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Abstract

The genetic model of tumorigenesis by Vogelstein et al. (V theory) and the molecular definition of cancer hallmarks by
Hanahan and Weinberg (W theory) represent two of the most comprehensive and systemic understandings of cancer. Here,
we develop a mathematical model that quantitatively interprets these seminal cancer theories, starting from a set of
equations describing the short life cycle of an individual cell in uterine epithelium during tissue regeneration. The process of
malignant transformation of an individual cell is followed and the tissue (or tumor) is described as a composite of individual
cells in order to quantitatively account for intra-tumor heterogeneity. Our model describes normal tissue regeneration,
malignant transformation, cancer incidence including dormant/transient tumors, and tumor evolution. Further, a novel
mechanism for the initiation of metastasis resulting from substantial cell death is proposed. Finally, model simulations
suggest two different mechanisms of metastatic inefficiency for aggressive and less aggressive cancer cells. Our work
suggests that cellular de-differentiation is one major oncogenic pathway, a hypothesis based on a numerical description of
a cell’s differentiation status that can effectively and mathematically interpret some major concepts in V/W theories such as
progressive transformation of normal cells, tumor evolution, and cancer hallmarks. Our model is a mathematical
interpretation of cancer phenotypes that complements the well developed V/W theories based upon description of causal
biological and molecular events. It is possible that further developments incorporating patient- and tissue-specific variables
may build an even more comprehensive model to explain clinical observations and provide some novel insights for
understanding cancer.
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Introduction

Efforts to understand cancer have continued to intensify since

the start of a presidential campaign to conquer cancer in 1971 [1].

Mortality rates from cancer remains stubbornly high with more

than half a million deaths in the US alone in 2009 [2]. Cancer is

considered to be predominantly a genetic disease [3]. It is believed

that multiple sequential mutations induce malignant transforma-

tion of a normal cell into the cancer founder cell, which then

multiplies and evolves to become a clinically detectable tumor

[4,5]. This genetic model of carcinogenesis (referred to here as V

theory) is augmented by the elegant description of major cancer

features by Weinberg et al which is recognized as a seminal and

most comprehensive molecular definition of cancer [3,6]. We

specify these two seminal models collectively as the V/W theory of

cancer and have sought to develop a mathematical model capable

of quantitatively interpreting the V/W theory.

Epithelial tissues are the most common locus of oncogenesis.

However, individual epithelial cells are in a constant developmen-

tal process of tissue regeneration, namely from stem cell to

proliferating/differentiating cell and, finally, to senescent cells [7].

The short lifetime and continued proliferation of epithelial cells in

a tissue with a population of 1012 cells pose numerous challenges

to determining the natural course of oncogenesis. We have,

therefore, attempted to describe the life cycle of an epithelial cell

clone of endometrial origin as a normal physiological process to

serve as a basic reference for oncogenesis, which is made possible

by the addition of many genetic and environmental factors.

Clone lifetimes during normal epithelial cell regeneration
and some major assumptions for the study of
carcinogenesis

Endometrial cancer arises in the uterine epithelium, which even

in adults are undergoing constant turnover. The tissue stem cells

provide a stable cell source for tissue regeneration [7]. A stem cell

produces a progenitor cell committed to proliferation, resulting in

a clone with hundreds of descendant cells through many

generations of cell division. If we assume that the tissue stem cell

pool will provide as many progenitor cells as it needs at any time to

ensure tissue homeostasis (a stable total cell number), the life span

of a clone, from zero cell number (before the birth of a progenitor

cell) to one progenitor, to hundreds of descendant cells, to

senescence and eventually death, is a cycle from zero cells at the

beginning to zero cells at the end over a short time period, days or

months. A mathematical description of normal tissue regeneration

may identify immortalization (defying programmed senescence

and cell death) as an early deviation from the physiological process
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with a potential for oncogenesis as a result from a combined effect

of genetic alterations and environmental stimulations [8]. It thus

creates mathematically a continuous and wide spectrum of

physiological and pathological cellular events with cancer at the

other end. The progenitor cell immediately born from a stem cell

and its descendant cells are defined as a clone and the entire

process (from 0 to 0) is defined as the clone lifetime. Thus, any

non-stem cell can be tagged and quantitatively analyzed according

to chronological time during a clone lifetime. Stem cells are

excluded for calculation since their number is maintained through

symmetric and asymmetric divisions in the stem cell compartment.

For uterine epithelium, there are millions of clones which are

actively cycling at any moment but at different stages of their clone

lifetime. This ensures a stable total cell number in a tissue for tissue

homeostasis.

The progression of a clone lifetime from the progenitor cell is

not only shown in the increase of cell number, but also in

accompanying differentiation. We derive a mathematical expres-

sion to describe the kinetics of a single cell during a clone lifetime.

Consequently, a tissue or any population of cells could be treated

as a composite of individual cells with cell-specific variables.

Cellular proliferation can be described in terms of density-

dependent growth
dN

dt
~f (t,N)N for some rate function f (t,N).

Tumor growth is often studied in the context of Gompertzian

growth, where f (t,N)~{blog(
N

K
), for constants b and K [9,10].

However, the Gompertz model is empirical and is based on data-

fitting with respect to tumor volume and weight for its description

of tumor growth [9,10], although mathematical explanations for

the appearance of this growth term have been proposed. In our

model we instead consider tumor size as a result of the

proliferation of its constituent cells. We derive a set of equations

to describe the lifespan of an individual cell within the mass. This

process allows us to describe intraclonal heterogeneity in response

to mutations and environmental stimulation.

