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Abstract

A current key feature in drug-target network is that drugs often bind to multiple targets, known as polypharmacology or
drug promiscuity. Recent literature has indicated that relatively small fragments in both drugs and targets are crucial in
forming polypharmacology. We hypothesize that principles behind polypharmacology are embedded in paired fragments
in molecular graphs and amino acid sequences of drug-target interactions. We developed a fast, scalable algorithm for
mining significantly co-occurring subgraph-subsequence pairs from drug-target interactions. A noteworthy feature of our
approach is to capture significant paired patterns of subgraph-subsequence, while patterns of either drugs or targets only
have been considered in the literature so far. Significant substructure pairs allow the grouping of drug-target interactions
into clusters, covering approximately 75% of interactions containing approved drugs. These clusters were highly exclusive
to each other, being statistically significant and logically implying that each cluster corresponds to a distinguished type of
polypharmacology. These exclusive clusters cannot be easily obtained by using either drug or target information only but
are naturally found by highlighting significant substructure pairs in drug-target interactions. These results confirm the
effectiveness of our method for interpreting polypharmacology in drug-target network.
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Introduction

To understand the principles behind drug-target interactions is

important for safer and more efficacious treatment of diseases. A

recently-identified, key feature of drug-target networks is poly-

pharmacology or drug promiscuity, which is currently recognized

as important, because of a variety of reasons which can be

summarized into roughly four: 1) Exquisitely selective drugs for a

single target are likely to exhibit low clinical efficacy and be

unsuccessful [1]. 2) Multi-targeted drugs have been clinically

successful, particularly as dual or multiplex kinase inhibitors [2]. 3)

Many approved drugs, potentially the majority of therapeutic

agents, are less selective than initially thought [3]. An example is

cancer drugs such as Gleevec (imatinib) and Sutent (sunitinib) that

show binding promiscuity for multiple kinases [4]. 4) The

robustness of biological systems can be implied by the scale-free

nature of drug-target networks [5,6]. This means that some

mechanisms to compensate for dysfunction of a single protein

might exist, indicating that inhibiting a single target would be

therapeutically insufficient [1].

Recent analysis reveals that targets of promiscuous drugs can be

observed across different families abundantly [7] and can be

shared among drugs which are unrelated with each other, being in

different therapeutic categories [3]. These results suggest that

targets of promiscuous drugs can be dissimilar, implying that only

a small part of each target is related with the principle of

polypharmacology. Similarly, recent research shows that smaller

drugs in molecular weight are likely to be more promiscuous [6],

suggesting that small fragments in each ligand would be a key to

drug promiscuity. We hypothesize that paired fragments signifi-

cantly shared in drug-target pairs could be crucial factors behind

polypharmacology. Drugs (or chemical compounds) can be

typically represented by molecular graphs, and targets (or proteins)

are by amino acid sequences. Thus some key principles of

polypharmacology could be observed as paired fragments (or

substructures) of molecular graphs and amino acid sequences of

drug-target pairs. Currently many drug-target pairs are already

known, by which we can take a data-driven approach to search

substructure pairs significantly shared in the drug-target (graph-

sequence) pairs. We developed a scalable and efficient algorithm

for systematically exploring the substructure (subgraph-subse-

quence) pairs which significantly co-occur in currently available

drug-target pairs. We investigated the relation of the significant

substructure pairs to forming polypharmacology.

One experimental result we obtained in this analysis is

clustering drug-target pairs by significant substructure pairs.

Possible related work would be the analysis over a drug-target

network, e.g. [8]. However to the best of our knowledge, clustering

over a bipartite graph of drugs and networks has not been done

yet, implying that the first attempt of clustering drug-target pairs

with drug promiscuity is done by using substructure pairs in this

work.
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Results and Discussion

Results and data shown in this paper are all available at the

website, GRASP (GRAph-Sequence Pairs): http://www.bic.

kyoto-u.ac.jp/pathway/grasp.

