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Abstract

Continuing improvements in analytical technology along with an increased interest in performing comprehensive,
quantitative metabolic profiling, is leading to increased interest pressures within the metabolomics community to develop
centralized metabolite reference resources for certain clinically important biofluids, such as cerebrospinal fluid, urine and
blood. As part of an ongoing effort to systematically characterize the human metabolome through the Human Metabolome
Project, we have undertaken the task of characterizing the human serum metabolome. In doing so, we have combined
targeted and non-targeted NMR, GC-MS and LC-MS methods with computer-aided literature mining to identify and quantify
a comprehensive, if not absolutely complete, set of metabolites commonly detected and quantified (with today’s
technology) in the human serum metabolome. Our use of multiple metabolomics platforms and technologies allowed us to
substantially enhance the level of metabolome coverage while critically assessing the relative strengths and weaknesses of
these platforms or technologies. Tables containing the complete set of 4229 confirmed and highly probable human serum
compounds, their concentrations, related literature references and links to their known disease associations are freely
available at http://www.serummetabolome.ca.
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Introduction

Metabolomics is a branch of ‘‘omics’’ research primarily

concerned with the high-throughput identification and quantifi-

cation of small molecule (,1500 Da) metabolites in the metabo-

lome [1,2]. While in other ‘‘omics’’ fields, including genomics,

transcriptomics and proteomics thousands of targets are routinely

identified and quantified at a time, the same cannot be said of

most metabolomics efforts. Indeed, the majority of published

metabolomic studies identify and/or quantify fewer than two

dozen metabolites at a time [3]. In other words, metabolomics

currently lacks the quantitative horsepower that characterizes the

other ‘‘omics’’ sciences. This limitation has mostly arisen because

metabolomics has, until recently, lacked the electronic database

equivalent of GenBank or UniProt [2] for compound identifica-

tion. With the release of the Human Metabolome Database

(HMDB) [4,5] and other related compound or spectral resources

such as KEGG [6], LipidMaps [7], PubChem [8], ChEBI [9],

MMCD [10], Metlin [11] and MassBank [12], we believe the field

has taken an important step towards making metabolomics studies

much more quantitative and far more expansive in terms of

metabolite coverage. In an effort to further enhance the use of

quantitative metabolomics, we (and others) have started to

systematically determine the detectable metabolic composition of

clinically important biofluids and tissue types [13,14,15]. Follow-

ing our comprehensive characterization of the cerebrospinal fluid

metabolome [15] we continue herein with a comprehensive

characterization of the human serum metabolome.

Blood is composed of two parts: a cellular component consisting

of red and white blood cells and platelets, and a liquid carrier, called

plasma. Plasma is the straw-colored liquid in which blood cells are

suspended, which accounts for approximately 50–55% of blood

volume, with blood cells (erythrocytes, leukocytes and platelets)

accounting for the remaining portion [16]. Plasma is obtained from

a blood sample, if anti-coagulants are introduced, by simply

centrifuging the sample and removing or decanting the most
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buoyant (non-cellular) portion. If no anticoagulant is added and the

blood is allowed to clot, the supernatant fluid is called the serum,

which is less viscous than plasma and lacks fibrinogen, prothrombin

and other clotting proteins [17]. Both plasma and serum are

aqueous solutions (about 95% water) containing a variety of

substances including proteins and peptides (such as albumins,

globulins, lipoproteins, enzymes and hormones), nutrients (such as

carbohydrates, lipids and amino acids), electrolytes, organic wastes

and variety of other small organic molecules suspended or dissolved

in them. In terms of small molecules, the compositions of plasma

and serum appear to be very similar (based on current analytical

techniques). The primary difference appears to lie in the compounds

involved in the clotting process; although modest discrepancies in

the relative distribution of some compounds between these pools

have also been reported [18] The clotting of blood maximally

stimulates blood cell eicosanoid biosynthesis, and thus serum levels

of these metabolites do not reflect physiological concentrations [19].

Therefore, due to their clinical importance, measures of plasma

eicosanoids have been included in this report. However, to improve

readability of the manuscript, the term ‘‘serum’’ is used when

referring to the liquid portion of blood, except where explicit

measures in plasma are discussed.

Blood serum is a primary carrier of small molecules in the body.

Not only does this biofluid play a critical role in transporting

dissolved gases, nutrients, hormones and metabolic wastes, but it

also plays a key role in the regulation of the pH and ion

composition of interstitial fluids, the restriction of fluid losses at

injury sites, the defense against toxins and pathogens and the

stabilization of body temperature [20]. Because blood bathes every

tissue and every organ in the body, it essentially serves as a liquid

highway for all the molecules that are being secreted, excreted or

discarded by different tissues in response to different physiological

needs or stresses. Of crucial clinical importance is the fact that

tissue lesions, organ dysfunctions and pathological states can alter

both the chemical and protein composition of blood plasma/

serum. As a result, most of today’s clinical tests are based on the

analysis of blood plasma or blood serum [21,22].

Being an important and easily accessible biological fluid, blood

has been the subject of detailed chemical analysis for more than 70

years [21,23]. Extensive tables of normal reference ranges have

been published for many blood gases, ions and about 100

metabolites [22,24,25,26,27]. In addition to these referential

clinical chemistry studies, several groups have applied various

‘‘global’’ metabolomic or metabolite profiling methods, such as

high resolution nuclear magnetic resonance (NMR) spectroscopy

[28,29], high performance liquid chromatography (HPLC) [30],

amino acid analysis [31,32] liquid chromatography – mass

spectrometry (LC-MS) [33,34], high performance liquid chroma-

tography – mass spectrometry/mass spectrometry (HPLC-MS/

MS) [35], gas chromatography – mass spectrometry (GC-MS)

[36,37], high resolution capillary GC-MS [38], GCxGC-MS [39],

ultrahigh performance liquid chromatography – mass spectrom-

etry (UPLC-MS) [40] and high resolution reversed-phase LC

(RPLC) with high resolution quadrupole time-of-flight mass

spectrometry (QqTOF) [41] to characterize the serum/plasma

metabolome with varying degrees of success. Perhaps the most

complete global characterization of the blood metabolome to date

was described by Lawton and colleagues [13]. Using a

combination of GC-MS and LC-MS, this group reported the

identification of more than 300 metabolites or metabolic features

(of which 79 were explicitly identified) in the human plasma

metabolome. A similar GC-TOF-MS study identified nearly 80

low molecular weight metabolites in blood plasma [42], whereas a

recent high resolution capillary GC-MS study has provided a very

extensive list of lipid fatty acids in blood [38]. In addition to these

global metabolomic studies, hundreds of other ‘‘targeted’’

metabolite studies have been conducted on blood plasma and

serum that have led to the identification and quantification of

hundreds of other serum metabolites. Unfortunately, this infor-

mation is not located in any central repository. Instead it is highly

dispersed across numerous journals and periodicals [4].

To facilitate future research into blood chemistry and blood

metabolomics, it is crucial to establish a comprehensive,

electronically accessible database of the detectable metabolites in

human blood, plasma and/or serum. This document presents just

such a database, describing the metabolites that can be detected in

human serum (along with signaling molecules in blood plasma),

along with their respective concentrations and disease associations.

This resource was assembled using a combination of both

experimental and literature-based research. Experimentally, we

used high-resolution NMR spectroscopy, GC-MS, TLC/GC-MS,

LC-MS, UPLC-MS/MS, and direct flow injection (DFI) MS/MS

methods to identify, quantify and validate more than 4000 plasma

and serum metabolites. To complement these ‘‘global’’ metabolic

profiling efforts, our team also surveyed and extracted metabolite

and disease-association data from more than 2000 books and

journal articles that had been identified through computer-aided

literature and in-house developed text-mining software. This

‘‘bibliomic’’ effort yielded data for another 665 metabolites. The

resulting Serum Metabolome Database (SMDB) (http://www.

serummetabolome.ca) is a comprehensive, web-accessible resource

containing these 4229 confirmed and probable serum/plasma

compounds, their corresponding concentrations and links to

disease associations that were revealed or identified from these

combined experimental and literature mining efforts.

In undertaking this study we chose to emphasize breadth over depth.

In other words, rather than producing detailed, gender, ethnic or age-

specific ranges for hundreds or thousands of patients for a few

compounds, we instead produced a broad survey for hundreds or

thousands of compounds from a relatively modest number of

individuals. While some of the resulting (literature or experimentally

derived) concentration values for many of these compounds might not

be appropriate for routine clinical studies, they do provide a far more

complete and quantitative picture of the plasma/serum metabolome

than has previously been achieved. They also provide ‘‘ballpark’’

concentration values for many metabolites that have never been

measured or whose concentration values are not widely known.

Overall, the intent of this study was to help both the metabolomics and

blood research communities address four key questions: 1) What

compounds can be or have ever been identified in blood? 2) What are

the approximate concentration ranges for these metabolites? 3) What

portion of the serum metabolome can be routinely identified and/or

quantified using untargeted or ‘‘global’’ metabolomics methods? and 4)

What analytical methods (NMR, GC-MS, LC-MS, DFI-MS/MS,

etc.) are best suited for comprehensively characterizing the serum

metabolome? We believe that answers to these questions provide a

more suitable baseline for both future and ongoing blood metabolomic

studies (e.g. the HUSERMET study [43] (http://www.husermet.org/).

Indeed, such a baseline would allow more prudent selection of

appropriate metabolomics platforms and eventually lead to a more

complete accounting of age, gender, diet and ethnicity variations.

Results and Discussion

The Content of the Human Serum Metabolome – The
Serum Metabolome Database

A complete listing of the identity and quantity of endo-

genous metabolites that can be detected in human serum is

The Human Serum Metabolome
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available in the Serum Metabolome Database (SMDB: http://

www.serummetabolome.ca). This freely available, easily queried,

web-enabled database provides a list of the metabolite names, level

of verification (confirmed or probable), normal and disease-

associated concentration ranges, diseases and references for all (to

the best of our knowledge) human serum metabolites that have

ever been detected and quantified in the literature. It also contains

the concentration data compiled from the experimental studies

described here. Each serum metabolite entry in this database is

linked to a MetaboCard button that, when clicked, brings up

detailed information about that particular entry. This detailed

information includes nomenclature, chemical, clinical and molec-

ular/biochemical data. Each MetaboCard entry contains more

than 110 data fields many of which are hyperlinked to other

databases (KEGG, PubChem, MetaCyc, ChEBI, PDB, Swiss-

Prot, and GenBank) as well as to GeneCard IDs, GeneAtlas IDs

and HGNC IDs for each of the corresponding enzymes or proteins

known to act on that metabolite. Additionally, SMDB through its

MetaboCard/HMDB links includes nearly 300 hand-drawn,

zoomable and fully hyperlinked human metabolic pathway maps.

These maps are intended to help users visualize the chemical

structures on metabolic maps and to get detailed information

about metabolic processes. These SMDB pathway maps are quite

specific to human metabolism and explicitly show the subcellular

compartments where specific reactions are known to take place.

SMDB’s simple text query (TextQuery) supports general text

queries including names, synonyms, conditions and disorders.

Clicking on the Browse button (on the SMDB navigation panel)

generates a tabular view that allows users to casually scroll through

the database or re-sort its contents by compound name or by

concentration. Users can choose either the ‘‘Metabolite View’’ or

‘‘Associated Condition View’’ to facilitate their browsing or

searching. Clicking on a given MetaboCard button brings up

the full data content (from the HMDB) for the corresponding

metabolite. The ChemQuery button allows users to draw or write

(using a SMILES string) a chemical compound to search the

SMDB for chemicals similar or identical to the query compound.

ChemQuery also supports chemical formula and molecular weight

searches. The TextQuery button supports a more sophisticated

text search (partial word matches, misspellings, etc.) of the text

portion of SMDB. The SeqSearch button allows users to conduct

BLAST sequence searches of the 6252 protein sequences

contained in SMDB. Both single and multiple sequence BLAST

queries are supported. The DataExtractor button opens an easy-

to-use relational query search tool that allows users to select or

search over various combinations of subfields. The DataExtractor

is the most sophisticated search tool in SMDB. SMDB’s MS

Search allows users to submit mass spectral files (MoverZ format)

that will be searched against the Human Metabolome database

(HMDB)’s library of MS/MS spectra. This potentially allows facile

identification of serum metabolites from mixtures via MS/MS

spectroscopy. SMDB’s NMR Search allows users to submit peak

lists from 1H or 13C NMR spectra (both pure and mixtures) and to

have these peak lists compared to the NMR libraries contained in

the HMDB. This allows the identification of metabolites from

mixtures via NMR spectroscopy. The Download button provides

links to collected sequence, image and text files associated with the

SMDB. The Explain button lists source data used to assemble the

SMDB.

Currently the SMDB contains information on 4229 detectable

metabolites (both confirmed and probable) and 9225 concentra-

tion ranges or values associated with different conditions and

disorders. This is not a number that will remain unchanged.