Cellular proliferation is described through a cell’s proliferation

potential (a, with a unit of doublings per unit time) [11], and

occurs by the following:

n(t)~

ðt

tn

a(s)ds, ð1Þ

where a(t) is a cell’s proliferation potential and tn is the time the

cell was born. The function n(t) can be interpreted as a measure of

a cell’s status toward either dividing or dying. If n(t�)~1 for some

time t~t� the cell divides, while if n(t�)~{1 the cell dies. The

equation for n(t) is a consequence of the more common growth

terms

dN

dt
~ln(2)a(t)N(t),orequivalently,N(t)~2

(
Ð t

tn
a(s)ds)

, ð2Þ

which can be confusing in this context since we are discussing the

proliferation of a single cell and not an entire population. The

instantaneous a value for any cell in a tumor at any time of its

history is measurable theoretically and can be approximated in

practice with a mean value which is measured by the change of

cell number over a short time period [12]. Hayflick et al described

an individual cell’s capability to multiply as doubling potential

[13]. This concept was further expressed as proliferation potential

[14,15]. It was believed to be critically important to describe

intraclonal heterogeneity through description of the difference of

doubling potential of individual cells [13]. Consequently, intra-

clonal heterogeneity can be quantitatively described in a

population (a tissue or a tumor) through the summation of

individual cells even though all equations here are derived to

describe a single cell.

A clone lifetime, starting from a progenitor cell immediately

born from a stem cell can be mathematically expressed to capture

a dynamic interplay of proliferation and differentiation:

ap(t)~(1=L’):(L{g(t)):g(t) ð3Þ

kp(t)~Kmax
:½1{e{K ’:g(t)� ð4Þ

g(t)~ceiling(

ðt

0

Da(s)Dds) ð5Þ

where g(t) is the generation (g) at time t (a quantitative

measurement of lineage progression, related to cell division),

ap(t) is the generation-dependent programmed (inherent) a, and

kp(t) is the corresponding programmed differentiation coefficient

(k). The terms L, L’, Kmax and K ’ are tissue type-specific

constants. Generally, L is designated as the maximal programmed

generation number before a cell enters a senescent phase

according to a cell’s inherent developmental program. L’ is the

tissue-specific conversion coefficient, which converts mathemati-

cally the value of generation to that of proliferation potential,

dictating the change of programmed proliferation potential value

according to a cell’s biological clock, a reading of progression of

generation. Kmax is the coefficient representing the maximal value

of differentiation in a tissue for the most mature cell, where greater

differentiation implies greater homeostasis according to Assump-

tion 1 below. K ’ is the respective tissue-specific differentiation

conversion coefficient.

Proliferation and differentiation are integrated and continual

cell replacement processes in adult tissue homeostasis [7,16]. In

our model, ap during the developmental process can be described

as a gradual increase in its value, reaching the peak at the middle

of the developmental stage, and then undergoing a gradual

decrease until senescence. Meanwhile, kp increases gradually and

reaches a plateau (maximal level) when cells become well-

differentiated. The idea is that cells at the middle of the clone

lifetime are the most productive and specialization continues

throughout the lifetime. When gwL, ap becomes negative,

indicating that the cell should enter a process of senescence by

its inherent program. This cellular dynamic mimics the gradual

proliferation and differentiation process in uterine epithelium

during the menstrual cycle.

Here, we must introduce the following assumptions in order to

describe the transformation process of oncogenesis.

Assumption 1. We hypothesize that one of the most

important properties of a normal cell is the maintenance of a

programmed proliferation potential ap in a developmental stage-

specific manner: homeostasis in proliferation or cell number. We

define a cell’s ability to maintain ap as the resistance potential (r)

with the following.

r(t)~kp(t):(ap(t){a(t)), ð6Þ

where r(t) is the resistance potential and a(t) is the proliferation

potential at time t. The resistance potential works to bring a cell’s

a to its programmed level ap, and thus is defined as the force to

maintain homeostasis in proliferation. Resistance potential could

be executed by cell cycle regulators such as cyclin D1, cdk1, Rb,

Mathematical Model of Human Cancer
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p16, p27 and p53, one of the most important players capable of

arresting cell cycle or triggering apoptosis.

Assumption 2. A human cell has in excess of 3 billion base

pairs in its genome. Genetic alterations (or mutations), including

single and multiple base pair changes, chromosome translocation,

aneuploidy and epigenetic alterations, are broadly defined here as

any altered hereditary factor, with an enormous number of

possibilities. A genetic alteration’s effect mi on differentiation

status (numerically expressed as differentiation coefficient k) is

given as the following:

k(t)~kp(t)z
Xn

i~1

mi ð7Þ

where n is the number of genetic alterations accrued by the cell

during the proliferative process, and mi is the numerical value of a

genetic alteration, quantifying its effect on the differentiation

coefficient. The values mi follow a Gaussian distribution with

mean m and standard deviation s as mi*N(m,s). It has been

reported that differentiation status of a tumor can be quantitatively

defined and tumor subtypes can be classified accordingly [17].

Thus, quantitative change of tumor differentiation should arise

from accumulation of mutations according to the V theory of

tumorigenesis [4,5].