Data
Our main data has two subsets: 1) 11,219 drug-target pairs

containing 4,191 compounds and 4,632 targets, derived from

DrugBank [9] of version 2.5 (January 29, 2009), and 2) Non-

interacting pairs, corresponding to all pairs between 4,191 com-

pounds and 4,632 targets except 11,219 drug-target pairs (Fig. 1 and

Methods section). The 4,191 compounds contain 1,082 approved

drugs (except those in the most minor two categories: ‘‘neutraceu-

tical’’ and ‘‘withdrawn’’), forming 2,723 drug-target pairs.

Capturing significantly co-occurring substructure pairs
We developed a fast data-mining algorithm that has two key

features:1) We exhaustively list up all frequently co-occurring pairs

of substructures in drag-target pairs. 2) For each of frequent

substructure pairs, we check the co-occurrence significance by a

statistical interaction test that evaluates the interdependence of two

substructures (Methods section, Methods S1 and Fig. 1). We

obtained 41,543,488 frequent substructure pairs co-occurring in at

least 5% in drug-target pairs and selected the 10,000 most

significantly co-occurring substructure pairs. The significant

substructure pairs had p-values (with no adjustment) of 10221.71

to 102292.99 with the average of 10234.73, being selected out of

approximately 4.156107 pairs and confirming the statistical

significance of the substructure pairs even under the Bonferroni

correction. The significant substructure pairs consist of 855 unique

drug substructures (subgraphs) with the averaged molecular weight

of 105.49 and the averaged size of 7.70 (hydrogen-suppressed)

atoms and 6.79 bonds, and 360 unique target substructures

(subsequences, being 174 with three-letter, 185 with two-letter and

1 with only one-letter) with the averaged length of 2.48 (Fig. 2a).

Given significant substructure pairs, for an arbitrary compound-

protein (graph-sequence) pair, we can compute a binary vector of

10,000 elements where if a significant substructure pair is

included, the value of the corresponding element is 1; otherwise

zero. We call this binary vector a GRASP fingerprint.

Profiling drug-target network through significant
substructure pairs

We generated a matrix of 11,219 drug-target pairs (rows) vs.

10,000 significant substructure pairs (columns) where an element

takes 1 if the corresponding drug-target pair has the corresponding

significant substructure pair; otherwise zero, making each row a

GRASP fingerprint (Fig. 3 and Fig. S1). The number of 1s in a row

ranges from zero to 7,272, the median being 226 (the first and

third quartiles being 22 and 978.5, showing an asymmetric

distribution) and the number of rows with no less than 226 1s

being 5,613. We performed hierarchical clustering on each

dimension of the matrix by using the Tanimoto coefficient (Tc)

between binary vectors and then selected the major part in

resultant clusters of each dimension for detailed analysis (Fig. 3

and Methods). On significant substructure pairs, we chose the 11

largest clusters (C1 to C11), covering 7,803 (78.03%) of all 10,000

and being further turned into seven groups (G1 to G7) by the

substructure similarity between clusters (Fig. 2a and Fig. 3). G1 to

G7 were characterized by drug substructures mainly: G1: sugar-

derived drug substructures, G2: carbon skeletons with a benzene

ring or nitrogen- or oxygen-containing carbon skeletons, G3:

carbon skeletons with a benzene ring, G4: oxygen-containing

carbon skeletons, G5: nitrogen-containing carbon skeletons, G6:

drug substructures (and target substructures) related with G

protein-coupled receptors (GPCRs), G7: sugar-phosphate-derived

drug substructures. On drug-target pairs, we chose the most major

Figure 1. The Proposed mining Algorithm. (a) The input was K drug-target pairs with m drugs and n targets, and (m x n – K) non-interacting
pairs. Practically K = 11,219, m = 4,191, n = 4,362, and m x n – K = 18,269,923. (b) All frequently co-occurring substructure pairs in K drug-target pairs are
enumerated exhaustively, where a frequent substructure pair appeared in more than 560 drug-target pairs, i.e. 5% of 11,219 drug-target pairs. (c) The
significance of each frequent substructure pair is measured by an interaction test, i.e. log-likelihood test with logistic regression, which can provide p-
values for frequent substructure pairs to be ranked. (d) The output was N most significant substructure pairs, where in practice N = 10,000.
doi:10.1371/journal.pone.0016999.g001