Rather it reflects the total number of metabolites – most of which

are endogenous - that have ever been detected and quantified by

others and ourselves. Certainly as technology improves, we

anticipate this number will increase as other, lower abundance,

metabolites, are detected and added to future versions of the

SMDB. Likewise, if the list was expanded to include intermittent,

exogenous compounds such as all possible drugs or drug

metabolites or rare food additives and food-derived phytochem-

icals, the database could be substantially larger.

Inspection of the on-line tables in SMDB generally shows that

human serum contains a substantial number of hydrophobic or

lipid-like molecules. This is further emphasized in Table 2, which

provides a listing of the metabolite categories in human serum and

the number of representative compounds that can be found in this

biofluid. Overall, the composition of human serum is dominated

by diglycerides, triglycerides, phospholipids, fatty acids, steroids

and steroid derivatives. This simply reinforces the fact that serum

(i.e. blood) is a key carrier of lipoproteins, fats and hydrophobic

nutrients. Other small molecule nutrients found in high abun-

dance in serum include amino acids (10 mM–1155 mM), glucose,

glycerol, lactate, oxygen, carbon dioxide (in the form of

bicarbonate ions) and several waste or catabolic byproducts such

as urea and creatinine. A more detailed description of our findings

is given in the following 6 sections covering: 1) Literature Review/

Text Mining; 2) NMR; 3) GC-MS; 4) LC-ESI-MS/MS Targeted

Lipid Profiling; 5) Lipidomics via TLC/GC-FID; and 6) DFI MS/

MS.

Metabolite Concentration in Serum – Literature Survey
In addition to the experimentally derived values obtained for

this study, the serum metabolome database (SMDB) also presents

literature-derived concentrations of the metabolites with references

to either PubMed IDs or to clinical texts. In many cases, multiple

concentration values are given for ‘‘normal’’ conditions. This is

done to provide users/readers with a better estimate of the

potential concentration variations that different technologies or

laboratories may measure. As a general rule, there is good

agreement between most laboratories and methods. However, the

literature results presented in the SMDB do not reflect the true

state of the raw literature. A number of literature-derived

concentration values were eliminated through the curation process

after being deemed mistaken, disproven (by subsequent published

studies), mis-typed or physiologically impossible. Much of the

curation process involved having multiple curators carefully

reading and re-reading the primary literature to check for unit

type, unit conversion and typographical inconsistencies.

Other than the inorganic ions and gases such as sodium

(144 mM), chlorine (110 mM), bicarbonate/carbon dioxide

(25 mM), iron (9 mM), oxygen (6 mM), potassium (4.5 mM),

calcium (2.5 mM), phosphorus/phosphate and sulfur/sulfide

(,1 mM) and magnesium (800 mM), the 12 most abundant

organic metabolites found in serum are D-glucose (5 mM), total

cholesterol (5 mM), melanin (5 mM), urea (4 mM), ATP (3 mM),

glyceraldehyde (1.5 mM), cholesterol esters (0.4–1.5 mM), L-lactic

acid and fructosamine (,1 mM), L-glutamine (500 mM), L-

alanine (500 mM), methanol (460 mM), glycine, L-lysine, uric acid

(350 mM), and (R)-3-hydroxybutyric acid (350 mM). The least

abundant (detectable) metabolites in serum include several

diacylglycerols (DGs), (.1 pM), LPS-o-antigen (2pM), vitamin

K1 2,3-epoxide (2 pM), 13,14-dihydro prostaglandin E1 (PGE1)

(3 pM), substance P and prostaglandin E1 (4 pM), various

glycerophospholipids (4–100 pM), vasopressin (5 pM), 11-trans-

Leukotriene C4 (10 pM), nitric oxide (12 pM), LPS core (14 pM),

thyroxine (15 pM), 3,5-diiodothyronine (16 pM), epietiocholano-

lone, thromboxane B3 and cotinine N-oxide (17 pM), thyroxine

The Human Serum Metabolome
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sulfate and 11b-hydroxyprogesterone (,20 pM). This shows that

the current lower limit of detection for metabolites in serum is in

the low picomolar range and that the concentration range of

analytes in serum spans nearly 11 orders of magnitude. As might

be expected, many of the least abundant compounds are

hormones or signaling molecules while the most abundant

molecules serve as buffering agents or stabilizing salts.

One point that is particularly interesting is the fact that the

concentration of the average metabolite in normal serum varies by

about +/250%, with some metabolites varying by as much as +/

2100% (such as D-glucose, L-lactic acid, L-glutamine, glycine).

Therefore, drawing conclusions about potential disease biomark-

ers without properly taking into account this variation would be ill-

advised. We believe that these relatively large ranges of metabolite

concentrations are due to a number of factors, including age,

gender, genetic background, diurnal variation, health status,

activity level, and diet. Indeed, some SMDB entries explicitly

show such variations based on the populations (age, gender) from

which these metabolite concentrations were derived. Clearly more

study on the contributions to the observed variations in serum is

warranted, although with thousands of metabolites to measure for

dozens of conditions, these studies will obviously require significant

technical and human resources.

Experimental Quantification and Identification – NMR
The NMR spectrum of ultrafiltered serum is remarkably simple

and surprisingly uncomplicated (Figure 1) This made the identifi-

cation and quantification of serum metabolites relatively easy.

Typically 98% of all visible peaks were assigned to a compound and

more than 95% of the spectral area could be routinely fitted using

the Chenomx spectral analysis software. As seen in Figure 1, most of

the visible peaks can be annotated with a compound name. From

the 21 healthy control serum samples and the 54 serum samples

from the patient cohort, 20 and 53 were analyzed, respectively. A

total of 44 unique compounds were identified with an average of

3362 compounds being identified per sample. Twenty-five

compounds were identified in every sample, with the most abundant

compounds being urea (6 mM), D-glucose (5 mM), L-lactic acid,

(1.4 mM), L-glutamine (0.51 mM) and glycerol (0.43 mM). The

least abundant compounds were carnitine (46 mM), acetic acid

(42 mM), creatine (37 mM), L-cysteine (34 mM), propylene glycol

(22 mM) and L-aspartic acid (21 mM). The lowest concentration that

could be reliably detected using NMR was 12.3 mM (for malonic

acid) and 14.5 mM (for choline). The complete list of average

compound concentrations and the frequency of their occurrence is

shown in Table 3. Significant efforts were made to identify the

‘‘rarer’’ or less frequently occurring compounds in a larger fraction

of serum samples. To this end, we collected NMR spectra for longer

periods of time and/or at higher field strengths. While this did

improve quantification accuracy, it did not lead to an increase in the

number of compounds detected. Inspection of Table 3 also reveals

the generally good agreement between the NMR-measured

concentrations and those reported in the literature (often obtained

by other analytical means).

Table 1. Summary of sample collection and analysis methods.

Number of
Samples Sample Source Number of samples analyzed by different methods

NMR
Untargeted
GC-MS

Targeted
GC-MS (oxylipins,
endo-
cannabionids)

Targeted
(DFI) MS/MS

UPLC-MS/MS
(oxylipins,
endocannabi-
onids)

Quantitative
Lipidomics
(TLC-methyl-
esterfication-
GC-MS)

Analysis
Location

75 (54
Patients,
21 Controls

James Hogg
iCAPTURE Centre
for Cardiovascular
and Pulmonary
Research and the
NCE CECR Centre
of Excellence for
Prevention of
Organ Failure
(PROOF Centre),
Vancouever BC,
Canada

75 7 controls - 21 controls - - Edmonton AB,
Canada

3 Clinical Laboratory
Medicine,
University of
Alberta,
Edmonton AB,
Canada

- - - - - 3 West Sacramento
CA, USA;
Edmonton AB,
Canada

70 Pennington Biomedical
Research
Center, Baton
Rouge LA, USA

- - 70 - 70 - Davis CA, USA

1 Clinical
Laboratory
Medicine,
University
of Alberta,
Edmonton AB, Canada

- - - 1 (three technical
replicates for
oxylipin analysis)

- Davis CA, USA

doi:10.1371/journal.pone.0016957.t001
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However, not all of the NMR-derived serum concentrations

agree with the literature derived values. Forty-three out of the 44

compounds identified in the healthy control group, had concen-

tration values previously reported in the literature. We found that

35 compounds exhibited good agreement with literature values –

i.e., meaning the average NMR values fell within one standard

deviation of the literature value. In addition, seven compounds

had concentrations somewhat higher than previously reported

values (L-asparagine, glycerol, glycine, L-histidine, hypoxanthine,

methanol and propylene glycol), while two compounds had

concentrations lower than previously reported (L-cystine and

formic acid). Compounds exhibiting the greatest discrepancy

between NMR measured values and literature derived values

include: glycerol, hypoxanthine and propylene glycol. Propylene

glycol is likely an exogenous ‘‘contaminant’’ as it is widely used as

a solvent in many pharmaceuticals and as a moisturizer in

cosmetics, lotions, hand sanitizers, foods and toothpastes. Never-

theless, its ubiquity in so many consumer products has made it a

routinely observed component of human serum. Some of the

concentration discrepancies for the other compounds may be

explained by their inherent volatility or chemical instability

(hypoxanthine, methanol, formic acid). Other discrepancies may

be due to sample collection/preservation effects (the ultrafiltration

devices we used contain trace amounts of glycerol) or possibly

sample size effects (2 patients versus 35 patients). A third source of

variation may be technical problems with the separation or

extraction methods being used to obtain ‘‘clean’’ serum by

different laboratories. Blood is an inherently complex, multi-

component mixture and organic solvent extractions and ultrafil-

tration methods have different weaknesses. In particular, while

solvent extraction will only isolate soluble components, ultrafiltra-

tion will only isolate compounds not tightly associated with

macromolecules.

In contrast to the healthy controls, the NMR spectra of the

serum isolated from heart transplant patients tended to be slightly

more complex and somewhat more variable. A total of 44

compounds were identified from these samples with an average of

3262 compounds being identified per sample. Twenty-one

compounds were identified in every sample. The same level of

spectral coverage (98% peak identification, 95% spectral area) was

achieved with serum from the heart transplant samples as with the

healthy controls. While the rank order of the most abundant and

least abundant compounds was slightly different, the same

compounds appeared in both the ‘‘diseased’’ and ‘‘healthy’’ lists.

The complete list of average compound concentrations for the

heart transplant patients along with their frequency of occurrence

is shown in Table 3. Inspection of Table 3 again shows the

generally good agreement between the NMR-measured concen-

trations and those reported in the literature, although there are

clear and statistically significant differences between the average

values for the transplant patients and the normal or literature

derived values. Using a Student’s t-test we found that 22

Table 2. Chemical classes in the Serum Metabolome Database.

Compound class Number Compound class Number

Acyl glycines 10 Indoles and indole derivatives 12

Acyl phosphates 10 Inorganic ions and gases 20

Alcohol phosphates 2 Keto acids 8

Alcohols and polyols 40 Ketones 6

Aldehydes 3 Leukotrienes 8

Alkanes and alkenes 10 Lipoamides and derivatives 0

Amino acid phosphates 1 Minerals and elements 40

Amino acids 114 Miscellaneous 77

Amino alcohols 14 Nucleosides 24

Amino ketones 14 Nucleotides 24

Aromatic acids 22 Peptides 21

Bile acids 19 Phospholipids 2177

Biotin and derivatives 2 Polyamines 11

Carbohydrates 35 Polyphenols 22

Carnitines 22 Porphyrins 6

Catecholamines and derivatives 21 Prostanoids 23

Cobalamin derivatives 4 Pterins 14

Coenzyme A derivatives 1 Purines and purine derivatives 11

Cyclic amines 9 Pyridoxals and derivatives 7

Dicarboxylic acids 17 Pyrimidines and pyrimidine derivatives 2

Fatty acids 65 Quinones and derivatives 3

Glucuronides 8 Retinoids 11

Glycerolipids 1070 Sphingolipids 3

Glycolipids 15 Steroids and steroid derivatives 109

Hydroxy acids 129 Sugar phosphates 9

Tricarboxylic acids 2

doi:10.1371/journal.pone.0016957.t002
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compounds had concentrations significantly different between the

two groups (using a cut-off P-value of 0.05; with no Bonferroni

correction). The most strongly differentiating compounds were D-

glucose, creatinine, L-valine, propylene glycol, citric acid, formic

acid and L-alanine (data not shown).

Serum from heart transplant patients also provided an

opportunity to look at the longitudinal or temporal metabolite

variation in individuals. Table S1 summarizes the mean

concentration and standard deviation seen over the 12-week

sampling period for the 44 metabolites as measured for all 9

transplant patients. Interestingly, the cross-sectional variation

appears, in general, to be larger than the longitudinal variation.

In other words, time-dependent metabolite changes within a single

individual tend to be smaller than the differences seen between

different individuals. Furthermore, in a recent analysis of the adult

human plasma metabolome, it was found that the concentrations

of about 30 metabolites can vary more than 50% between healthy

individuals due to age, gender and body mass index [13]. These

temporal variations may be somewhat exaggerated over what

might be seen in the general population given the surgical trauma

and medication that these heart transplant patients have

experienced over the sampling period. Nevertheless, the objective

of this study was to gain a better idea of the variability of serum

metabolite concentrations that can be found in living adults

(without an obvious metabolic disorder).