Assumption 3. A cell lives in a microenvironment filled with

various growth and anti-growth signals such as hormones, growth

factors, and cytokines. Spatial constraints could have a remarkable

effect on cell proliferation as well, especially when a cell is

proliferating rapidly (in the case of cancer [18,19]). The specific

effect on a cell by a particular signal is not fixed and not precisely

targeted. We assume that the collective effect of all signals on a

particular cell follows a Gaussian distribution: b*N(m,s). The

effect of b on cell proliferation is expressed by a dynamical change

in a. This effect, along with the resistance potential, combines to

alter a according to:

da

dt
~r(t)zb(t): ð8Þ

Instead of combining the assumptions above into a single

equation, we present the following four parts collectively as a

summary equation for the growth dynamics of an individual cell in

order to discuss them more intuitively:

n(t)~

ðt

tn

a(s)ds,
da

dt
~r(t)zb(t), r(t)~k(t):(ap(t){a(t)),

k(t)~kp(t)z
Xn

i~1

mi:

ð9Þ

The clone size is then determined by the summation of all cells

within the clone growing according to these dynamics.

Results

In this section, we will explore tissue homeostasis, malignant

transformation, tumor evolution, an alternate mechanism for the

initiation of metastasis and the survival and establishment of

metastatic lesions. The focus will be on endometrial cancer. The

mathematical description of normal tissue regeneration is essential

to serve as a reference for the process of malignant transformation.

Epithelial cell turnover is a dynamic process involving billions of

cells and is presented here as a huge landscape with genetic insults

(lightning) and environmental stimulations (raining) having an

uneven effect on individual cells which will consequently serve as

the basis of heterogeneity of oncogenesis and tumor evolution

(Fig. 1).

The clone lifetime of uterine epithelial cells
We first simulated the developmental process of normal

epithelial cells in order to understand clone size, the lifespan of

every descendant cell, proliferation potential at any moment of

development, and more importantly, changes in differentiation

coefficient. For the simulations of uterine epithelium proliferation,

we set L~10, L’~7, Kmax~3:78, and K ’~0:4 in equations 3 and

4, yielding the following system to describe an individual cell in a

clone lifetime:

ap(t)~(10{g(t)):g(t)=7 ð10Þ

kp(t)~3:78:½1{e({0:4g(t))�: ð11Þ

For the purpose of a more simplified and specific discussion, we

will use equations 10 and 11 to substitute for equations 3 and 4 in

all of the simulations presented in this paper.

Since endometrial cancer primarily occurs in postmenopausal

women, simulations of the normal developmental process in

uterine endometrium were conducted either in the absence of

estrogenic stimulation or in the presence of low amounts of

estrogen exposure. This is represented numerically by either a

neutral mean or a small positive mean value for the Gaussian

distribution for b, respectively. Numerical simulations, with the

specified values for L, L’, Kmax, and K ’, suggest that the possible

maximal clone size from a single progenitor cell is about 29~512
(Fig. 2a). However, when either a neutral or small positive

environmental stimulation (b) is applied which acts randomly and

independently on individual cells every day, cell division in a clone

is no longer synchronized due to the differing Î6 values for each

cell. Peak clone size and time for complete death of a clone vary

according to b values. In a hypothetical menopausal endometrium

without any hormonal effect (zero environment, Fig.2a), a clone

will remain at a stable cell number for many years before they

enter senescence. With a neutral environment, b*N(0,1) or

b*N(0,2), the life cycle of a clone was remarkably shortened

although clones took a similar amount of time to reach peak clone

size (Fig. 2a). When a positive environment, b*N(1,1) or

b*N(2,1), was applied, clone size increased dramatically and

the time required to reach the peak clone size and complete

senescence were substantially shortened (Fig. 2a).

The values of a and b which were set around 1=month and

1=month2, respectively, for a menopausal endometrium may seem

too low since many cancer cells double in 1–2 days in culture.

However, cancer cells are grown in strong stimulation in vitro with

10–20% fetal bovine serum. Our simulation thus far considers

conditions without or with a minimal environmental stimulation.

In order to get a sense for what a menstrual cycle will look like in

the term of cell proliferation, a strong b, b*N(60,6) or

b*N(90,9) or b*N(120,12), was used to simulate a monophasic

oral contraceptive where hormones were given for 21 days

(Fig. 2b). The clone size could be 10–1,000 times larger depending

upon the hormone levels, consistent with the observation of

hyperplasia during proliferative phase of a menstrual cycle. Cell

death was sudden when the hormones were withdrawn. However,

Mathematical Model of Human Cancer
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a clone lifetime was still longer than 28 days since we here did not

incorporate any interaction between fast growth of cells and

environment, which is simulated in a following section, and the

pharmacological effect of sudden hormone withdrawal on blood

vessels supporting the endometrial tissues, which is not considered

in this manuscript. Once again, the entire endometrial tissue is

composed of millions of clones at different stages of their clone

lifetime. Every clone starts with zero number and finished with

zero number over its entire clone lifetime, with tissue stem cells

producing progenitor cells at any moment and resulting in millions

of clones at active cycling. The stem cell compartment will not be

included in our calculations in this manuscript.

Malignant transformation during dynamic epithelial cell
development

Based on the above description of a clone lifetime, malignant

transformation (the process of a normal cell becoming a cancer cell),

is thus defined on the single cell level as a reduction of a cell’s

differentiation coefficient k (a process of de-differentiation). This is

a definition at the single cell level as opposed to the definition of

tumor or cancer in mass or tissue level. In the traditional definition, a

tumor is defined as a clinically detected mass, a cancer cell is defined

morphologically by pathological examination, and malignancy as its

statistical correlation with patient outcome.

