 until thirty weeks of

age at Taconic Farms breeding facility, Germantown, NY, USA. All

supplies were sterilized and entered into the isolator using strict

aseptic techniques. Mice underwent monthly microbiological
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testing to ensure that germfree rodents were free of aerobic and

anaerobic organisms (for a complete list of agents see http://www.

taconic.com/wmspage.cfm?parm1=265). Urine glucose was mea-

sured every one or two weeks and mice with frank glucosuria -two

consecutive reading of 4+ (estimated at 55 mmol/L urine glucose)

were considered diabetic. Control female NOD mice were housed

under specific pathogen-free (SPF) conditions at Taconic and the

Scripps rodent colony, which were handled in accordance with the

TSRI Animal Care and Use Committee, which approved this study

(A3194-01). Blood glucose values (BGV) were determined using

Glucofilm blood glucose strips (Miles Diagnostic, Elkhart, IN). Mice

were considered diabetic following two consecutive blood glucose

readings above 18 mmol/L.

Results and Discussion

We sought to determine the influence of intestinal microbiota on

the incidence of type-1 diabetes in NOD mice. To our surprise, the

incidence of type-1 diabetes in female germ free NOD mice (n = 22)

was indistinguishable from that of NOD mice housed under SPF

conditions in our colony (n = 20) (Figure 1, p.0.6696) or the 80%

incidence of female NOD mice housed under SPF conditions at

Taconic (Figure 1, p,0.78). However, our findings also indicated

that intestinal microflora had the capacity to influence the

development of type-1 diabetes. In one cohort of NOD mice

(n = 22) housed in a separate isolator, a spontaneous contamination

with a gram-positive aerobic spore-forming rod (that was subse-

quently typed as Bacillus cereus) was detected at week 16. These mice

exhibited a delayed onset, and reduced incidence of clinical disease

(p,0.001) during the 30-week study period (Figure 1).

The NOD genetic background is one important factor

contributing to the normal development of T1D in female NOD

mice in the absence of known intestinal microbiota. However, the

critical influence of the environment was highlighted by the reduced

incidence of diabetes following spontaneous monoculture with

aerobic, spore-forming, bacteria. Diet has a well-established role in

the development of T1D in NOD mice [27,28,29] and the observed

reduction of diabetes is likely to have reflected diabetes promoting as

well as regulatory factors from the interactions of dietary

components, restricted microbiota and the immune system. The

extent to which the monoculture influenced the development of

immune regulatory networks, as has been suggested in MyD88-/-

NOD mice [30], remains unknown. However, since restricted flora

limit the growth of other organisms through local competition, our

findings did not exclude the possibility that germ-free mice harbour

microorganisms that play a role in diabetes development but defy

current methods of detection.

Taken together, these findings debunk the myth that germ-free

NOD female mice have increased diabetes incidence and support the

notion that modulation of intestinal microbiota can have beneficial

effects on the development of autoimmune diabetes. Future

examination of the influence of an array of commensal microbiota

on diabetes incidence offers the potential for non-invasive approaches

for individuals at risk of developing type-1 diabetes.
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