Combining the complete set of results from the healthy control

subjects with the results from the heart transplant patients, we

were able to identify and quantify a total of 49 different

compounds in serum using NMR spectroscopy (Table 3). We

would argue that this list of 49 metabolites along with the

concentrations listed in this table defines the ‘‘normal NMR-

detectable serum metabolome’’. Furthermore, we believe that now

that this set of 49 metabolites is known, it should allow the NMR

characterization of unprocessed serum to become routine, if not

highly automated.

GC-MS Identification and Quantification
Figure 2 illustrates a typical high resolution GC-MS total ion

chromatogram of the polar extracts from a serum sample of a

healthy adult subject. As can be seen in this figure, many of the

visible peaks can be annotated with a compound name, however

,40% of these peaks remain unidentified. This relatively low level

of coverage is a common problem in global or untargeted GC-MS

metabolomics studies. While some of these peaks may be due to

derivatization by-products or degraded metabolites, the lack of a

comprehensive GC-MS library for human metabolites (the NIST

mass spectra library contains only a small portion of metabolically

relevant compounds), also limits the attainable coverage from

automated library search algorithms. The use of other commer-

cially available reference libraries for GC-MS (i.e. the Fiehn GC-

MS library from Agilent) might have provided a slightly more

complete coverage of the serum metabolites, and the routine

application of more comprehensive libraries will likely expand the

list of commonly identified metabolites in the future.

All peaks corresponding to an identified metabolite were

verified with pure standards and correlated to literature values.

In total we identified 62 polar metabolites and 12 nonpolar

metabolites via GC-MS (Table 4). For full identification, the mass

spectra of the identified compounds not only had to match the EI-

MS spectra in the NIST database (with a match factor of .60%

and a probability score .20%), but also the retention index (RI) of

the compounds in the University of Alberta RI library, which

consists of 312 TMS-derivatized human metabolites. The targeted

GC-MS analysis for non-esterified fatty acids in the plasma

collected at the Pennington Biomedical Research Center (PBRC)

resulted in the identification and quantification of 25 compounds

(Table 5) in all samples. Trace levels of other fatty acids were

observed, but these were observed intermittently and the signal-to-

noise ratio was low enough that these compounds were not

deemed of sufficient quality to report. Of the detectable

compounds, 9 fatty acids were identified by both targeted and

global GC/MS analysis, while 2 were unique for the global

analysis (capric acid and arachidic acid) and 16 were unique for

the targeted approach. Notably, capric acid (C10:0) was

compromised by interference in the PBRC samples, while

arachidic acid (C20:0) was observed at ,0.05% of the total fatty

acid profile in ,60% of the subjects. Collectively, if both global

and targeted GC-MS analyses are taken into account, the number

of identified compounds is 90. Of the 74 polar metabolites

identified in the global GC-MS approach, only 33 could be clearly

quantified. This included 14 additional metabolites that were not

detected/quantified by NMR but that could be quantified by GC-

Figure 1. Typical 500 MHz 1H-NMR spectrum of healthy human serum. Numbers indicate the following metabolites: 1, imidazole; 2, urea; 3,
D-glucose; 4, L-lactic acid; 5, glycerol; 6, L-glutamine; 7, L-alanine; 8, DSS; 9, glycine; 10, L-glutamic acid; 11, L-valine; 12, L-proline; 13, L-lysine; 14, L-
histidine; 15, L-threonine; 16, propylene glycol; 17, L-leucine; 18, L-tyrosine; 19, L-phenylalanine; 20, methanol; 21,creatinine; 22, 3-hydroxybutyric
acid; 23, ornithine; 24, L-isoleucine; 25, citric acid; 26, acetic acid; 27, carnitine; 28, 2-hydroxybutyric acid; 29, creatine; 30, betaine; 31, formic acid; 32,
isopropyl alcohol; 33, pyruvic acid; 34, choline; 35, acetone; 36, glycerol.
doi:10.1371/journal.pone.0016957.g001
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Table 3. Concentrations (Mean 6 stdev) and % occurrence of serum metabolites as determined by NMR.

Compound Name Healthy Subject Heart Transplant Literature Value

mM; (% Occurrence) mM; (% Occurrence) mM; (Range)

2-Hydroxybutyric acid 31.367.8; (73%) 24.3614.5; (92%) 54; (8–80)

Alpha-ketoisovaleric acid ND 10.765.5; (40%) NA

3-Hydroxybutyric acid 76.9666.3; (80%) 35.1633.9; (96%) 60.0620.0

Acetaminophen ND 33.5622.3; (8%) NA

Acetic acid 41.9615.1; (100%) 42.2617.3; (100%) 30; (22–40)

Acetoacetic acid 40.6636.5; (33%) 27.3614.4; (25%) 21.0; (0.0–86.0)

Acetone 54.4629.6; (86%) 13.265.5; (4%) 106; (35–170)

L-Alanine 427.2684.4; (100%) 3406126.2; (100%) 333; (259–407)

L-Arginine 113.6614.6; (100%) ND 111.6; (82.2–140.9)

L-Asparagine 82.467.3; (100%) 54.1621.7; (42%) 41610

L-Aspartic acid 20.966.1; (100%) ND 21.0+/25.0

Betaine 72622.4; (100%) 42.1619.3; (100%) 82; (20–144)

L-Carnitine 45.7611.6; (100%) 41.7623.9; (100%) 43; (26–79)

Choline 14.565.3; (90%) 9.764.5; (92%) 10.661.9

Citric acid 114.2627; (100%) 80.2644.9; (100%) 190; (30–400)

Creatine 36.7628.3; (100%) 33.8637.7; (100%) 54.8621.0

Creatinine 86.6618.8; (100%) 86.9644.5; (100%) 74.1610.9

L-Cysteine 33.5610.3; (100%) ND 52.0; (41.0–63.0)

L-Cystine 62.9627.8; (100%) ND 109.0624.0

Ethanol ND 40.2612.1; (13%) NA

Formic acid 32.8613.3; (48%) 19.866.8; (60%) 121.7697.8

D-Glucose 4971.36372.8; (100%) 374361272.9; (100%) 5400; (4700–6100)

L-Glutamic acid 97.4613.2; (100%) 72636.9; (40%) 21.0–150.0

L-Glutamine 510.46118.2; (100%) 376.86114.3; (100%) 586; (502–670)

Glycerol 431.66100.4; (100%) 133.9687.8; (100%) 82; (27–137)

Glycine 325.46126.8; (100%) 234.96181.1; (100%) 230; (178–282)

L-Histidine 131.2637.3; (100%) 46.1617.5; (100%) 82; (72–92)

Hypoxanthine 34.2610.3; (24%) 52.36*; (2%) 8.1; (5.3–11.0)

Isobutyric acid ND 8.461.9; (11%) NA

L-Isoleucine 60.7618.6; (100%) 44.6621.5; (100%) 62; (48–76)

Isopropyl alcohol 83.36132.8; (48%) 16.5622.5; (45%) Not available

L-Lactic acid 1489.46371.2; (100%) 1401.26692.1; (100%) 1510; (740–2400)

L-Leucine 98.7611.5; (100%) 74.8634.3; (100%) 123; (98–148)

L-Lysine 178.6658.2; (100%) 128.2655.3; (100%) 183.0634.0

Malonic acid 13.561.2; (14%) 105.7695.8; (9%) 15.060.6

Methanol 77.4616.3; (100%) 81.5655.2; (94%) 47.2610.3

L-Methionine 29.866.3; (33%) 17.369.5; (66%) 30; (22–38)

Methylmalonic acid ND 11.26*; (2%) NA

L-Ornithine 66.9615.3; (100%) 65.4630.4; (100%) 55; (39–71)

L-Phenylalanine 78.1620.5; (100%) 44.8621; (94%) 65.069.0

L-Proline 198.3664.8; (100%) 159.9686.3; (100%) 239.0670.0

Propylene glycol 22.363.3; (100%) 36.3619.9; (62%) 2; (0–5)

Pyruvic acid 34.5625.2; (81%) 50.2640; (87%) 64; (22–258)

L-Serine 159.8626.6; (100%) ND 137.0635.0

L-Threonine 127.7641; (100%) 83.4647.8; (96%) 140; (107–173)

L-Tryptophan 54.569.7; (100%) ND 48.7611.6

L-Tyrosine 54.569.7; (100%) 57.2624.4; (100%) 100; (55–147)
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MS using external calibration methods (Table 6). Among these

compounds, oxalic acid and uric acid were found to have

concentrations greater than 1 standard deviation above previously

reported values. Comparisons between the NMR and GC-MS

measured concentrations (across the 26 compounds that were

quantified by both techniques) show generally good agreement

(within 20–50% of each other). GC-MS methods typically gave

higher concentrations of L-glutamic acid, L-isoleucine, L-methi-

onine and citric acid, and lower concentrations of L-alanine, L-

glutamine, glycine, L-serine, glucose and glycerol, compared to the

corresponding NMR results (data not shown). Compound

concentrations below 1 mM were associated with low signal-to-

noise ratio responses, limiting accurate quantification. However

these compounds were identified based on previously described

methods [69].

For GC-MS, the lowest limit of quantification was 8.3 mM for

alpha-hydroxyisobutyric acid. Given that there are slightly over

260 compounds in the serum-metabolome database (SMDB) with

normal concentrations .1 mM, one might have expected that the

GC-MS detectable compounds would have been much higher

than 90. The use of a relatively slow scanning quadrupole

instrument may partially explain the limited number of identifiable

peaks. This hardware can yield insufficient sampling across co-

eluting GC peaks, limiting complex spectral deconvolution.

However, comparisons to other reports on serum analysis by

GC-MS instruments suggest that this number is not unreasonable.

Indeed, a GC-MS (TOF) study on human plasma performed by

Jiye et al. yielded a list of 80 metabolites [42]. Our results, using a

less-sensitive GC-quadrupole-MS instrument, yielded 90 metabo-

lites (of which 57 were common to both studies). This is primarily

because we employed both polar and non-polar extraction

techniques to effectively increase the concentration of certain

metabolites. No doubt the use of better instruments (i.e. faster

scanning quadrupoles or TOF instruments with greater sensitiv-

ity), multiple extraction steps or the use of different derivatization

steps could have improved compound coverage. Indeed, in a

recently published study of the adult serum metabolome, the use of

fast-scanning quadrupole GC-MS resulted in the detection (but

not the quantification) of about 120 compounds [13]. It is also

notable that the authors of this study used a series of four solvent

Compound Name Healthy Subject Heart Transplant Literature Value

mM; (% Occurrence) mM; (% Occurrence) mM; (Range)

Urea 6074.662154.2; (100%) 3309.961844; (100%) 6500; (4000–9000)

L-Valine 212.3661.3; (100%) 144.2661.4; (100%) 233; (190–276)

Xanthine ND 51.26*; (2%) NA

*- only observed in one sample.
doi:10.1371/journal.pone.0016957.t003

Table 3. Cont.

Figure 2. Typical total ion chromatogram of serum from a healthy subject. Numbers indicate the following metabolites: 1, L-lactic acid; 2, L-
alanine; 3, oxalic acid; 4, L-valine; 5, urea; 6, L- L- L-leucine; 7, glycerol; 8, phosphoric acid; 9, L-isoleucine; 10, L-proline; 11, glycine; 12, L- L- L-serine; 13,
L-threonine; 14, L-methionine/L-aspartic acid; 15, aminomalonic acid; 16, pyroglutamic acid/L-glutamine; 17, L-glutamic acid; 18, L-phenylalanine; 19,
L-ornithine; 20, citric acid; 21,d-erythrofuranose; 22, D-fructose; 23, D-glucose; 24, D-galactose; 25, L-histidine; 26, L-lysine; 27, L-tyrosine; 28, gulonic
acid/mannonic acid; 29, D-glucopyranose; 30, 6-deoxy mannose; 31, palmitelaidic acid; 32, palmitic acid; 33, myo-inositol; 34, uric acid; 35, L-
tryptophan; 36, linoleic acid; 37, oleic acid; 38, stearic acid.
doi:10.1371/journal.pone.0016957.g002
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extraction steps compared to the two solvent extraction protocol

used in our study. These differences in metabolite numbers may

also reflect intrinsic differences in the GC–MS deconvolution

software and protocols.

Unlike NMR, where no chemical reactions or extractions are

required, GC-MS techniques can lead to the detection of

artifactual metabolites. For instance, one of the 76 metabolites

reported by Jiye et al. [42] was butylamine. In our study,

butylamine was also detected. However it was seen in both human

serum and in control (blank) samples. This strongly suggests that

butylamine is more an artifact of chemical derivatization, and not

a serum metabolite as originally reported. As we previously noted,

approximately 40% of the peaks remain unidentified in our GC–

MS analyses. These unidentified peaks in the total ion chromato-

gram were generally of low intensity, making spectral identifica-

tion difficult. Nevertheless, several standards were run to confirm

retention times and mass spectral information, likewise, other GC–

MS metabolome libraries were also queried to identify these

‘unknown’’ peaks, but without success.