In order to simulate the potential effect of mutations on

malignant transformation, one genetic alteration is assumed to

occur at every cell division based on data available in the literature

[5]. Every alteration occurs randomly and independently, and has

an effect on the differentiation coefficient following a Gaussian

distribution of m*N(m,s). In order to explore the quantitative link

between the high incidence of transient and dormant tumors, and

the mutation rate and environmental stimulations, we set m~0 and

s~0:1, consistent with the hypothesis that mutations could have

either a positive or negative effect on the differentiation status, and

that most mutations are passenger mutations with little effect.

Accumulation of genetic alterations should be discussed in a

setting that a cell has a short lifetime physiologically in an

epithelium ranging from days to months but the tissue has billions

of cells at any moment and many times more in a human’s

lifetime. Clearly, a cell accumulates genetic alterations during the

developmental process, with a well-differentiated cell (long living

with gw10) having the most alterations. Using the above values of

m and s, and with the specified values for L, L’, Kmax and K ’, the

probability for a single cell to have a k~0 (complete de-

differentiation and thus malignant transformation) after 10

generations (11 mutations) is 4|10{30 (Table 1). Even assuming

1010 as the total number of cells in an epithelial tissue at any

moment, and a one year lifetime of an epithelial clone (a rough

Figure 1. Schematic illustration of some of critical steps of human oncogenesis. These steps are simulated by our model to interpret
prevailing genetic theories of cancer. Our model, consisting of a few simple equations, captures the landscape of normal uterine tissue regeneration
(simulated for menopausal uterine epithelium and menstrual cycle in Fig. 2), malignant transformation (reduction of differentiation coefficient by
genetic alterations in Table 1), occurrence of dormant/transient tumors (simulation of tumor incidence in Tables 2 and 3), tumor evolution (one
cascade of tumor evolution resulting in the selection of more aggressive cancer subpopulations in Fig.3), a potential mechanism of the initiation of
metastasis (simulated in Fig.4) and the development of clinically detectable metastatic lesions (simulated in Fig. 5). This model describes the
evolution of individual cells incorporating quantitative effects from genetic alterations and environment factors, and emphasizes the role of intra-
tumor heterogeneity in tumor evolution and metastasis.
doi:10.1371/journal.pone.0016859.g001
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estimate for postmenopausal uterine epithelium), a 100 year old

woman has statistically no chance to harbor a fully transformed

cell through genetic alterations alone. The probability to get a cell

with k~0 is even smaller in a less-differentiated cell (gv10) since

its accumulated mutational load is small although its k value is

low. Although tissue turnover could be as short as several days in

some epithelia (e.g., colon crypts), a hundred fold increase in total

cell number in an individual’s lifetime could not overcome the rare

probability of complete malignant transformation by mutation

alone. Our model suggests that environmental factors and

evolution could play critical roles in the selection and immortal-

ization of partially transformed cells.

Tumor evolution: growth of a heterogeneous mass
consisting of cells with various differentiation coefficients

In order to simulate the evolution of a heterogeneous tumor, we

assumed that 4 masses have 1000 cells each at time t~0. Every

cell had an ap~0 and a starting a(0)*N(0,1). A neutral and

slightly varying environmental effect b was assumed to follow

b*N(0,1). We further assumed the distribution of k values in a

mass followed k*N(0,0), (2,1), (3,1) and (4,1), respectively. The

median mass with k~0 reached 1012 cells (the simulation limit

when a simulation was terminated) by 11 months (Fig.3a). The

median mass with k*N(2,1) reached the simulation limit by 15

months (Fig.3a). The median size of masses with k*N(3,1) was

more than 108 cells by 24 months (Fig.3a). In the contrast, almost

all cells in the mass with k*N(4,1) would have a strong resistance

potential to maintain an ap~0 due to high k values (a possible

least k value is about 1 according to the accumulated probability),

and a neutral growth stimulation could not produce any significant

change of tumor mass (Fig. 3a). While different values for L, L’,
Kmax, and K ’ change the times when the simulations reach a

simulation limit, the overall dynamics remain the same.

For the mass with the original k*N(2,1), the majority of cells

with high k values did not grow much since their resistance

potential quickly neutralizes the initial proliferation potentials

(a(0)) and any growth stimulatory effect from growth signals (b) to

maintain a(t) around ap level. It was cells with low k values that

lost their capability to maintain a(t) at ap level and multiplied

remarkably, contributing increasingly to the population of the

mass. The median k value of the mass declined quickly to reach

k~0 by 6 months (Fig. 3b), indicating that the overwhelming

portion of cells were those with k~0. Similarly, the median k

value reached 0.0337 by 21 months for the mass with the original

k*N(3,1), which is approximately the lowest value among the

original 1000 cells (Fig. 3b). Comparing to the original mass with

k*N(3,1), the mass with k*N(2,1) not only had a median k~0
but also the vast majority of cells were k~0 cells by 24 months,

forming a dominant subpopulation with growth advantage. The

final tumor with a size 1012 cells appeared to be homogeneous in k

values. These simulations indicate how a cell was selected due to

its k value when a mass grew. The presence of many cells with

k~0 in a mass will provide a potential for unlimited growth, due

to the lack of a resistance potential.