Substructure Pairs to Understand Polypharmacology
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eight clusters (R1 to R8), which covered 4,581 rows (40.83% of all

11,219; Table S1) in which the number of rows, each having no

less than 226 1s, was 4,396, which was 96.0% of the 4,581 and

78.31% of the 5,613 rows with no less than 226 1s (Table S2 and

Fig. S2). Some of R1 to R8 were tightly and uniquely linked to

some of G1 to G7, such as R8 and G1 (Fig. 3). R1 to R8 covered

2,036 (74.77%) of the 2,723 approved-drug-containing drug-target

pairs. R1 to R8 were characterized by the most relevant GO terms

to targets (Fig. 2b and Table S3).

Clustered drug-target pairs by significant substructure
pairs reveal types of polypharmacology

Two drug-target pairs in a cluster should have a high

similarity in terms of GRASP fingerprints. In fact, the average

Figure 2. Major significant substructures and related GO terms. (a) Drug substructures and target substructures of significant substructure
pairs in each of 11 clusters (7 groups), removing redundancy by taking the maximum substructures when redundancy found in each cluster. (b) The
most relevant GO terms in molecular function and biological process are shown with p-values and the number of appearances for R1 to R8 and R3-G2
to R3-G6.
doi:10.1371/journal.pone.0016999.g002
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Tc of paired GRASP fingerprints in each of R1 to R8 was

significantly higher than that in random clusters, each having

the same number of pairs randomly selected out of the 11,219

drug-target pairs (0.243 to 0.477 while that for random clusters

was 0.0374; empirical p-value,1025; Methods and Table S4).

This feature was kept for drug-target pairs with promiscuous

drugs only (0.274 to 0.493 while that for random clusters was

0.0394; empirical p-value,1025; Table S5). Drug-target pairs of

polypharmacology would be divided into different types, which

can be separated from each other. We hypothesize that each of

R1 to R8 corresponds to a unique type of polypharmacology.

To validate the hypothesis, given drugs and targets of drug-

target pairs in a cluster, we measured the ratio of interactions

fallen into the cluster to all interactions between them, which

was significantly higher than that by random clusters (0.935 to

1.0 while that for random clusters was 0.514 to 0.610; empirical

p-value,1025; Table S6). For pairs with promiscuous drugs,

again this ratio was significantly high (0.915 to 1.0 while that for

random clusters was 0.498 to 0.619; empirical p-value,1025;

Table S7). As such, the exclusiveness of R1 to R8 implies that

each of R1 to R8 might correspond to a unique polypharma-

cology type where each cluster was generated by the

corresponding set of significant substructure pairs. The highly

exclusive clusters cannot be found so clearly by using either drug

or target information only. This can be confirmed by that drug-

target pairs were clustered more clearly by GRASP fingerprints

than those by compound similarity only, sequence identity only

and using the sum of both (Fig. S3). In addition, the average

sequence identity between drug-target pairs sharing the same

drugs (i.e. promiscuous drugs) was only 0.0311, showing the

diversity of targets in promiscuous drugs and implying the

difficulty of clustering drug-target pairs by drug or target

information only (Table S8). Interactions in R1 to R8 can be

shown as a drug-target network, where edges are colored

according to R1 to R8 (Fig. 4). This figure shows that each of

R1 to R8, in most cases, corresponds to a dense and relatively

non-overlapped subnetwork automatically. In particular, in

Fig. 4, R3 can be found as an upper-left subnetwork, while R8

forms a lower-right subnetwork. We emphasize that each of

these subnetworks can be explained by significant substructure

pairs uniquely. This indicates that our method of mining

significant substructure pairs provides with richer information

than the drug-target network itself and simple clusters which can

be obtained by running a graph clustering method over a drug-

target network.