It is also of some interest to compare the results of our GC-MS

studies with our NMR studies. As seen in Table 3 (NMR results),

Table 4–Table 6 (GC-MS results), and Figure 3, NMR and GC-

MS methods identify a common set of 29 compounds. Interest-

ingly, NMR detects 20 compounds that GC-MS methods cannot

detect while GC-MS detects 45 compounds that NMR cannot

routinely detect, including 3 very high abundance compounds

(phosphoric acid/phosphate, uric acid and N-acetyl-glycine).

There are many possible reasons for these differences in

instrumental detection. A compound might be found by NMR,

but not by GC-MS, if it is too volatile/nonvolatile for GC-MS

detection, lost in sample preparation or eluted during the solvent

delay. A compound might be found by GC-MS, but not by NMR,

if its protons are not detectable by NMR (uric acid, phosphate), or

if its concentration is below detectable limits (maltose, ribitol). In

all cases, the existence of NMR detectable metabolites was

explicitly checked in our GC-MS analyses and vice versa.

Together, NMR with targeted and global GC-MS identified and

quantified 135 mostly polar metabolites. Overall, GC-MS and

NMR appear to be complementary techniques for the identifica-

tion and quantification of small molecules in human serum.

UPLC-ESI-MS/MS (Targeted Lipid Profiling) Identification
and Quantification

While untargeted or global NMR and scanning MS techniques

are particularly useful for the identification and quantification of

polar metabolites of moderate abundance, they are not well suited

for low-abundance metabolites. On the other hand, LC-MS

methods are superb at the targeted identification of low-

abundance metabolites over a wide polarity range. To exploit

and explore these strengths in LC-MS, we chose to study an array

of metabolic products of polyunsaturated fatty acids found in the

liquid portion of the blood. In particular, we targeted (identified

and quantified) a subset of oxylipins (n = 76), acyl-glycines (n = 2),

acyl-ethanolamides (n = 12), and mono-acylglycerols (n = 6).

Oxylipins constitute a broad structural class of oxidized lipid

molecules, occurring in the low nM to mM concentrations that

perform a variety of functions when found in appropriate contexts

[52]. Acyl-amides and mono-acyl glycerols are also common

Table 4. List of 74 metabolites identified in human serum polar and lipid extracts.

Amino acids Organic acids Lipids Misc

Glycine 2-aminobutyric acid Arachidonic acid D-Fructose

L-Alanine Alpha-Hydroxyisobutyric acid Cholesterol D-Galactopyranose

L-Asparagine 2-Methylbutanoic acid Capric acid D-Galactose

L-Aspartic acid 3-Hydroxybutyric acid Dodecanoic acid Glucitol

L-Cysteine 4-Hydroxybutyric acid Arachidic acid D-Glucose

L-Cystine Aminomalonic acid Heptadecanoic acid Glycerol

L-Glutamic acid Benzoic acid Linoleic acid D-Glucopyranose

L-Glutamine Citric acid Oleic acid Hydroxyproline

L-Histidine Erythronic acid Palmitelaidic acid D-Maltose

L-Isoleucine Fumaric acid Palmitic acid Myo-inositol

L-Leucine Gluconic acid Stearic acid Acetylglycine

L-Lysine Glyceric acid Myristic acid N-Acetyl-L-Lysine

L-Methionine Isobutyric acid Acetaminophen

L-Ornithine Tartaric acid Phosphoric acid

L-Phenylalanine L-Lactic acid Ribitol

L-Proline Malonic acid Salicylic acid

L-Serine Methylmaleic acid Urea

L-Threonine Methylmalonic acid D-Xylitol

L-Tryptophan Nicotinic acid

L-Tyrosine Oxalic acid

L-Valine Pyroglutamic acid

Succinic acid

Uric acid

doi:10.1371/journal.pone.0016957.t004
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components of blood with an equally broad spectrum of actions

[70]. These functionalized lipids play important roles in regulating

cell proliferation, apoptosis, tissue repair, blood clotting, blood

vessel permeability, inflammation, pain perception, pancreatic

function, and energy regulation at various levels [71,72,73,74,75].

The oxylipins are classically formed from polyunsaturated fatty

acids through at least three different classes of enzymes: cycloox-

ygenases (COX-1 and COX-2), lipoxygenases (LOX) and cyto-

chrome P450s, or through the direct interaction between unsatu-

rated lipids and reactive oxygen. The reactive oxygen itself may

have either enzymatic (e.g. meyloperoxidase) or non-enzymatic

sources [76]. Among the recognized mammalian oxylipins are the

arachidonic acid-derived prostaglandins, leukotrienes, lipoxins,

hepoxilins, hydroxy, epoxy and dihydroxy metabolites as well as

analogs formed from other highly unsaturated lipids (e.g. resolvins,

protectins), and an array of oxygenated eighteen carbon lipids.

The acyl-ethanolamides and 2-acyl glycerols have emerged as

important endogenous ligands of the cannabinoid receptors, vanilloid

receptors, and peroxisome proliferator activated receptors, and their

regulated synthesis and degradation impacts satiety, thermogenesis,

pain perception, and lipid metabolism [57,77,78] In addition,

circulating levels of acylethanolamides, but not 2-arachidonyl

glycerol, are elevated in cirrhotic liver disease [79] and altered by

psychosocial stress [80]. Interestingly, cross talk between the acyl-

ethanolamine and oxylipin pathways have also been reported [81].

While less well studied, the acyl-glycines represent a growing class of

Table 5. Non-esterified fatty acid concentrations (mM) detected by GC-MS in human plasma.

Compound Name Class HMDB ID Common Abbreviaton
Pennington Plasma
(n = 70)

Dodecanoic acid SAT HMDB00638 C12:0 1.4760.68

Myristic acid SAT HMDB00806 C14:0 7.1663

Pentadecanoate SAT HMDB00826 C15:0 1.3460.91

Palmitic acid SAT HMDB00220 C16:0 122648

Heptadecanoic acid SAT HMDB02259 C17:0 1.8960.92

Stearic acid SAT HMDB00827 C18:0 48.8621

Palmitelaidic acid MUFA HMDB12328 C16:1n7t 1.9761.4

Palmitoleic acid MUFA HMDB03229 C16:1n7 9.6666.8

Vaccenic acid MUFA HMDB03231 C18:1n7 10.765

Oleic acid MUFA HMDB00207 C18:1n9 122656

Nonadeca-10(Z)-enoic acid MUFA HMDB13622 C19:1n9 0.64660.37

Eicosenoic acid MUFA HMDB02231 C20:1n9 0.66360.59

Linoleic acid PUFA HMDB00673 C18:2n6 83.8638

Gamma-Linolenic acid PUFA HMDB03073 C18:3n6 1.0861.5

Bovinic acid PUFA HMDB03797 C18:2(9c/t,11t)-CLA 2.0361.3

Alpha- Linolenic acid PUFA HMDB01388 C18:3n3 5.1163.8

Mead acid PUFA HMDB10378 C20:3n9 0.98760.45

Dihomo-gamma-linolenic acid PUFA HMDB02925 C20:3n6 3.6162.1

Arachidonic acid PUFA HMDB01043 C20:4n6 14612

Adrenic acid PUFA HMDB02226 C22:4n6 1.0160.48

-4,7,10,13,16-Docosapentaenoic acid PUFA HMDB13123 C22:5n6 0.95360.51

Stearidonic acid PUFA HMDB06547 C18:4n3 0.40860.4

Timnodonic acid; EPA PUFA HMDB01999 C20:5n3 1.0960.72

Clupanodonic acid; DPA PUFA HMDB06528 C22:5n3 0.99360.46

Cervonic acid; DHA PUFA HMDB02183 C22:6n3 4.6663.3

doi:10.1371/journal.pone.0016957.t005

Table 6. Concentrations of metabolites in healthy serum
performed by GC-MS.

Metabolites Mean (mM) Literature values (mM)

Oxalic acid 22.2 9.262.7

Acetylglycine 69.7 109.4685.6

Myo-inositol 17.1 23.068.0

Uric acid 494.2 302660

Succinic acid 23.5 16.0 (0.0–32.0)

Alpha-Hydroxyisobutyric acid 8.2 7.0 (0.0–9.0)

Ribitol/D-Xylitol ,5 0.46 (0.38–0.55)

Erythronic acid ,5 2.5 (0.0–5.0)

Lauric (Dodecanoic) acid 9.1 12.0 (2.0–37.0)

Phosphoric acid 820.4 1100 (810–1450)

Myristic (Tetradecanoic) acid 9.3 15.464.0

Gluconic acid ,5 NA

D-Maltose/L-Arabinose ,5 2.5 (0.0–5.0)

Glyceric acid ,5 2.5 (0.0–5.0)

doi:10.1371/journal.pone.0016957.t006

The Human Serum Metabolome

PLoS ONE | www.plosone.org 10 February 2011 | Volume 6 | Issue 2 | e16957



‘‘orphan’’ endogenous lipids which are candidate ligands for a variety

of orphan G-protein coupled receptors [82].

Within each of these classes of lipid mediators there exists an array

of isomeric products from of a relatively few fatty acid species making

their separation critical for accurate quantification. Collision induced

dissociation (CID) often yields extensive compound fragmentation

with structurally unique information that aids identification but limits

sensitivity. However, many of these metabolites are present in nM

concentrations, thus detection and quantification tasks are even more

challenging. Over the past two decades GC-MS, LC-MS and LC-

MS/MS methods have all been used to detect, identify and quantify

oxylipins and other polar metabolites, however the latter approach is

associated with simpler sample workup strategies and can simulta-

neously assess a broader range of targets [83]. While knowledge of

normal circulating ranges of some of these mediators may be

valuable, the challenging nature of their detection and quantification

has resulted in limited reporting of their circulating concentrations in

the literature. Given the paucity of such data, we decided to

undertake this targeted study. Not only would the results provide new

and useful information for the serum/blood metabolomics commu-

nity, they would also give a useful assessment of the comparative

strength of targeted LC-MS/MS relative to untargeted methods in

quantitative metabolomics.

Seventy plasma samples collected at the Pennington Research

Center and a triplicate sample (1 sample partitioned into 3

samples) collected by the Human Metabolome Project were

analyzed for subsets of lipid mediators at the USDA-ARS-Western

Human Nutrition Research Center. Surrogate recoveries were

acceptable and are summarized in Table S2. Replicate analysis of

a laboratory reference serum (n = 7) analyzed in conjunction with

the Pennington Research Center samples showed excellent

precision, 72% of the oxylipins and 67% of the acyl-glycerol/

amides showed relative standard deviations of ,30% for analytes

with a signal-to-noise ratio .2.

The negative mode UPLC-(2) ESI/MS/MS analysis resulted

in the identification and quantification of 76 oxylipins, including

55 20-carbon polyunsaturated fatty acid-derived oxylipins (Table 7

and Table 8) and 21 18-carbon polyunsaturated fatty-acid-derived

oxylipins (Table 9). The positive mode analysis UPLC-(+)ESI/

MS/MS analysis resulted in the identification and quantification

of 20 acyl-ethanolamides, acyl-glycerols, and acyl-glycines

(Table 10). Collectively, the 2 datasets provide information on

76 oxylipins, 12 acyl-ethanolamide, 6 mono acyl-glycerols, and 2

N-acyl glycines.

While serum and plasma are similar with regards to the

concentration and composition of many small molecules, it is

noteworthy that the physiological concentrations of thromboxanes

in serum and plasma differ greatly. Serum is produced by allowing

whole blood to clot and coagulate, while plasma is the unclotted

liquid fraction of blood. The act of clotting is triggered by platelet

degranulation, which releases thromboxane A2 (TXA2) into the

blood, initiating the clotting response. TXA2 is unstable in aqueous

solution, and is hydrolyzed rapidly into the stable and inactive

thromboxane B2 (TXB2), which reflects TXA2 production and

platelet activation. Therefore, normal plasma TXB2 levels are very

low and range from 0.2 to 2 ng/mL [84]. However, when blood is

allowed to naturally clot, then thromboxane production increases

considerably and its physiological concentration in the resulting

serum has been reported to range from 2 to 178 ng/mL [85].

On the other hand, it is important to mention that non-

esterified fatty acids are well-described circulating components of

human plasma and are influenced by the fed/fasted state, as well

as the metabolic health of the individual. In this regard, it is

noteworthy that the analysis of the plasma sample from the

Human Metabolome Project showed very high long chain n3-

oxylipins, suggesting that this sample was from a person that

consumes high amounts of fish or ingests fish oil supplements. This

is a nice contrast with respect to the Pennington cohort and

indicates the important role that dietary habits play in the oxylipin

composition of blood.

TLC/GC-FID Lipid Analysis
The identification and quantification of a wide array of lipid class

isomers within a single analytical sample (i.e. lipidomics) is a rapidly

Figure 3. Venn diagram showing the overlap of serum metabolites detected by global NMR, GC–MS, LC/GC-FID, LC-ESI-MS/MS and
MS/MS methods compared to the detectable serum metabolome.
doi:10.1371/journal.pone.0016957.g003
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developing sub-field of metabolomics [86,87]. There are essentially two

approaches for identifying and/or quantifying lipids. One approach,

known as ‘‘shotgun’’ lipdiomics [88,89], uses LC-MS techniques to

separate lipid classes and mass fragment libraries to identify lipid types.