Figure 2. A clone life of the uterine epithelial cells. The life of a clone is perceived to start when a progenitor cell is borne from an asymmetrical
division of a stem cell at t~0. The progenitor cell multiplies to produce the clone (all descendant cells), whose cells exhibit developmental stage
specific features described by equations 10, 11 and 5. The clone size is calculated as the summation of all individual cells whose growth is governed
by system 9. The size of the entire uterine epithelium at any time will be the summation of all clones with different sizes. A b value is assigned to an
existing cell every day, randomly and independently. a. Simulations of postmenopausal endometrium. b~0 is used to simulate a hypothetical
scenario exhibiting no environmental exposure. Neutral b’s, b*N(0,1) and b*N(0,2), are used as representations of the microenvironmental effect
of postmenopause. A small positive b, b*N(1,1) and b*N(2,1), is introduced to reflect a chronic exposure to weak estrogenic stimulation.
b. Simulations of endometrium with monophasic contraceptives. A monophasic schedule of oral contraceptives is used to model the
menstrual cycle. Strong and positive b’s, b*N(60,6), b*N(90,9), and b*N(120,12), are applied for 21 days in the simulations for the representation
of oral estrogen and progestin. The interaction between fast cell growth and microenvironment, and the effect of sudden withdrawal of hormones on
blood vessels are not included.
doi:10.1371/journal.pone.0016859.g002
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This simulation describes one cascade of tumor development

and evolution of a dominant subpopulation, where the differen-

tiation coefficient in some cells is already zero (completely

transformed). Evolution during the early stage of tumorigenesis

is less prominent since the difference of k values is small among

cells. In this case, environmental factors play an important role in

the selection of cells with growth advantage. Therefore, with

continuous occurrence of mutations and several cascades of

evolution, a substantially transformed cell will emerge and expand

as a subpopulation. The entire tumor although still heterogeneous,

will become increasingly aggressive. Furthermore, as discussed

below, positive and strong stimulations can promote the growth of

cells with kw0, creating a clinically detectable mass consisting of

less aggressive cells (with substantially reduced but non-zero k
values).

Calculation of cancer incidences including subclinical
(dormant/transient) and clinically detectable tumors

According to the simulation of malignant transformation by

genetic alterations in Table 1, the chance of getting a cell with

k~2 is 6|10{8, suggesting that 60,000 cells would have a k~2
in a human’s lifetime with 1012 cells. We carried out simulations to

test how many cells among those with k~2 will escape senescence

and develop into tumors under certain stimulatory conditions. All

cells were already at the senescent stage (defined as g§11), and for

further simulations, we assumed an ap value of -2/month.

Hormonal stimulation could be very strong during the menstrual

cycle. However, we did not include strong cyclic estrogen but

instead included a slightly positive stimulation with b*N(3,1) and

b*N(4,1) to represent chronic exposure to a weak estrogen in a

menopausal woman. Simulations were also performed for various

mutational rates. Data shown in Tables 2 and 3 suggest that

escape of senescence and development of a mass is positively

related to the estrogenic stimulation and mutation rate with the

parameter values mentioned earlier. A positive stimulation

b*N(4,1) and higher mutation rate (2 mutations per generation)

would have 60,000 cells escaping senescence in an individual if the

condition lasted for 6 months, including 87 masses with more than

10 cells, 4 masses with more than 100 cells, 3 masses with more

than 1,000 cells, 2 masses with more than 10,000 cells, 2 masses

with more than 100,000 cells and 1 mass with more than

1,000,000 cells (Table 2). However, if the exposure lasted for one

year, the incidence of neoplasm would dramatically increase

(Table 3). An individual would have 60,000 cells escaping

senescence, 3,523 masses with more than 10 cells, 869 masses

with more than 100 cells, 424 masses with 1,000 cells, 286 masses

with more than 10,000 cells, 215 masses with more than 100,000

cells and 164 masses with more than 1 million cells. The latter

masses would be large enough to be detected in the clinic. When

the mutation rate was reduced to one per generation, or

stimulation down to b*N(3,1) or both, the incidence of tumors

with varying sizes was substantially less (Tables 2 and 3). Thus, the

incidence of clinical and subclinical forms of neoplasm is affected

by mutation rate and exposure to chronic stimulation. If these

factors can be quantified, then the incidence of cancer can be

predicted for any specific individual. As a general rule, the cancer

incidence either subclinical or clinical is positively correlated with

an individual’s age, hormonal stimulation and mutagenic

exposure. This simulation is consistent with reports that subclinical

forms of dormant and transient tumors could be commonly

present in an individual and the incidence could be much higher if

multicentric tumors are included [20–23].

An alternative potential mechanism of the initiation of
cancer metastasis: destruction of inter-cellular structure
resulting from massive cell death

Since a normal endometrium contains billions of cells, there are

multiple clones in different stages of their lifetime providing the

tissue a stable total cell number [24]. We hypothesize the existence

of many basic tissues. Each of them maintains a stable cell number

with a minimal number of developing clones. The maintenance of

a stable number of cells in a basic tissue is thus the most

fundamental phenomenon of homeostasis at the tissue level [24].

Any sudden increase in cell number (volume) of a tumor will elicit

negative reaction from the microenvironment either due to the

lack of factors essential for cell survival or due to physical and

biochemical disruption of the environment (spatial dependence).

Using equations 10 and 11, we arrived at the estimated stable cell

number of 18,800 for a basic tissue in the endometrium if a stable

cell number was defined as variation of cell number at ƒ5% at

any time. Obviously, a basic tissue consists of many clones at

different stages of their lifetime. To study the interaction between

growing cells and their environment, we introduced two concepts:

cellular impact (Ci) through which a cell exerts its effect on the

basic tissue, and ecological balance (B) which is the direct

reaction from the basic tissue. Ecological balance is a reciprocal

action to all cells’ impacts (
P

Ci) on a basic tissue.

For any individual cell, the instantaneous impact of the cell on

the basic tissue at time t is proportional to its rate of growth,
dNi

dt
(equation 2), so

Ci~caiNi

Table 1. The probability of reduction of the differentiation
coefficient to below 0 or 2 by genetic alterations alone, given
a frequency of 1 alteration/generation.