Highly significant substructure pairs were specific to
GPCRs

Highly significant substructure pairs with the smallest p-values

were mainly in G6 (Fig. 2), which is closely related with GPCRs,

indicated by target substructures of G6, such as DRY, PFF, and

CW, known short sequences of GPCRs (G6 of Fig. 3a). In fact, DRY

is highly conserved in GPCRs, deeply involved with the GPCRs

activation by regulating the conformational states [10], and

Figure 3. A matrix of drug-target pairs vs. significant substructure pairs. Elements are colored differently according to seven groups (G1 to
G7) of significant substructure pairs. For each of drug-target pairs, the number of significant substructure pairs contained (NSSP), the 1st level
Anatomical Therapeutic Chemical (ATC) classification classes for the drug and gene ontology (GO) terms for the target are shown on the right-hand
side of the matrix (Figure 2b for GO terms). For each of significant substructure pairs, the number of appearances in drug-target pairs (Support,
shown by the ratio to all pairs) and the p-value (–log10(p)) of interaction test are shown below the matrix.
doi:10.1371/journal.pone.0016999.g003
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Figure 4. A drug-target network on interactions in R1 to R8. The edges (drug-target interactions) were colored according to R1 to R8,
accompanying with 8 subnetworks, each being one of R1 to R8. The size of nodes indicates the size of degrees (or promiscuity).
doi:10.1371/journal.pone.0016999.g004
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CWxPFF is also important in ligand binding and activation

[11,12]. In addition, LPF, LVM, PFF, SID and CW form the main

part of the binding pocket in the 3D structure of a GPCR, i.e. b2-

adrenergic receptor bound to carazolol (Fig. 5), where ‘F’ of PFF

and ‘D’ of SID are important in ligand binding from mutagenesis

studies [13]. GPCRs have many conserved sequences, and it is

hard to specify known target substructures in G6, such as DRY,

PFF and CW, by using sequence information only, underlining the

importance of focusing on both drug and target substructures. On

drug substructures, endogenous ligands of adrenergic GPCRs such

as adrenaline, noradrenaline, dopamine, and serotonin having

propylamine (-C-C-C-N) and a benzene ring, were typical drug

substructures of G6.

Significant substructure pairs are less likely to appear in
random compound-protein pairs

Significant substructure pairs were small, and the GRASP-

fingerprint patterns in the current drug-target pairs might also be

found in non-interacting compound-protein pairs. To assess this

possibility quantitatively, we used compound-protein pairs with no

known interactions in DrugBank, and compound-protein pairs

from other sources: 1) POSI: 1,252 ligand-protein interactions

derived from PDB (Note that POSI does not have any of 11,219

interactions from DrugBank), 2) NEGA: 10,000 pairs randomly

chosen from non-interacting pairs, and 3) RAND: 10,000 pairs

randomly chosen from all combinations of 140,937 bioactive

compounds and 6,919 druggable proteins from PubChem and

Ensembl, respectively (Methods). For each pair in these datasets,

we computed Tc between the GRASP fingerprint of this pair and

the GRASP fingerprint of each of 11,219 drug-target pairs and

checked the highest Tc among the 11,219 pairs, to search for the

most similar drug-target pair in the 11,219 pairs (Methods S1).

The highest Tcs of POSI were mostly in between 0.95 and 1.0,

while those of NEGA and RAND were in a wider range (Fig. 6a

and Fig. S4). Under the same setting, compound similarity for

drugs and sequence identity for targets, instead of GRASP

fingerprints, showed broader distributions of similarities for the

three datasets which were overlapped with each other (Fig. 6b and

Fig. S4). From these results, significant substructure pairs were

more likely to appear in POSI than in NEGA and RAND. In

POSI, 63% of drug-target pairs which gave the highest Tc of

larger than 0.95 were not in any of R1 to R8 (Table S1), implying

a different property of ligand-enzyme pairs in PDB from those in

drug-target network.

Classifying all possible compound-protein pairs by
significant substructure pairs

The scalability of GRASP fingerprints on finding the most

similar drug-target pair to an arbitrary given compound-protein

(graph-sequence) pair was examined by generating 975,243,103

compound-protein pairs (which we call MASS) from 140,937

bioactive compounds and 6,919 druggable proteins (Methods

section and Methods S1). Practical computation time for detecting

the closest pair for each of all 975,243,103 pairs was totally less

than 100 hours, confirming the applicability of our method to a

real, large-scale drug-target analysis. Around 80% of drug-target

pairs which provided the highest Tcs of larger than 0.95 were in

R3, i.e. the most major cluster, implying that many unknown

drug-target pairs might be in MASS (Table S1).