Shotgun lipidomics is a powerful, non-targeted metabolomic technique

as it allows lipids to be rapidly and ‘‘approximately’’ identified and/or

quantified (if isotopic standards are available). Approximate identifica-

tion means that a lipid might be identified as PC(38:4), meaning that it

is a phosphatidylcholine with two acyl chains that have a total of 4

unsaturated bonds. However, the length of the individual acyl chains,

the sn1/sn2 position of the acyl chains and the position of the

unsaturated bonds is not generally known nor easily knowable. Indeed,

the PC(38:4) designation still means that the lipid could be one of

nearly a dozen possible PC structures.

Table 7. Omega-6 oxylipins (nM) detected by UPLC (2)ESI-MS/MS in human plasma.

Parent Lipid Classa HMDB ID
Common
Abbreviaton HM Replicate Plasma (n = 3) Pennington Plasma (n = 70)

C20:4n6 R-OH HMDB05998 20-HETE 1.7760.43 0.91760.58

C20:4n6 R-OH HMDB03876 15-HETE 1.860.098 2.0461.2

C20:4n6 R-OH HMDB04682 11-HETE 0.42560.0095 0.40160.36

C20:4n6 R-OH HMDB06111 12-HETE 6.4260.74 3.9563.3

C20:4n6 R-OH HMDB10222 9-HETE 0.30460.072 0.16660.16

C20:4n6 R-OH HMDB04679 8-HETE 2.0960.16 0.53660.4

C20:4n6 R-OH HMDB11134 5-HETE 0.90160.029 1.0260.79

C20:4n6 R = O HMDB10210 15-KETE 0.74960.08 0.68260.76

C20:4n6 R = O HMDB13633 12-KETE ,0.1 ,0.1

C20:4n6 R = O HMDB10217 5-KETE 0.13660.018 0.14560.12

C20:4n6 R-OOH HMDB04244 15-HPETE NA 1.0660.41

C20:4n6 R-OOH HMDB04243 12-HPETE NA 1.4562.3

C20:4n6 Diol HMDB04385 Lipoxin A4 ,0.07 ,0.07

C20:4n6 Diol HMDB01085 LTB4 0.096860.0062 ,0.1

C20:4n6 Diol HMDB05087 6-trans-LTB4 0.22360.042 ,0.1

C20:4n6 Triol HMDB01509 20-hydroxy-LTB4 NA ,0.1

C20:4n6 Diol HMDB06059 20-carboxy-LTB4 NA ,1

C20:4n6 Diol HMDB10216 5,15-DiHETE 0.24760.02 ,0.07

C20:4n6 Diol HMDB10219 8,15-DiHETE ,0.1 ,0.1

C20:4n6 Diol HMDB02265 14,15-DiHETrE 0.71460.031 0.60360.18

C20:4n6 Diol HMDB02314 11,12-DiHETrE 0.77960.037 0.56660.2

C20:4n6 Diol HMDB02311 8,9-DiHETrE 0.29460.056 0.24460.078

C20:4n6 Diol HMDB02343 5,6-DiHETrE 0.26460.025 0.18960.092

C20:4n6 Epox HMDB04693 14(15)-EpETrE 1.7760.05 0.44260.59

C20:4n6 Epox HMDB10409 11(12)-EpETrE 0.30360.028 1.0261.4

C20:4n6 Epox HMDB02232 8(9)-EpETrE ,0.2 0.62760.71

C20:4n6 Epox HMDB04688 Hepoxilin A3 NA 0.11460.087

C20:4n6 LT HMDB02200 LTE4 NA ,0.6

C20:4n6 TX HMDB03252 TXB2 0.86560.18 0.91961.6

C20:4n6 PG HMDB02886 6-keto-PGF1a 0.35960.023 0.060760.028

C20:4n6 PG HMDB01139 PGF2a 0.3360.018 0.24860.13

C20:4n6 PG HMDB01220 PGE2 0.096760.012 0.17260.13

C20:4n6 PG HMDB01403 PGD2 0.072660.0058 ,0.1

C20:4n6 PG HMDB02710 PGJ2 ,0.3 ,0.3

C20:4n6 PG HMDB04236 PGB2 0.51960.096 ,0.7

C20:4n6 PG HMDB04238 Delta-12-PGJ2 ,0.3 ,0.3

C20:4n6 PG HMDB05079 15-deoxy PGJ2 0.20660.011 ,0.3

C20:4n6 Triol HMDB04684 11,12,15-TriHETrE ,0.1 ,0.1

C20:3n6 R-OH HMDB05045 15-HETrE 0.43760.028 0.73260.45

C20:3n6 PG HMDB01442 PGE1 ,0.1 ,0.1

aClass: R-OH - hydroxy fatty acid; R = O - keto fatty acid; Diol - dihydroxy fatty acid; Triol - trihydroxy fatty acid; Epox - epoxy fatty acid; LT - leukotriene; PG -
prostaglandin.

doi:10.1371/journal.pone.0016957.t007
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An alternative and much more time-consuming approach to

lipidomics involves separating lipid classes individually, quantify-

ing the lipid classes, hydrolyzing the lipids into their constituent

acyl chains and then identifying the fatty acids using GC-MS. This

method, which is used by Lipomics Technologies Inc. (now Tethys

Biosciences, Inc.) as well as other, more ‘‘traditional’’ lipid analysis

Table 8. Omega-3 oxylipins (nM) detected by UPLC (2)ESI-MS/MS in human plasma.

Parent Lipid Classa HMDB ID
Common
Abbreviaton HM Replicate Plasma (n = 3) Pennington Plasma (n = 70)

C20:5n3 R-OH HMDB10209 15-HEPE 0.2860.042 1.6361.6

C20:5n3 R-OH HMDB10202 12-HEPE 3.1960.35 0.19560.11

C20:5n3 R-OH HMDB05081 5-HEPE 1.1560.14 0.22860.091

C20:5n3 Diol HMDB10211 17,18-DiHETE 14.461.1 2.0860.85

C20:5n3 Diol HMDB10204 14,15-DiHETE ND 0.30460.1

C20:5n3 Epox HMDB10212 17,18-EpETE ND 0.073360.095

C20:5n3 Epox HMDB10205 14,15-EpETE 0.11960.029 ,0.1

C20:5n3 LT HMDB05073 LTB5 0.07960.0056 ,0.1

C20:5n3 PG HMDB02664 PGE3 ND ,0.1

C20:5n3 Triol HMDB10410 Resolvin E1 1.0060.23 0.52160.98

C22:6n3 Epox HMDB13620 19(20)-EpDoPE ND ,0.1

C22:6n3 Epox HMDB13621 16(17)-EpDoPE ND 0.36860.43

C22:6n3 Diol HMDB10214 19,20-DiHDoPE ND 0.80560.42

C22:6n3 R-OH HMDB10213 17-HDoHE ND 0.77360.64

C22:6n3 Triol HMDB03733 Resolvin D1 ND 0.045460.027

aClass: R-OH - hydroxy fatty acid; R = O - keto fatty acid; Diol - dihydroxy fatty acid; Triol - trihydroxy fatty acid; Epox - epoxy fatty acid; LT - leukotriene; PG -
prostaglandin.

doi:10.1371/journal.pone.0016957.t008

Table 9. Octadecanoid oxylipins (nM) detected by UPLC (2)ESI-MS/MS in human plasma.

Parent Lipid Classa HMDB ID Common Abbreviaton
HM Replicate Plasma
(n = 3)

Pennington Plasma
(n = 70)

C18:2n6 Diol HMDB04705 12,13-DiHOME 7.6960.59 5.8263

C18:2n6 Diol HMDB04704 9,10-DiHOME 60.563.8 29.7611

C18:2n6 Epox HMDB04702 12(13)-EpOME 4.8860.34 7.2168.8

C18:2n6 Epox HMDB04701 9(10)-EpOME 2.1760.23 5.4767.4

C18:2n6 R-OH HMDB04667 13-HODE 47.360.53 58.2628

C18:2n6 R-OH HMDB10223 9-HODE 11.760.23 1166.1

C18:2n6 R-OOH HMDB03871 13-HpODE ND 6.0165.5

C18:2n6 R-OOH HMDB06940 9-HpODE ND 5.1463.8

C18:2n6 Epox,R = O HMDB13623 12(13)Ep-9-KODE 3.0260.27 3.9662.4

C18:2n6 R = O HMDB04668 13-KODE 4.8260.68 1.761.2

C18:2n6 R = O HMDB04669 9-KODE 2.4160.29 5.362.7

C18:2n6 Triol HMDB04708 9,12,13-TriHOME 0.82760.21 4.1162.2

C18:2n6 Triol HMDB04710 9,10,13-TriHOME 0.51360.083 1.1660.64

C18:3n3 Diol HMDB10208 15,16-DiHODE 14.561 5.9362.4

C18:3n3 Diol HMDB10201 12,13-DiHODE ,0.2 0.21960.12

C18:3n3 Diol HMDB10221 9,10-DiHODE 2.3660.15 0.11460.085

C18:3n3 Epox HMDB10206 15(16)-EpODE 3.2760.23 2.7762.1

C18:3n3 Epox HMDB10200 12(13)-EpODE 0.41660.08 0.46860.67

C18:3n3 Epox HMDB10220 9(10)-EpODE 2.0860.075 1.6562.3

C18:3n3 R-OH HMDB10203 13-HOTE 1.960.21 1.1160.74

C18:3n3 R-OH HMDB10224 9-HOTE 1.9860.12 1.1960.91

Class: R-OH - hydroxy fatty acid; R = O - keto fatty acid; Diol - dihydroxy fatty acid; Triol - trihydroxy fatty acid; Epox - epoxy fatty acid; LT - leukotriene; PG - prostaglandin.
doi:10.1371/journal.pone.0016957.t009
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labs, is more quantitative and allows the length and identity of

individual acyl chains to be identified. However, it is not readily

amenable to identifying or quantifying the original or intact lipid.

We chose to use this latter approach, partly because of its

quantitative nature and the fact that combinatorial lipid

reconstruction (CLR) could be used to computationally regenerate

precise lipid structures and to approximate concentration ranges.

The data generated by Lipomics Technologies Inc. for the three

adult serum samples yielded an average number of 26 (ranging

from 23 to 32) unique acyl chains that could be identified and

quantified, comprised of saturated, monounsaturated, polyunsat-

urated (v-3, v-6, v-9, plasmalogen) fatty acids. These acyl chains

were further distributed among 7 distinct lipid classes: 1)

cholesterol esters; 2) diacylglycerols; 3) lysophosphatidylcholines;

4) phosphatidylcholines; 5) phosphatidyl-ethanolamines; 6) free

fatty acids and 7) triacylglycerols. Lipids with more than one fatty

acid chain (phosopholipids, diacyl and triacylglycerols), had their

identities and concentrations determined using combinatorial lipid

reconstruction (CLR, see File S1). CLR uses the fractional

abundance of each fatty acid chain and the total concentration

of a given lipid class to estimate the most probable and upper-limit

concentrations of specific lipids. CLR simplifies to solving a linear

algebra problem with pre-defined constraints thereby allowing one

to estimate most probable and upper limit concentrations. The

most probable concentration corresponds to the concentration a

given lipid is most likely to have, based on the fractional

abundance of all fatty acid components measured for its parent

lipid class. The upper limit concentration corresponds to the

highest possible concentration for a given lipid assuming no other

fatty acid combinations contribute to its total concentration (the

code for lipid quantification is briefly described in File S1).

Using both direct measurements (for CE-esters, free fatty acids

and lysolipids) and CLR (for phospholipids, diacyl and triacylgly-

cerols), we identified and quantified (or semi-quantified) 3,381

lipids. This total included: 25 ‘‘confirmed’’ cholesterol esters, 27

‘‘confirmed’’ free fatty acids, 30 ‘‘confirmed’’ lysophosphatidyl-

cholines (Table 11), 847 ‘‘probable’’ diacylglycerols, 1092

‘‘probable’’ phosphatidylcholines, 1071 ‘‘probable’’ phosphatidyl-

ethanolamines, and 289 ‘‘probable’’ triacylglycerols (the most

abundant ones). The lower limit of quantification of LC/GC-FID

based on the TrueMassH platform and CLR estimates was 9.8 nM

for the diacylglycerol known as (Z,Z)-13,16-docosadienoic acid.

Comparison of the TLC/GC-FID lipid results with literature

data was difficult as relatively few papers report lipid concentration

data for serum and/or plasma. We did find data for a number of

total fatty acids, which showed good agreement with the data

generated by Lipomics Technologies Inc, as seen by comparison

with a cross-sectional study of Kuriki et al [90] in Table S3.