Generation kp Prob. kƒ0 Prob. kƒ2

1 1.25 2|10{36

2 2.09 6|10{50 2|10{1

3 2.65 2|10{52 7|10{5

4 3.02 3|10{49 1|10{7

5 3.28 1|10{45 4|10{9

6 3.45 7|10{42 1|10{9

7 3.56 2|10{38 1|10{9

8 3.64 3|10{35 3|10{9

9 3.69 2|10{32 7|10{9

10 3.72 4|10{30 2|10{8

11 3.75 6|10{28 6|10{8

12 3.76 4|10{26 2|10{7

13 3.77 2|10{24 4|10{7

14 3.78 6|10{23 8|10{7

15 3.78 6|10{23 2|10{6

The generation specific k value for a cell is calculated according to the equation
11 and the generation number is derived from equation 5. The accumulated
probability for mutations to reduce the generation specific k value to 0 or 2 is
calculated according to equation 7. Since mi*N(0,0:1) are independent by
assumption, the random variable M~

Pn
i~1 mi is also normally distributed,

with M*N(0,0:1
ffiffiffi
n
p

). This table shows the probability P(MƒL{kp), where
L~0 or 2.
doi:10.1371/journal.pone.0016859.t001
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for some proportionality constant c. Summing over all Ns cells,

C~
XNs

i~1

Ci~c(
XNs

i~1

ai
Ni

Ns

)~camNs,

where am is the expected value of the ai’s. In a basic tissue, there is

a stable cell number, so it should hold that am&0. It follows that

C&0 in a basic tissue.

Ecological balance will not act on a specific cell as a direct

reaction to its Ci value, but will instead affect all cells in the basic

tissue in a stochastic fashion following a Gaussian distribution

using Bm and Bs values. Thus,

Bm~{Cm~(
XNs

i~1

Ci)=Ns, ð12Þ

Bs~Cs~(
XNs

i~1

(Cm{Ci)
2=Ns)

1=2, ð13Þ

In order to simulate a potentially negative effect from the

microenvironment on a fast growing tumor and investigate the

effect of differentiation coefficients on the growth, we conducted

simulations of four neoplastic cells with k~0, 0:5, 1 and 2 arising

in four separate basic tissues. They grew under identical conditions

with b1*N(1=month2,0:2) and an initial a(0)~1=month. The

environmental reactions to tumor growth, b2*N(Bm,Bs) were

calculated according to Equations 12 and 13, and assigned to

every surviving cell every day randomly and independently. Our

results showed that for the first 12 months, the cell with k~0
proliferated very fast and reached the median mass size of

approximately 170,000 cells by 5 months (Fig. 4a). A cell death of

more than 6000 cells occurred by 5 months (Fig.4b), which was

followed by a slow increase in mass size but accompanied by

increasing cell death. More than 7 million cells died while the mass

size reached only 680,000 cells by 12 months (Fig.4a and 4b),

suggesting that the number of cell deaths is more than 10 times the

mass size. The cell with k~0:5 proliferated and reached the

similar mass size by 12 months (Fig.4a). However, significant cell

death did not occur until the 9th month (Fig. 4b). The two cells

with k~1 and k~2 grew very slowly (Fig.4a) and did not have

any substantial cell death by 12 months (Fig. 4b).

The above simulations suggest an interesting possibility. Massive

cell death causes destruction in the tissue, resulting in widespread

cell relocation and rupture of blood vessels. Thus, we speculated

that massive cell death could lead to cell motility and tumor

expansion. Simulations conducted by Enderling et al suggests a

similar role of cell death for tumor expansion and invasion [19].

The simulations here showed that the faster proliferation of a more

Figure 3. Simulation of tumor evolution. Tumor size change and re-distribution of intra-tumor subpopulations are simulated. a. The growth
curve of four masses with 1000 heterogeneous cells each, specified by different differentiation coefficients to indicate the extent
of loss of differentiation. Every cell has an ap~0 and is assigned at t~0, randomly and independently, an a(0)*N(0,1) to indicate heterogeneous
initial proliferation potentials. Each mass has a k value for its cells from k*N(0,0), k*N(2,1), k*N(3,1), and k*N(4,1), respectively. All cells grow
at a neutral condition b*N(0,1). The tumor size is expressed as the total number of cells within a mass, with each individual cell proliferating
according to the system 9. A simulation is terminated when the total number of cells exceeds 1012. No mutation is considered thus the k value
remains constant for each cell and its descendants. b. Change of the values of differentiation coefficients over time in the four tumors.
The median k values over time among all the cells of one of 4 masses shown in Fig 3a are shown. The k values shown in the legend are the initial
distributions of k values within each of the four masses at time t~0.
doi:10.1371/journal.pone.0016859.g003
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aggressive tumor with lower k cells did not necessarily lead to an

overtly larger tumor but instead might result in earlier tissue

invasion and metastasis. This is consistent with clinical observa-

tions that an aggressive cancer does not often present as a solitary

large primary mass but a benign tumor does. As indicated by the

simulations, tissue invasion and metastasis might occur in the fifth

month when the mass size of k = 0 tumor was approximately

170,000 cells.

However, the simulations above did not consider the positive

interactions between cancer cells and microenvironment. Cancer

cells may release some factors to enhance angiogenesis, and the

surrounding tissues may adjust to accommodate the growing mass.