Concluding remarks
Fragment-based drug design (FBDD), a widely-accepted

approach in drug discovery, breaks up drug leads into smaller

building blocks such as functional groups or scaffolds [14]. A basis

behind FBDD is ‘‘pharmacophore’’, by which common atom

conformations in binding sites are used for designing multi-

targeted drugs [6], and several pharmacophores over different

protein families are now known [15]. These facts agree with the

idea that only small portions are highly conserved structurally and

electronically, being vital to drug-target binding, which supports

our hypothesis. Our significant substructure pairs partitioned

drug-target pairs covering most of approved drugs into clusters,

which were clearly separated from each other, implying that each

cluster corresponds to a unique polypharmacology type. Current

analysis on drug-target networks has revealed that the true drug-

target network can be much denser than currently estimated [3],

but it would be hard for existing techniques, such as graph

clustering or approaches using either drug or target information

only, to systematically identify subnetworks, which must be denser

and further harder to do that with some explanation on protein

sequences and chemical structures. Our exclusive clusters suggest

that intra-cluster edges should be more likely generated than inter-

cluster edges, providing significant substructure pairs as a basis.

Methods

Data from DrugBank
DrugBank [9] is the most standard dataset that covers a wide

range of drug-target interactions. The ‘small molecules’ dataset of

Figure 5. 3D structure of GPCR and a ligand. (a) 3D structure of GPCR (b2 adrenergic receptor) and a ligand (Carazolol, colored black) derived
from PDB, target substructure in GPCR being colored according to the corresponding group of significant substructure pairs. (b) An enlargement of
(a), focusing on the binding site with target substructures including DRY (for activation), and CW, LPF, PFF, LVM and SID (for binding), all being in G6.
doi:10.1371/journal.pone.0016999.g005

Substructure Pairs to Understand Polypharmacology
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DrugBank version 2.5 as of January 29, 2009 had 4,854

compounds where 4,730 had singly connected 2D structures and

4,191 of 4,730 had at least one known target. In more detail, 1,166

were approved, 3,014 were experimental, 284 were investigation-

al, 77 were illicit, 62 were nutraceutical, and 35 were withdrawn

compounds. The 4,191 compounds were linked to 4,362 targets,

resulting in 11,219 drug-target interactions we used, and non-

interacting pairs were all combinations from 4,191 compounds

and 4,362 targets except the 11,219 drug-target pairs (Fig. 1a).

Non-interacting pairs might contain unknown drug-target pairs,

which are we think statistically negligible, since non-interacting

pairs are huge. In 11,219 drug-target interactions, 1,447 (34.5%)

out of 4,191 drugs were promiscuous drugs, i.e. each with at least

two targets, and this percentage was consistent with 35% in Paolini

et al, 2006. These promiscuous drugs were involved with 8,475

interactions (75.5% of all 11,219 drug-target pairs) and 171,029

interaction pairs. 2D structures of drugs were converted into

hydrogen-suppressed molecular graphs where nodes were labeled

with atom types except for hydrogen atoms and edges are labeled

with bond types. All targets were treated as amino acid sequences.

Thus drug substructures and target substructures mean connected

subgraphs and consecutive subsequences, respectively.

The algorithm to generate significantly co-occurring
substructure pairs

We developed an efficient and scalable algorithm for mining the

N most significant substructure pairs from given drug-target pairs

(Fig. 1 and Methods S1). Our algorithm has two key features: 1)

Listing up all frequent substructure pairs (Fig. 1b): This is a

mathematical issue of enumerating all frequent pairs of subgraphs

and subsequences which appeared in more than a pre-specified

percentage (which is called support) in given graph-sequence pairs.