Likewise, total cholesteryl ester concentrations, as opposed to

individual cholesterol esters, also showed generally good agree-

ment with cholesterol measurements reported in the literature

(Table S4). It was also challenging to compare the TLC/GC-FID

lipid results with the GC-MS results as the two methods only

identified and quantified 8 metabolites in common (arachidonic

acid, eicosanoic acid, linoleic acid, oleic acid, palmitelaidic acid,

palmitic acid, stearic acid and tetradecanoic acid). Nevertheless,

the concentration data showed generally good agreement, with

only palmitic acid and oleic acid being substantially different

(TLC/GC-FID concentrations were 50% lower for palmitic acid

and 60% lower for oleic acid). On the other hand, comparison of

the non-esterified or free fatty acids quantitative results between

the TLC/GC-FID and the GC-(+)EI MS platforms shows that the

GC-(+)EI MS concentrations of palmitic acid, vaccinic acid, oleic

acid, linoleic acid, dihomo-c-linolenic acid and docosapenta-

(4,7,10,13,16)-enoic acid are generally higher than those measured

by TLC/GC-FID (Table 6 and Table 11). However, as these were

Table 10. Acyl- ethanolamide, -glycerols, and -glycines concentrations (nM) detected by UPLC (+)ESI-MS/MS in human plasma.

Parent Lipid Class HMDB ID Common Abbreviaton Pennington Plasma (n = 70)

C16:0 Ethanolamide HMDB02100 PEA 25.1612

C18:0 Ethanolamide HMDB13078 SEA 15611

C18:1n9 Ethanolamide HMDB02088 OEA 46.8634

C18:2n6 Ethanolamide HMDB12252 LEA 13.766.5

C18:3n3 Ethanolamide HMDB13624 Alpha-LEA 0.11860.069

C20:3n6 Ethanolamide HMDB13625 DGLA EA 1.0160.48

C20:4n6 Ethanolamide HMDB04080 AEA 3.1261.2

C22:4n6 Ethanolamide HMDB13626 DEA 1.6360.78

C22:6n3 Ethanolamide HMDB13627 DHEA 0.40160.22

PGF2a Ethanolamide HMDB13628 PGF2a EA 0.017360.015

PGD2 Ethanolamide HMDB13629 PGD2 EA 0.16160.032

20-HETE Ethanolamide HMDB13630 20-HETE EA 0.020860.013

C18:1n9 1-Acyl Glycerol HMDB11567 1-OG 1706170

C18:2n6 1-Acyl Glycerol HMDB11568 1-LG 37.6636

C20:4n6 1-Acyl Glycerol HMDB11578 1-AG 4.7164.5

C18:1n9 2-Acyl Glycerol HMDB11537 2-OG 1666130

C18:2n6 2-Acyl Glycerol HMDB11538 2-LG 146697

C20:4n6 2-Acyl Glycerol HMDB04666 2-AG 7.864.6

C18:1n9 N-Acyl Glycine HMDB13631 NO-Gly 21623

C20:4n6 N-Acyl Glycine HMDB05096 NA-Gly 1.0960.73

doi:10.1371/journal.pone.0016957.t010
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measured in different subjects, these differences are likely due to

variation in subjects as opposed to methodological inconsistencies.

A more detailed comparison of the CLR-derived lipid concentra-

tions to those obtained from other MS/MS methods is given

below.

DFI MS/MS
The Direct Flow Infusion (DFI) MS/MS targeted analysis using

the Biocrates AbsoluteIDQ kit provided quantitative results for 139

metabolites (24 acylcarnitines. 14 amino acids, hexose (Table 12),

73 phospatidylcholines (Table S5), 15 sphingomyelins and 12

lysophosphatidylcholines (Table 13). From the 41 measured

acylcarnitines, 24 provided quantitative data, whereas the

remaining 17 were below the limit of detection (LOD). This

result is in good agreement with previous studies conducted by

Biocrates (Application Note 1001-1), which indicated a typical

pool of human plasma from healthy people yields an average of 23

acylcarntines below the limit of detection.1 That note also reported

that the concentrations of 5 lysophosphatidylcholines in pooled

normal human plasma are typically below the normal LOD,

whereas in the present study only 3 lysophosphatidylcholines were

below the LOD. In our hands, the lower limit of quantification by

DFI MS/MS based on the AbsoluteIDQ kit was 12 nM for

hexadecadienylcarnitine.

The Biocrates DFI MS/MS approach generates lipid data that

is more akin to that measured via shotgun metabolomics (see

above). That is, the lipids are identified by their total acyl/alkyl

chain content (i.e. PC(38:4)) as opposed to their precise chemical

structure. As a result it was difficult to compare lipid concentration

measurements between the Biocrates IDQ platform and the

Lipomics Technology Inc. platform. Nevertheless, by grouping

the diacyl PCs generated by CLR to match the PC designations

Table 11. Concentrations (mM) of cholesterol esters, free fatty acids and lysophospatidylcholines as quantified by TLC/GC-FID.

Cholesterol esters (CEs) Free Fatty Acids (FFAs) Lysopsosphatidylcholines (LysoPCs)

Lipid Class Mean SD Mean SD Mean SD

C14:0 97.04 59.91 15.46 4.02 4.23 1.67

C15:0 ND ND 2.69 0.51 1.76 0.85

C16:0 405.46 56.51 66.01 9.88 106.60 16.73

C18:0 37.50 2.82 41.12 5.52 47.54 8.38

C20:0 1.18 0.12 0.87 0.09 0.69 0.37

C22:0 1.08 0.48 1.01 0.26 0.43 0.09

C24:0 0.91 0.55 0.93 0.19 0.70 0.35

C14:1n5 4.19 1.04 2.02 0.73 0.21 0.08

C16:1n7 118.75 45.54 6.39 4.28 2.34 1.05

C18:1n7 44.23 3.82 2.55 1.31 3.66 0.14

C18:1n9 704.47 129.59 49.24 19.31 37.47 7.73

C20:1n9 0.11 NA 1.50 1.21 0.53 0.17

C20:3n9 2.80 1.49 1.32 1.36 0.25 0.07

C22:1n9 1.86 2.43 1.26 1.59 0.57 0.26

C24:1n9 ND ND 0.90 0.97 0.73 0.56

C18:2n6 1506.38 204.89 14.73 4.33 52.75 6.48

C18:3n6 23.66 1.58 0.31 0.20 0.23 0.10

C20:2n6 4.29 4.02 0.42 0.16 0.71 0.25

C20:3n6 18.71 5.94 0.42 0.21 2.75 0.29

C20:4n6 195.48 21.36 5.26 2.07 8.39 0.98

C22:2n6 1.06 NA 0.42 0.07 0.10 0.11

C22:4n6 ND ND ND ND 0.13 NA

C22:5n6 3.28 3.46 0.14 0.09 0.11 0.02

C18:3n3 23.60 0.13 1.98 1.22 1.24 0.54

C18:4n3 ND ND ND ND 0.29 0.32

C20:4n3 2.47 1.96 0.01 NA 0.26 0.14

C20:5n3 39.07 11.07 0.40 0.07 1.61 0.16

C22:5n3 3.22 3.67 0.39 0.23 0.74 0.22

C22:6n3 21.93 6.64 1.78 0.80 2.78 0.29

dm16:0 ND ND ND ND 0.93 0.11

dm18:0 ND ND ND ND 0.07 NA

dm18:1n9 ND ND ND ND 0.13 NA

doi:10.1371/journal.pone.0016957.t011

1http://www.Biocrates.com/images/stories/pdf/Biocrates_Appl.Note_1001-1.pdf
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generated by Biocrates we were able to create a modest

correspondence. We found that the concentration data measured

by the Biocrates kit, by Quehenberger et al. [91] and by the

Lipomics platforms matched reasonably well, with the exception of

three cases: 1). PC(28:1), PC(30:2) and PC(38:0) for which CLR

estimated considerably lower most-probable concentrations than

Biocrates; 2). PC(32:0) and PC(36:0) for which CLR estimated

considerably higher; than Biocrates and Quehenberger et al.; and

3) the quantified concentration of PC(40:2) by Quehenberger et al.

[91] which is significantly higher than both Biocrates and CLR

(Table S6). These discrepancies may be due to the fact that

different subjects were analyzed by DFI MS/MS, TLC/GC-FID

and LC-MS/MS. In addition, since CLR takes into account all

possible sn1/sn2 structural combinations, some of these combi-

nations are unavoidably less likely to exist in nature and so these

PCs may be over-represented and therefore generate higher

concentrations. On the other hand, the limits of quantification of

the three platforms are not identical. This means they quantify

different individual fatty acids per lipid class and so they return

different numbers of positional combinations and different PC

concentrations.

Table 12. Concentrations of acylcarnitines and amino acids
(mM) in healthy serum by DFI MS/MS (Biocrates kit).

Acylcarnitines Amino acids

Mean SD Mean SD

DL-carnitine 29.738 7.547 L-Arginine 129.5 30.0

Decanoylcarnitine 0.260 0.111 L-Glutamine 492.6 93.6

Decenoylcarnitine 0.171 0.041 Glycine 329.9 105.6

Decadienylcarnitine 0.061 0.029 L-Histidine 143.1 27.3

Dodecanoylcarnitine 0.103 0.030 L-
Isoleucine+L-
Leucine

227.4 63.5

Tetradecanoylcarnitine 0.043 0.007 L-Methionine 33.4 9.0

Tetradecenoylcarnitine 0.063 0.028 L-Ornithine 93.8 41.3

Tetradecadienylcarnitine 0.028 0.013 L-
Pheylalanine

85.2 23.0

Hexadecanoylcarnitine 0.072 0.019 L-Proline 177.5 38.6

Hexadecenoylcarnitine 0.029 0.005 L-Serine 173.2 51.3

Hexadecadienylcarnitine 0.012 0.002 L-Threonine 102.3 24.6

Octadecanoylcarnitine 0.035 0.010 L-Tryptophan 78.4 15.5

Octadecenoylcarnitine 0.108 0.036 L-Tyrosine 143.0 35.3

Octadecadienylcarnitine 0.035 0.013 L-Valine 266.3 61.0

Acetyl-L-carnitine 5.476 2.147

Propionyl-L-carnitine 0.313 0.154 Hexose

Butyryl-L-carnitine 0.262 0.158 Hexose 3767.6 607.0

Hydroxybutyrylcarnitine 0.106 0.010

Valeryl-L-carnitine 0.142 0.063

Tiglyl-L-carnitine 0.045 0.005

Glutaconyl-L-carnitine 0.018 0.002

Octanoylcarnitine 0.234 0.078

Octenoylcarnitine 0.200 0.151

Nonaylcarnitine 0.033 0.013

doi:10.1371/journal.pone.0016957.t012

Table 14. Comparison of lysophosphatidylcholines
concentrations (mM) performed by LC-ESI-MS/MS and DFI MS/
MS (Biocrates kit).

MS/MS
(Biocrates) LC/GC-FID (Lipomics)

Mean SD Mean SD

LysoPC a C14:0 2.64 0.31 4.23 1.67

LysoPC a C16:0 124.1 50.46 106.6 16.73

LysoPC a C16:1 3.6 1.12 2.34 1.05

LysoPC a C17:0 2.36 1.04 ND ND

LysoPC a C18:0 40.77 20.55 47.54 8.38

LysoPC a C18:1 30.94 10.05 LysoPC C18:1n7 3.66 0.14

LysoPC C18:1n9 37.47 7.73

LysoPC dm18:1n9 0.13 NA

LysoPC a C18:2 32.98 13.31 52.75 6.48

LysoPC a C20:3 2.53 0.74 LysoPC C20:3n6 2.75 0.29

LysoPC C20:3n9 0.25 0.07

LysoPC a C20:4 6.13 2.47 LysoPC C20:4n6 8.39 0.98

LysoPC C20:4n3 0.26 0.14

LysoPC a C24:0 0.19 NA 0.70 0.35

LysoPC a C28:0 0.37 0.06 ND ND

LysoPC a C28:1 0.48 0.1 ND ND

doi:10.1371/journal.pone.0016957.t014

Table 13. Concentrations of sphingomyelins and
lysophosphatidylcholines (mM) in healthy serum by DFI MS/MS
(Biocrates kit).

Sphingomyelins Lysophosphatidylcholines

Mean SD Mean SD

SM (OH)
C14:1

5.92 1.63 LysoPC a C14:0 2.64 0.31

SM (OH)
C16:1

3.70 0.90 LysoPC a C16:0 141 50

SM (OH)
C22:1

15.6 3.7 LysoPC a C16:1 3.48 1.01

SM (OH)
C22:2

12.89 2.88 LysoPC a C17:0 2.55 1.08

SM (OH)
C24:1

2.56 0.66 LysoPC a C18:0 48.5 20.2

SM C16:0 100.5 18.6 LysoPC a C18:1 31.5 10.4

SM C16:1 15.1 3.5 LysoPC a C18:2 30.33 10.3

SM C18:0 25.8 6.4 LysoPC a C20:3 2.65 0.68

SM C18:1 11.7 3.0 LysoPC a C20:4 6.13 2.55

SM C20:2 1.34 0.35 LysoPC a C24:0 0.19 NA

SM C22:3 16.4 7.9 LysoPC a C28:0 0.370 0.043

SM C24:0 30.5 7.6 LysoPC a C28:1 0.481 0.117

SM C24:1 82.7 14.1

SM C26:0 0.440 0.111

SM C26:1 0.850 0.167

a: acyl.
doi:10.1371/journal.pone.0016957.t013
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We used similar re-groupings to compare the lysoPC values to

each other and found that both the Lipomics and Biocrates

platforms provide quite comparable quantification data (Table 14).