These positive interactions may catch up to the increase in tumor

size and reach a new balance for further tumor growth. In

addition, a slowly proliferating tumor may have a good chance to

reach a new balance and achieve a larger tumor size without

metastasis.

Survival of metastatic cells in the circulation and
development of clinically detectable metastatic lesions

We now investigate the likelihood of cancer cell survival during

the metastatic process and the role of the differentiation coefficient

in the establishment of metastatic lesions. We assume that a cancer

cell takes 5 steps to reach an ectopic (distant) site and attain

Table 3. Simulation of the effect of mutation rate and
environmental factors on the incidence of neoplasm in an
individual.

Magnitude N(3,1),1=g N(3,1),2=g N(4,1),1=g N (4,1),2=g

§100 60,000 60,000 60,000 60,000

§101 0 0.48 728 3532

§102 0 0.1 30 869

§103 0 0.02 5 424

§104 0 0.01 2 286

§105 0 0 0.87 215

§106 0 0 0.5 164

As a continuation of Table 1, an individual was assumed to have an incidence of
60,000 cells with k~2 in his life time. These cells were assumed to be in
senescent stages (ap~{2) with slight proliferation potential (a(0)~0:2).
Different mutational rates, 1 (1m/g) or 2 (2m/g) per generation, and varying
environmental stimulations, b*N(3,1) or b*N(4,1) were used to investigate
the incidence of escape from senescence and development of different sizes of
masses by each of 60,000 cells. Exposure times to chronic stimulation were 6
months every year (Table 2) or all year around (Table 3). Simulations are run for
a period of 1 year. Outcome of 60,000 cells with k~2 under hormonal exposure
for 12 months.
doi:10.1371/journal.pone.0016859.t003

Table 2. Simulation of the effect of mutation rate and
environmental factors on the incidence of neoplasm in an
individual.

Magnitude N(3,1),1=g N(3,1),2=g N(4,1),1=g N(4,1),2=g

§100 60,000 60,000 60,000 60,000

§101 0 0 0.76 87

§102 0 0 0 4

§103 0 0 0 3

§104 0 0 0 2

§105 0 0 0 2

§106 0 0 0 1

As a continuation of Table 1, an individual was assumed to have an incidence of
60,000 cells with k~2 in his life time. These cells were assumed to be in
senescent stages (ap~{2) with slight proliferation potential (a(0)~0:2).
Different mutational rates, 1 (1m/g) or 2 (2m/g) per generation, and varying
environmental stimulations, b*N(3,1) or b*N(4,1) were used to investigate
the incidence of escape from senescence and development of different sizes of
masses by each of 60,000 cells. Exposure times to chronic stimulation were 6
months every year (Table 2) or all year around (Table 3). Simulations are run for
a period of 1 year. Outcome of 60,000 cells with k~2 under hormonal exposure
for 6 months.
doi:10.1371/journal.pone.0016859.t002

Figure 4. Cell death during tumor progression. Four cells with k~0, k~0:5, k~1 and k~2=month, respectively, are growing in an identical
growth condition provided by a b1*N(1=month2,0:2), a weak and positive growth stimulation, and an identical initial proliferation potential
a(0)~1=month. Environmental reaction to tumor growth is based upon b2*N(Bm,Bs), which affects any cell in the basic tissue in a stochastic
fashion. The environmental reaction is defined as an ecological balance and is calculated according to equations 12 and 13. No mutation is included,
thus the k value remains constant for each cell and its descendants in the simulations. a. The mass sizes arising from the four cells with different k
values but identical b1 value and initial a value. b. The accumulated numbers of cell death are presented for the four masses with k~0, 0:5, 1 and 2,
respectively. The accumulated total cell death over 12 months for the cells with k~1 and k~2 are zero but presented at a value of 0.5 due to the
logarithm scale of the y-axis. A b2*(Bm,Bs) is calculated and assigned to each surviving cell every day.
doi:10.1371/journal.pone.0016859.g004
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proliferation for the establishment of a metastatic lesion according

to the main steps in the formation of a metastasis [25]. Each step is

rate-limiting and modeled as negative growth stimulation. Three

masses each had 10,000 cells migrating to a distant site and their k
values for every one of 10,000 cells were k~0, k~1, and k~2,

respectively (Fig. 5). The implemented b values for each rate-

limiting step are: b*N({6=month2,0:2) representing dissemina-

tion at the primary site for 3 days, b*N({10=month2,0:2)
representing intravasation for 2 days, b*N({20=month2,0:2)
representing circulation for 1 day, b*N({10=month2,0:2)
representing extravasation for 2 days, and survival at the ectopic

site with b*N({6=month2,0:2) for 3 days, following a similar

schedule in experiments [26]. Metastasis is assumed to be followed

by a b~0 for 5 years without distinguishing favorable and

unfavorable sites. Cells from the three masses have shown a

striking difference in their survival and establishment of metastatic

lesions. The survival rate at the end of the metastasic cascade (after

11 days) is similar among the three masses with more than 90%

survival (Fig. 5a and 5b), consistent with experimental data

showing that majority cells survive the metastatic process [26,27].