Our algorithm is most efficient and scalable for this problem

setting in terms of the current literature of frequent pattern mining

[16]. 2) Testing significance on frequent substructure pairs (Fig. 1c):

This test was performed because 1) frequent substructure pairs in

drug-target pairs may frequently appear in non-interacting pairs

and in this case they cannot be significant and 2) if any

substructure of a substructure pair is already frequently observed

in drug-target pairs rather than in non-interacting pairs, this

substructure pair might not be significant even if it appears more

frequently in drug-target pairs than non-interacting pairs. Thus we

used a statistical test which can measure the interdependence of

two substructures of a given substructure pair. This test is the same

as that for detecting ‘epistasis’ in genetics [17], and we used a

standard statistical test for this issue, i.e. likelihood ratio test with

logistic regression (The next paragraph for detail). In reality, the

two key features of our algorithm are merged into one procedure

in which each time a frequent substructure pair was found, its

statistical significance was tested, and if its p-value was lower than

that of the N-th pair in the N pairs kept in our procedure, we

stored the frequent substructure pair with its p-value and sorted the

currently stored all frequent substructure pairs again according to

their p-values; otherwise it was discarded. Practically, we obtained

41,543,488 frequent substructure pairs under the support of 5%,

Figure 6. Distributions of highest scores in similarity of POSI, NEGA, and RAND to 11,219 drug-target pairs. (a) Distributions of highest
Tcs of compound-protein pairs in POSI, NEGA and RAND over 11,219 drug-target pairs, in terms of GRASP fingerprints. (b) Distributions of highest
similarities of compound-protein pairs in POSI, NEGA and RAND over 11,219 drug-target pairs, where the similarity is given by compound similarity
plus sequence identity. Both (a) and (b) are the results obtained by only the cases that the number of substructure pairs shared between two GRASP
fingerprints is more than 100.
doi:10.1371/journal.pone.0016999.g006

Substructure Pairs to Understand Polypharmacology
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and N was 10,000. In our experiments, we used servers with Dual-

Core AMD Opteron Processor 2222SE (62) and 18G memory.

Real computation time of this algorithm was around 35 hours to

have the most significant 10,000 substructure pairs.

Likelihood ratio test with logistic regression
Given drug substructure G and target substructure S, a pair of

drug and target can have (1) both G and S, (2) G but not S, (3) S but

not G, or (4) neither G nor S. We can use regression analysis to

check the significance in the interaction between G and S. We let

X1 and X2 be dummy variables, corresponding to a drug and a

target, each of which takes 0 or 1 indicating that a drug (target) has

G (S). Let Y be the response variable, and we pose two logistic

regression models to explain Y (Y = 1 for drug-target pairs and

Y = 0 for non-interacting pairs,): Letting g = b0+b1 X1+b2 X2, the

probability of Y = 1 is modeled as

P
(1)
X1X2

~
exp(g)

1zexp(g)
and P

(2)
X1X2

~
exp(gzb3X1X2)

1zexp(gzb3X1X2)

Given drug-target pairs and non-interacting pairs, these two

models are fitted by maximum likelihood estimation (for which we

used the Newton-Raphson method practically) independently.

Then, we have two maximum likelihoods L̂L(1) for P
(1)
X1X2

, and L̂L(2)

for P
(2)
X1X2

. To statistically evaluate whether or not b3 = 0, that is, to

evaluate whether or not there is an interaction effect between

given G and S, we compare L̂L(1) and L̂L(2) by likelihood ratio test.

The test statistic {2log(L̂L(1)=L̂L(2)) follows the chi-squared

distribution with one degree of freedom under the hypothesis that

b3 = 0. Thus, we can compute the p-value of the observed statistic,

which measures the strength of joint (synergistic) effect between

substructure G and substructure S in distinguishing drug-target

pairs from non-interacting pairs.