Overall, while the compound overlap is relatively small, it appears

that both platforms provide reliable and closely agreeing

measurements of the lipid content in serum.

Method Comparison
We used five different metabolic profiling methods to

experimentally characterize as much of the known serum

metabolome as possible: 1) NMR; 2) GC-MS; 3) lipid mediators

by LC-ESI-MS/MS; 4) lipidomics profiling via TLC/GC-FID-

MS; and 5) DFI MS/MS. We were able to identify a total of 3564

distinct metabolites including several exogenous compounds such

as propylene glycol and acetaminophen. NMR spectroscopy was

able to identify and quantify 49 compounds, GC-MS was able to

identify 90 and quantify 33 compounds, lipid mediator profiling

(targeted ESI-MS/MS) identified and quantified 96 compounds,

TLC/GC-FID-MS identified and quantified 3381 compounds

while DFI MS/MS identified and quantified 139 compounds.

NMR and GC-MS were able to identify a common set of 29

metabolites while NMR, GC-MS and DFI MS/MS were able to

identify a common set of 15 metabolites (14 amino acids and

hexose/glucose). Likewise DFI MS/MS and lipidomics profiling

(TLC/GC-FID-MS) could identify a common set of 53 metabo-

lites. This is summarized in the Venn diagram in Figure 3. These

differences in metabolite coverage arise because of many reasons,

including separation difficulties, sensitivity differences, instrument

detection differences, targeted vs. non-targeted methods, com-

pound stability, compound solubility, compound volatility, etc.

While several pairwise platform comparisons have already been

discussed, it is perhaps instructive to look at how three different

platforms did in the identification and quantification of the one

group of compounds that all three platforms measured: amino

acids. Comparison of amino acid concentrations as measured by

NMR, GC-MS and DFI MS/MS showed that the quantitative

results are in relatively good agreement (Figure 4) A few exceptions

are evident. For example, the NMR concentration of L-alanine is

considerably higher than the GC-MS value. This may be due to

the short GC retention time of L-alanine (,7 min), which overlaps

with non-specified ionized fragments and so an accurate

quantification is impeded. L-Leucine and L-isoleucine cannot be

distinguished with the Biocrates kit and therefore their con-

centrations have been combined from NMR and GC-MS mea-

surements in order to make them comparable with the Biocrates

result.

The considerably higher concentration of L-glutamic acid and

lower concentration of L-glutamine reported by GC-MS relative

to NMR and DFI MS/MS may be due to the hydrolysis of L-

glutamine to L-glutamic acid [92] or the conversion of L-

glutamine to pyroglutamic during derivatization [93]. It has been

reported that the distinction of L-glutamine and pyroglutamic acid

with GC-MS is very difficult, while the identification of L-glutamic

acid and pyroglutamic acid can be complicated [92]. Moreover, it

has been noted that L-cystine can be converted to L-cysteine

during derivatization, while L-cysteine might be oxidized to L-

cystine during prolonged storage of the standard solution [93].

Therefore, L-cystine and L-cysteine determinations have unavoid-

able errors unless they are converted prior to quantification.

Finally, L-arginine and ornithine could not be accurately

Figure 4. Graphical representation of serum concentrations of amino acids by NMR, GC/MS and MS/MS (Biocrates kit). The error bars
reflect 1 standard deviation.
doi:10.1371/journal.pone.0016957.g004
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quantified by GC-MS, because firstly ornithine coelutes with citric

acid (16.4 min) and secondly because L-arginine is converted to

ornithine during derivatization [94].

While side-by-side platform comparisons for the quantification

of specific metabolites are quite informative, it is also instructive to

compare the different platforms on the basis of their level of

metabolitle coverage. Given that the known, quantifiable serum

metabolome consists of 4229 known and probable metabolites

(665 literature derived metabolites and 3564 experimentally

derived or predicted), we can calculate that NMR is able to

measure ,1.2% (49/4229) of the human serum metabolome, GC-

MS is able to measure 2.13% (90/4229), ESI-MS/MS (lipid

mediator profiling) is able to measure 2.3% (96/4229), TLC/GC-

FID-MS (general lipidomics) is able to measure 79.9% (3381/

4229) while DFI MS/MS is able to measure 3.3% (139/4229) of

the serum metabolome. When combined the five methods are able

to obtain data on 84% of the serum metabolome (3564/4229). It is

important to emphasize that not all of the experimental

approaches used in this study were ‘‘global’’ in their intent,

meaning that the detection and quantification of these metabolites

was not targeted. In particular, the DFI MS/MS and lipid

mediator profiling methods were highly targeted, while the

lipidomics method was generally targeted to lipids and fatty acids.

Likewise, it is also important to emphasize that not all possible

metabolomics platforms or technologies were assessed in this study

nor were some of the latest metabolomics technologies. The use of

more sophisticated or targeted detection and separation protocols

(immunodetection, chemical derivitization, etc.) along with the use

of higher-end instruments (GC-TOF, FT-MS, Orbitraps) would

likely have led to the experimental detection of more compounds.

However for this study, we wanted to address the question of how

well a cross-section of commonly accessible metabolomic methods

or platforms could perform in identifying and quantifying

metabolites in serum.

Given the rich lipid character of serum, lipidomic methods

including lipid mediator profiling, DFI MS/MS and general

lipidomics methods such as TLC/GC-FID-MS appear to be the

most suitable methods for serum characterization – both in terms

of their breadth of coverage and their amenability to quantifica-

tion. In fact, it has been recently postulated that the theoretical

number of distinct lipid isoforms in the human body may

approach 200,000 [95]. Even though the identification and

quantification of such a vast number of lipids is currently not

possible, new advances in MS-based technology are expanding the

number and types of lipids that can be analyzed [95]. Generally

among glycerophospholipids and glycerolipids, the determination

of the length of each fatty acyl moiety at the sn-1 and sn-2

positions of the glycerol backbone and the total number of the

double bonds in each lipid can be unambiguously determined

[95,96,97]. However, the determination of the exact position of

the double bond and the relative number of the positional isomers

poses a major challenge in lipidomics [95,98]. Other challenges

also exist for this field including: 1) the observation that different

classes of lipids may significantly affect instrument response of

[99]; 2) the different patterns that identical lipid species may show

when analyzed by various types of mass spectrometers or by the

same mass spectrometer in different experimental modes [100]

and 3) the limited availability of internal standards with the exact

structure of the lipids of interest [101]. Even with these limitations,

it is still clear that targeted lipid analysis of serum will always yield

an enormous abundance or metabolites.

While NMR and GC-MS do provide information on many

water-soluble metabolites, we believe that these methods are still

insufficiently sensitive to compensate for their lack of coverage.

Overall, it appears that LC-MS or DI-MS methods may be the best

choice for serum metabolomic studies, despite their bias against

hydrophilic metabolites. Interestingly, the use of hydrophobic

enrichment tags (similar in concept to trimethylsilation in GC-

MS) using p-chlorophenylalanine mediated chemical labeling [102],

dimethyl isotopic labeling [103] or dansyl chloride labeling [104]

has been shown to confer enhanced LC retention and improved

MS-detection of hydrophilic metabolites. Preliminary data (Liang

Li, personal communication) suggests this chemo-selective tagging

approach could lead to detection and relative quantification by LC-

FTMS of perhaps 400 water-soluble metabolites in the serum

metabolome.

To summarize, this particular study of the human serum

metabolome was designed to address four key questions: (1) what

compounds can be or have ever been identified in human serum?

(2) What are the concentration ranges for these metabolites? (3)

What portion of the human serum metabolome can be routinely

identified and/or quantified using conventional, untargeted

metabolomics methods? (4) What analytical methods (NMR,

GC–MS, GC-FID, LC–MS) are best suited for comprehensively

characterizing the human serum metabolome? The answers to the

first two questions have already been given and the information is

contained in the human serum metabolome database (SMDB –

http://www.serummetabolome.ca). With respect to the third

question, given that the known, quantifiable serum metabolome

consists of 4229 confirmed and probable metabolites, we observe

that NMR is able to measure ,1.2% (49/4229) of the human

serum metabolome, GC-MS is able to measure 2.13% (90/4229),

ESI-MS/MS (lipid mediator profiling) is able to measure 2.3%

(96/4229), TLC/GC-FID-MS (general lipidomics) is able to

measure the concentration of 79.9% (3381/4229) while DFI

MS/MS is able to access 3.3% (139/4229) of the serum

metabolome. When combined the five methods are able to obtain

data on 84% of the serum metabolome (3564/4229).

While clear differences do exist in the number and type of

compounds detected by the technologies employed in this study, the

intent was not to denigrate any technology, but simply to explore

their limits (strengths and weaknesses) and to characterize the

human serum metabolome with a cross-section of commonly

available metabolomics tools or platforms. Indeed, this study

suggests that comprehensive metabolite profiling of human serum

requires multiple platforms and multiple methods as no single

method can offer (nor likely will offer) complete metabolite

coverage. Despite these caveats, it is fairly clear that non-targeted

lipidomics (TLC/LC-GC-FID) using combinatorial lipid recon-

struction appears to be the best method for getting the largest degree

of metabolite coverage, even though many of the metabolites and

concentrations generated through the CLR method would have to

be called ‘‘probable’’ rather than confirmed. However, this

approach is time-consuming, expensive, requires relatively large

sample volumes and is focused on the lipid classes specifically, thus

providing limited coverage of metabolic space. The use of targeted

metabolite profiling approaches (such as lipid mediator profiling or

the DI MS/MS kit), while not as comprehensive, shows good

promise and exceptional sensitivity. Furthermore, both methods

allow specific expansion into other regions of metabolic space. In

particular, the low volume requirements (10–20 mL) and the high-

throughput nature (80 samples/day) of kit-based technologies such

as the Biocrates AbsoluteIDQ kit could make this approach

particularly appealing to many labs. While NMR may be the most

robust technology for quantitative metabolomics, the high volume

requirements (.300 mL) and general lack of sensitivity (.1 mM)

tend to make this approach somewhat limiting. The reduced

sensitivity obviously means NMR-based approaches will tend to
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miss many low abundance serum metabolites (i.e. inflammatory or

oxidation-status markers) of clinical interest. Overall, GC–MS

appears to have similar or slightly better sensitivity than NMR

spectroscopy, although quantification by GC-MS tends to be more

difficult. It is notable that GC-MS volume requirements are often

substantially less than NMR, making GC-MS a more powerful

approach to doing metabolomics with volume-limited samples.

Potentially, the use of GC–TOF instrument or a fast scanning

quadrupole instrument would have yielded even more favorable

results for our GC–MS studies.

Obviously, if time and resources permitted, we would have liked

to assess other technologies and to study a much broader patient

base. However, this study is not the ‘‘final’’ word on serum or

blood metabolomics. Rather, it should be viewed as a starting

point for future studies and future improvements in this field.

Indeed, our primary objective for undertaking these studies and

compiling this data was to help advance the fields of quantitative

metabolomics, especially with regard to clinically important

biofluids. Experimentally, our data should serve as a useful

benchmark from which to compare other technologies and to

assess coming methodological improvements in human serum

characterization. From a clinical standpoint, we think the

information contained in the human serum metabolome database

(SMDB) should provide clinicians and clinical chemists a

convenient, centralized resource from which to learn more about

human serum and its unique biochemical functions.

Methods

Ethics Statement
All samples were collected in accordance with the ethical

guidelines and written consent protocols mandated by the

University of Alberta, the University of British Columbia (UBC)

and the Pennington Biomedical Research Centre (PBRC). All

three institutional review boards approved the collection of serum

for comprehensive metabolite characterization. All patients and all

control individuals were approached using approved ethical

guidelines and those who agreed to participate in this study, were

required to sign consent forms. Patients could refuse entry,

discontinue participation, or withdraw from the study at any time

without prejudice to further treatment or management. All

participants provided written consent.

Sample Collection and Preparation
Four different sets of blood or serum samples were collected for

our experimental studies (Table 1). A set of 54 adult serum samples

was collected specifically for quantitative NMR, untargeted GC-

MS and targeted (DFI) MS/MS studies, and a second set of 3

samples was collected and analyzed using quantitative lipidomics

assays (TLC-methyl-esterification-GC-MS) developed by Lipomics

Technologies Inc. (now Tethys Inc., West Sacramento, CA). The

small number of samples used for the lipidomic assays were

dictated by the substantial time and cost associated with these

targeted quantitative studies. A third set of plasma samples was

collected from 70 healthy subjects for the determination of

nonesterified lipids and lipid mediators, including oxylipins and

endocannabionids, by targeted GC-MS and UPLC-MS/MS. A

fourth set comprised of 3 technical replicates of one adult serum

sample, was collected and analyzed for oxylipins by UPLC-ESI-

MS/MS in an independent analysis.

For the untargeted NMR and GC-MS studies, we also explored

temporal and disease-associated metabolite differences to get a

better idea of the extent of the cross-sectional and longitudinal

metabolite variability for NMR-detectable blood metabolites.

Because of the close clinical monitoring and frequent blood

sampling done of organ transplant patients, we chose to work with

a small cohort of heart transplant patients enrolled as part of the

Biomarkers in Transplantation study at the James Hogg iCAP-

TURE Centre at St. Paul’s Hospital in Vancouver BC. As a result,

for the NMR, GC-MS and MS-MS studies, serum samples were

collected from 21 healthy adult individuals (aged 26–71) (mentioned

above) and 9 heart transplant patients (aged 26–64). Six serum

samples were collected for each of the heart transplant patients at

various time points (before transplantation, then 2, 3, 4, 8, and 12

weeks after transplantation) for a total of 966 = 54 samples. The

heart transplant patients included 6 males and 3 females.

Blood samples obtained from the transplant patients (54

samples) or controls (21 for NMR, GC-MS, MS-MS, 1 for LC/

MS, 3 for GC-MS/lipidomics) were collected via standard

overnight fasting, vein-puncture methods and stored in serum

tubes (with clot promoter). Samples were subsequently spun down

for 15 minutes at 29006g at 4uC and the serum decanted into

clean plastic cryogenic vials and frozen to 280uC within 2 hours

to minimize any possible metabolite degradation. All serum

samples were thawed on ice for approximately 2 hours before use.

For the targeted analysis of nonesterified fatty acids, oxylipins,

acylamides, and monoacylglycerols in plasma, compiled results

were obtained from a study designed to assess the roles of lipids

and hormones in regulating blood pressure in subjects with

varying amounts of body fat. Subjects were healthy adults, ages 35

to 65 (32 males and 37 females) with each gender group

comprising approximately half African Americans and half

Caucasians. The subject groups displayed a representative range

of body habitus with a BMI of 2965 kg/m2. The study took place

in a clinical research unit at the Pennington Biomedical Research

Center in Baton Rouge, LA. A standard diet was given to subjects

to eat for four days, three days while they lived at home, and the

fourth day in the clinical research unit. Blood samples were drawn

in the morning after an overnight fast and before subjects arose

from bed. Venous blood was drawn into a tube containing EDTA,

immediately chilled on ice for transport, centrifuged within an

hour, and the plasma decanted into storage tubes. Storage was at

280uC for several months before analysis.

NMR Compound Identification and Quantification
Serum samples contain a substantial portion of large molecular

weight proteins and lipoproteins, which affects the identification

and quantification of small molecule metabolites by NMR

spectroscopy. Consequently, we introduced a step in the protocol

to remove serum proteins (deproteinization). There are several

routes to serum deproteinization, including organic solvent

(acetonitrile, methanol, isopropanol) precipitation, ultrafiltration

[28,44] as well as spectral manipulation methods such as diffusion

editing [45]. While other researchers have found that ultrafiltra-

tion yields poor signal-to-noise ratios, we found that by using an

ultrafiltration protocol similar to that described by Tiziani [46]

and Weljie et al [47], we could obtain excellent spectra that

yielded metabolite concentrations that closely matched known

values measured using standard clinical chemistry techniques.

Ultrafiltration also has other advantages: it is relatively quick,

very reproducible, does not introduce unwanted solvent peaks

and is ‘‘safe’’ in terms of avoiding unwanted side-reactions with

biofluid metabolites. All 1H-NMR spectra were collected on a

either a 500 MHz or 800 MHz Inova (Varian Inc., Palo Alto,

CA) spectrometer using the first transient of the tnnoesy-

presaturation pulse sequence. The resulting 1H-NMR spectra

were processed and analyzed using the Chenomx NMR Suite

Professional software package version 6.0 (Chenomx Inc.,
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Edmonton, AB), as previously described [15]. Further details on

the NMR sample preparation and NMR data acquisition are

provided in File S1.

GC-MS Compound Identification and Quantification
Seven of the 21 normal serum samples were chosen for GC-MS

analysis and aliquots from these provided an additional ‘‘pooled

normal’’ sample (the heart transplant serum samples were not

analyzed). All samples were extracted separately to obtain separate

pools of polar and lipophilic metabolites using different protocols.

The polar extraction protocol was adapted from a previously

reported method [42] used to deproteinize and solubilize polar

metabolites. Lipophilic metabolites were obtained by extracting

serum samples using a mixture of cold HPLC grade chloroform/

methanol as previously described [48]. All samples were

derivatized with MSTFA (N-Methyl-N-trifluoroacetamide) with

1% TMCS (trimethylchlorosilane) and the resulting extracts were

separated and analyzed using an Agilent 5890 Series II GC-MS

operating in electron impact (EI) ionization mode. Further details

on the extraction, derivatization, separation and GC-MS data

analysis are provided in File S1.

Targeted Profiling of Lipids and Lipid Mediators
Low to moderate abundance lipids and lipid-derived mediators

in blood plasma were quantified using targeted GC-MS and LC-

MS/MS analyses. Non-esterified fatty acids were methylated and

quantified using modifications of the extractive methylation

procedure of Pace-Asiack [49]. The GC-MS analyses were

performed on an Agilent 6890 GC 5973N MSD with a

30 m60.25 mm id60.25 mm DB-225ms column using splitless

injections (see File S1 for further details).

Oxylipins [50,51,52,53,54,55] acylethanolamides [56,57,58],

monoacylglycerols [59], and N-acylglycines [60,61,62] are impor-

tant classes of low to moderate abundance blood-borne lipophilic

molecules with recognized regulatory functions in inflammation,

blood pressure, satiety, gut motility, energy balance, and pain

regulation [54,55]. While the importance of circulating levels of

some of these metabolites is debated, given their clinical

importance, we believed that establishing their normal ranges in

the circulating blood metabolome would be valuable. However, as

a host of these agents are either involved in or affected by the

clotting process, their values were determined in plasma (not

serum) from blood collected in the presence of potassium EDTA.

These benchmark values were established in an independent

cohort of age (4967 yr) and BMI (2965 kg/m2) matched African

American and Caucasian men and women (n = 70). The plasma

samples were extracted by solid phase extraction (SPE) and

analyzed by UPLC-MS/MS for non-esterified oxylipins, acyletha-

nolamides, N-acylglycines, and monoacylglycerols using modifi-

cations of previously described protocols [63]. Analytes were

separated using an Acquity UPLC (Waters Corp), followed by

MS/MS analysis on an ABI 4000 Q-Trap (Applied Biosystems).

Oxylipins were detected using negative mode electrospray

ionization, while all other residues were detected in positive mode.

Compounds were quantified with six point calibration curves using

a ratio response to stable isotope surrogates, using the Analyst

software package (Applied Biosystems). Additional details on the

extraction, calibration and processing are available in File S1.

TLC/GC-FID Lipid Identification and Quantification
Serum and plasma are particularly rich in lipids and lipoprotein

particles. To identify and quantify common lipids in serum a total

of three human serum samples were analyzed using the

TrueMassH platform developed by Lipomics Technologies Inc.

(West Sacramento,CA; now Tethys Bioscience, Inc.). This method

can be used to identify and quantify distinct lipid classes including

neutral lipids, such as cholesterol esters (CEs), free fatty acids

(FFAs), triacylglycerols (TGs) and diacylglycerols (DGs) as well as

phospholipids such as lysophosphatidylcholines (LysoPCs), phos-

phatidylcholines (PCs) and phosphatidyl-ethanolamines (PEs). The

methods used by Lipomics Technologies Inc. are described in

more detail in a number of patents (US Patent #10753289, WO/

2003/005628, see also reference [64] and File S1).

The major fatty acid constituents detected by this technique

include all C12 to C24 saturated and unsaturated chains (.25

fatty acids in total). Quantification of the lipids and fatty acids was

achieved using defined fatty acid methyl ester standards. A

computational method called Combinatorial Lipid Reconstruction

(CLR) was used to ‘‘regenerate’’ the structures and estimate the

most probable concentrations of the triacylglycerols, diacylglycer-

ols and phospholipids with .1 fatty acid chain. CLR uses the

fractional abundance of each fatty acid chain and the total

abundance of a given lipid class to estimate most probable and

upper limit concentrations of a given lipid (see File S1 for a

detailed description of CLR).

Direct Flow Injection MS/MS Compound Identification
and Quantification

To assess the performance of direct flow injection (DFI) MS/

MS methods in serum metabolomics and to determine the

concentration ranges of a number of metabolites not measurable

by other methods, we used the commercially available Absolute-

IDQ kit (Biocrates Life Sciences AG - Austria). This kit, in

combination with an ABI 4000 Q-Trap (Applied Biosystems/

MDS Sciex) mass spectrometer, can be used for the targeted

identification and quantification of 160 different metabolites

including amino acids, acylcarnitines, glycerophospholipids, and

sphingolipids. The method involves derivatization and extraction

of analytes from the biofluid of interest, along with selective mass-

spectrometric detection and quantification via multiple reaction

monitoring (MRM). Isotope-labeled internal standards are inte-

grated into the kit plate filter to facilitate metabolite quantification

(see File S1 for additional information).

Literature Survey of Human Serum Metabolites
In addition to these experimental studies, a complete literature

review of known metabolites and metabolite concentrations in

human serum and plasma was also conducted. A number of

standard clinical chemistry textbooks [22,27,65,66] provided

reference values and disease concentrations for approximately

100 commonly measured blood metabolites. To supplement these

data, we employed several computational text-mining tools that

were originally developed for the Human Metabolome Database

and subsequently used in the determination of the human

cerebrospinal fluid metabolome [15]. One of the more useful

programs was the in-house text mining tool called PolySearch [67]

(http://wishart.biology.ualberta.ca/polysearch/). This program

was used to generate a hyperlinked list of abstracts and papers

from PubMed containing relevant information about serum

metabolites and their concentration data. Specifically, PolySearch

compiled a ranked list of metabolites based on the frequency of

word co-occurrence with the terms ‘‘serum’’, ‘‘plasma’’ or ‘‘blood’’

in conjunction with words such as ‘‘concentration’’, ‘‘identifica-

tion’’, ‘‘quantification’’, ‘‘mM’’, ‘‘nM’’ or ‘‘micromol’’. The list of

metabolites and metabolite synonyms was compiled from the

HMDB [4,5], KEGG [6], ChEBI [9] and PubChem [68].

PolySearch also extracted key sentences from the abstracts, then

labeled and hyperlinked the metabolites mentioned in the text.
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PolySearch processed more than 19 million abstracts to yield more

than 2000 ‘‘highly informative’’ papers or abstracts. From these

abstracts and papers, our annotators manually extracted metab-

olite information (metabolite identities, concentrations, disease

states, etc.) and entered the data into our laboratory information

management system (LIMS) called MetboLIMS. The resulting list

of literature-derived metabolites helped confirm the identity of

many metabolites found in our experimental analyses. The

literature-derived concentration values also simplified some of

the searches for putative metabolite matches in our experimental

studies (described above). In total we identified 665 metabolites

and obtained nearly 1000 metabolite concentration values using

these bibliomic or text mining approaches.

Metabolite Validation and Verification
A common weakness to many metabolomic studies is the

presumption that all named metabolites are equally valid and fully

verified. This is often not the case. For instance if a metabolite has been

identified only through a parent ion mass match to a database

compound, its identity should only be considered very tentative. On

the other hand if a compound has been identified through an exact

match to all 24 of its characteristic NMR peaks, or through matching

the retention time, parent ion mass and mass fragment patterns of a

known standard then obviously this compound’s identity is on much

more solid ground. In a study as broad and complex as this one, it is

important to understand that some metabolites have only been

tentatively identified while others have been fully confirmed or

validated. Among the experimentally identified compounds reported

here, authentic standards, exact NMR spectral matches or spike-in

experiments were used to confirm the identity of almost all the

compounds in our NMR, DFI MS/MS, oxylipin and lipidomics

studies (see File S1 for additional details). Therefore most of these

compounds should be considered as ‘‘confirmed’’. For the CLR

assembled lipids, all the component parts (head groups and acyl chains)

were positively identified and verified using authentic standards, but the

intact lipid could not be verified. Consequently the triacylglycerols,

diacylglycerols and phospholipids reported here should be considered

as ‘‘probable’’. For the GC-MS studies some compound spiking was

performed, but not every compound was validated with authentic

standards. As a rule if a compound had an AMDIS match factor of

.60% and a probability score .20% as well as a matching retention

index to a known compound it was considered ‘‘probable’’. If that

compound had been previously identified by another method and if

the concentration matched closely with a previously reported value, it

was considered ‘‘confirmed’’. With regard to the veracity of

compounds compiled from the literature, obviously a different set of

rules is required. For those compounds cited and quantified by

standard clinical textbooks as well as those identified by two or more

independent published studies were considered ‘‘confirmed’’. Those

compounds with only a single literature reference were considered as

‘‘probable’’ unless the presented evidence was overwhelming. These

verification labels have been added to all the compound data in the

Serum Metabolome Database (see below).
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