Clustering drug-target interactions through significant
substructure pairs

We generated a binary matrix of taking drug-target pairs on one

dimension and significant substructure pairs on the other, where if

a significant substructure pair is in a drug-target pair, the

corresponding element is 1; otherwise zero. On each dimension,

we performed hierarchical clustering with complete linkage by

using Tanimoto coefficient (Tc, which takes a value between zero

and one) as the similarity of each pair of binary vectors, resulting

in a dendrogram in which leave (external node) neighbors are

reordered so that the nearest neighbor should be closest in terms of

binary vectors. We used hierarchical clustering by the following

three reasons: 1) One necessary input of partitional clustering is

the number of clusters which is hard to decide while hierarchical

clustering does not need the number of clusters as its input. 2)

Hierarchical clustering can provide the detail of subclusters in the

resultant dendrogram. 2) Hierarchical clustering is well accepted

in the literature of biology and chemistry. On significant

substructure pairs, we placed a cut-off value at 0.92 against 1-

Tc in the dendrogram, resulting in 36 clusters. We then selected

11 largest clusters, which had more than 200 substructure pairs

per cluster. These 11 clusters were manually summarized into 7

groups (G1 to G7) based on cluster similarity. On drug-target

pairs, we placed a cut-off value of 0.95 against 1-Tc in the

dendrogram, resulting in 279 clusters. Out of 279 clusters, we

chose 13 largest clusters, which had more than 100 drug-target

pairs per cluster. We further checked the cluster density, i.e. the

average number of ones in all binary vectors in each cluster, and

selected the eight largest clusters (R1 to R8) in terms of the cluster

density. R1 to R8 covered 4,581 (40.83% of all 11,219; Table S1)

rows, 3,736 (44.1%) out of all 8,475 drug-target interactions of

promiscuous drugs and 47,552 out of all 171,029 interaction pairs

for promiscuous drugs. We assigned the most appropriate GO

term to each of R1 to R8 by casting all genes in each

corresponding cluster to GoStat [18], which performs Fisher’s

exact test by treating the casted genes as positives (case) and all

targets (proteins) in 11,219 drug-target pairs as negatives (control).

For R3 which are related with G2 to G6, we checked genes which

are in drug-target pairs that contain more than 80% of significant

substructure pairs in each of G2 to G6, and casted these genes to

GoStat to assign the most relevant GO term to each of R3-G2 to

R3-G6, respectively.

Random clusters for checking the properties of R1 to R8
A random cluster was generated by randomly selecting drug-

target pairs out of the original 11,219 drug-target pairs, keeping

the selected number the same as that of the corresponding cluster,

i.e. one of R1 to R8. Random clusters were generated 105 times,

and the results were averaged over the 105 runs.

2D-embedding of drug-target networks
We used Pajek [19] to draw the networks shown in Fig. 4. This

software implements the Fruchterman-Reingold layout algorithm

[20] for optimizing the network layout.

Similarity measures used between drug-target
interactions

Throughout the work, sequence identity between two targets (or

proteins) was the identity of Smith-Waterman alignment obtained

by using ssearch [21] (we put %identity = 0 for E.10210), and

compound similarity of two drugs (or compounds) was Tc between

two fingerprints, each with 881 bits, given in PubChem. The

compound similarity plus sequence identity was the sum of the

compound similarity and the sequence identity and dividing it by 2

to have the range of this value from zero to 1.

Datasets to confirm that significant substructure pairs
cannot be found in random compound-protein pairs

In PDBbind [22], 1,300 protein-ligand structures are carefully

selected from PDB as ‘refined set (version 2007)’, which is designed

to be a high-quality standard dataset for theoretical studies on

protein-ligand binding. However, in 1,274 cases of the 1,300

structures, the 3D structure of a protein is obtained for only a part

of the entire protein, meaning that only a part of the entire

sequences is kept in PDB (and PDBbind). We then manually

checked the Uniprot ID of each protein of 1,274 cases and

retrieved Uniprot sequences. We further removed 22 pairs, which

were in our dataset of drug-target pairs, and finally obtained 1,252

protein-ligand pairs, turning into POSI. Bioactive compounds

were 140,937 singly-connected components, being derived from

151,535 compounds that were marked as ‘active in any PubChem

BioAssay’ in PubChem as of January 29, 2009. Druggable proteins

were 6,919 proteins in Ensembl that had at least one of 191 Pfam

domains specified by [23], following the definition of druggable

genome [24]. RAND had 10,000 pairs randomly chosen from all

combinations of 140,937 bioactive compounds and 6,919

druggable proteins.

Scalability test
When we compute GRASP fingerprints of all 975,143,103

combinations of 140,937 bioactive compounds and 6,919
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druggable proteins, we divided these pairs into 16 blocks of an

equal size and assigned each block to a CPU. Practical

computation time to obtain 1,000,000 pairs with Tc of not less

than 0.9 was around 90–98 hours for a block.

Supporting Information

Figure S1 An enlargement of the matrix of Fig. 3, including all

major clusters of both significant substructure pairs and drug-

target pairs. From left to right on the three columns on the right-

hand side of the matrix, in the first column, an element is colored

red if the corresponding drug-target pair has an approved drug;

otherwise blue. In the middle column, an element is colored red if

the corresponding drug-target pair has GPCR; otherwise blue. In

the right column, an element colored red if the target of the

corresponding drug-target pair is a membrane protein; otherwise

blue.

(PDF)

Figure S2 Hierarchical clustering on drug-target pairs where R1

to R8 are specified with brief descriptions on representative drug-

target pairs or targets.

(PDF)

Figure S3 Symmetric heatmaps of similarities among 11,219

drug-target pairs in terms of (a) GRASP fingerprints, (b-1)

compound similarity plus sequence identity, (b-2) compound

similarity only and (b-3) sequence identity only, where a brighter

dot shows a higher similarity. In (a) the order of drug-target pairs

in rows follows that of Fig. 2 of the main text. In (b-1), the order of

drug-target pairs in rows is arranged so that the most similar pair

in terms of compound similarity plus sequence identity should be

as nearest as possible. In (b-2) and (b-3), the order of drug-target

pairs in rows follows that of (b-1).

(PDF)

Figure S4 (a) Distributions of highest Tc of compound-protein

pairs in POSI, NEGA and RAND, when the Tc was computed

between the GRASP fingerprints of two pairs. (b) Distributions of

highest similarities of compound-protein pairs in POSI, NEGA

and RAND, when the similarity is given by compound similarity

plus sequence identity.

(PDF)

Methods S1 Full details of the proposed algorithms.

(PDF)

Table S1 For each of R1 to R8, (a) the number of drug-target

pairs, (b) the number of drug-target pairs which gave the highest

Tc of larger than 0.95 for pairs in POSI and (c) the number of

drug-target pairs which gave the highest Tc of larger than 0.95 for

pairs in MASS.

(PDF)

Table S2 The number of drug-target pairs with the number of

drugs and targets in each of R1 to R8.

(PDF)

Table S3 The most related 30 GO terms with each of R1 to R8.

The most right column shows the value of the number of genes in

both the corresponding cluster and the corresponding GO term

divided by the number of genes in the corresponding GO term.

(PDF)

Table S4 For each of R1 to R8, the average Tc of paired

GRASP fingerprints over all drug-target pairs in the correspond-

ing cluster, and that over 105 clusters, each having interactions

randomly selected out of the original 11,219 drug-target pairs and

keeping the cluster size the same as that of the corresponding

cluster.

(PDF)

Table S5 For each of R1 to R8, the average Tc of paired

GRASP fingerprints over drug-target pairs of all promiscuous

drugs in the corresponding cluster, and that over 105 clusters, each

having interactions randomly selected out of the original 8,475

promiscuous drug-target pairs and keeping the cluster size the

same as that of the corresponding cluster.

(PDF)

Table S6 In each of R1 to R8, given drugs and targets of drug-

target pairs, the ratio of drug-target pairs which were in the

corresponding cluster to all drug-target pairs between them, and

the average over those of 105 clusters, each having drug-target

pairs randomly selected out of the original 11,219 drug-target

interactions and keeping the cluster size the same as that of the

corresponding cluster.

(PDF)

Table S7 In each of R1 to R8, given drugs and targets of drug-

target pairs (of promiscuous drugs), the ratio of drug-target pairs

which were in the corresponding cluster to all drug-target pairs

between them, and the average over those of 105 clusters, each

having drug-target pairs (of promiscuous drugs) randomly selected

out of the original 11,219 drug-target interactions and keeping the

cluster size the same as that of the corresponding cluster.

(PDF)

Table S8 The number of drug-target pairs sharing the same

drugs and the average sequence identity between target (amino

acid sequences) of these pairs.

(PDF)
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