However, the mechanism for metastatic inefficiency is different

among cells with different levels of malignancy. A more malignant

cell (with k~0) was more vulnerable to the harsh conditions

during metastasis and had the lower survival rate (Fig. 5b). Only

19 (0.19%) out of 10,000 cells with k~0 survived, consistent with

metastatic inefficiency primarily due to subsequent cell death resulting

from apoptosis [28,29]. The surviving rates for cells with k~1 and

k~2 were 1.3% (132 out of 10,000) and 11.8% (1179 out of

10,000), respectively (Fig. 5b). But none of them could retain

sufficient growth to develop into a clinically detectable metastatic

lesion over 5 years (Fig.5a), which is consistent with the mecha-

nism of metastatic inefficiency due to failure of subsequent growth

[26]. Only those cancer cells with k~0 could grow into a

metastatic lesion after a successful metastasis (Fig. 5a). Cells with

k§1 remained dormant without further mutations and environ-

mental stimulations. Thus, establishment of clinically significant

ectopic lesions correlates positively with the number of cells with

extremely low k value in a primary tumor and the fast growth of

the primary tumor (Fig. 4), but negatively with the extent of harsh

conditions in the metastatic process (Fig.5). This result is consistent

with the well-established role of metastatic lesions to predict

patient outcome. But our model provides an approach to

quantitatively and prospectively predict the chance of a metastatic

lesion through analysis of the primary tumor, and may be

particularly useful to predict the existence of micrometastasis. For

cells with kw0 to grow in ectopic sites, a positive b is required.

The value of b determines whether an ectopic site is favorable for

the development of metastatic lesions. Thus, the long-held

hypothesis of seed and soil for pathogenesis of metastasis [25,29] is

quantitatively modeled here.

These results are also consistent with clinical observations that

metastatic endometrial cells are not cancer cells in endometriosis.

Endometrial cells undergo a fast proliferation during the early

menstrual cycle due to estrogenic stimulation and massive cell

death occurs late in the cycle due to withdrawal of hormones.

Some endometrial cells are transported through fallopian tubes

and implanted on the surface of the pelvic cavity. These

endometrial cells survive the metastatic process and the condition

in ectopic sites due to their high differentiation coefficient. As with

cells in the primary site, ectopic endometrial cells only proliferate

Figure 5. Modeling of cancer cell survival. The metastatic process and the development of clinically detectable metastatic lesions are simulated.
The number of cells surviving over the course of a metastatic process is shown. Three masses of 10,000 cells each attempt migration to a distant site,
with all cells within a mass possessing either k~0, k~1, and k~2, respectively. Every cell has an initial a(0)*N(0,1) and must pass 5 steps, which are
assumed to be negative for any cell to grow. Every step has its specific b value: dissemination at the primary site b*N({6=month2,0:2) for 3 days,
intravasation b*N({10=month2,0:2) for 2 days, circulation b*N({20=month2,0:2) for 1 day, extravasation b*N({10=month2,0:2) for 2 days, and
survival at the ectopic site b*N({6=month2,0:2) for 3 days. a. Cancer cell growth is followed for 5 years to show clinically detectable lesions. b. The
same cancer cells are followed for only 30 days in order to show the number of surviving cells when they reached distant sites (t~11 days). The
surviving cell number is the summation of all cells whose growth is governed by system 9. No further mutation is considered thus the k value remains
constant for each cell and its descendants in the simulations.
doi:10.1371/journal.pone.0016859.g005
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in response to high estrogen. Large b is derived from high estrogen

at the proliferative phase of a menstrual cycle, similar to those

modeled at Fig. 2b. The ectopic endometrial tissues become

atrophic with prolonged progestin treatment, pregnancy and at

menopause. Thus, the occurrence of endometriosis is due to 1)

successful metastasis due to mechanical transportation of endo-

metrial tissues into ectopic locations; 2) high survivability of cells

due to their high differentiation coefficient; and 3) periodic

proliferation stimulated by strong and cyclic hormones. Most

important of all, these ectopic endometrial cells have high k values

and are not cancer cells.

Discussion

It has been the hope of every cancer researcher that complex

cancer biology can be rationalized based on a small number of

underlying principles which govern the myriad cancer genotypes

and phenotypes [3,30]. The exceptional elucidation of the general

principles of cancer formulated by Hanahan and Weinberg, here

referred to as the W theory [6], coupled with efforts to elucidate

the mechanisms leading to carcinogenesis exemplified by the

seminal work of Vogelstein and colleagues, here referred to as the

V theory [4,5], combine to provide a solid heuristic foundation,

referred to here as V/W. Our model, using simple mathematical

equations featuring a small number of variables, is an attempt to

quantitatively and prospectively interpret V/W. It is also an

attempt to develop a classical insight and theory approach wherein

principles and equations are derived from fundamental concepts

and deductions as opposed to a direct a priori analysis of data

followed by an a posteriori explanatory model.

Assuming in our model that cells targeted for malignant

transformation include well-differentiated cells, malignant trans-

formation can be considered to be a process of de-differentiation

[17], which can be quantitatively described by a differentiation

coefficient. As illustrated at Fig. 1, numerous mutations occur in a

tissue with billions of cells constantly turning-over. Most non-stem

uterine epithelial cells have a lifespan limited to days or months.

The cumulative effect of mutations is neutral and not transfor-

mative in vast majority of normal cells since the mutational effect

follows a Gaussian distribution as proposed by our model. One out

of billions of cells acquires a mutation, or several mutations, which

result in de-differentiation, which is captured in a differentiation

coefficient, k in our model (equation 7). A reduced k value results

in a lower resistance potential (equation 6), which will allow the

cell to multiply in a subnormal level of hormonal (or other)

stimulation (system 9) and create a population of cells well beyond

homeostasis that might initially be hyperplastic or benign.

Additional mutations can further reduce cells’ k values yielding

selective fitness and a dominant sub-population due to their lower

k values (Fig.3). A lower k value corresponds to further de-

differentiation thus further malignant transformation. Again, some

cells in this population will emerge with even lower k values and

continue the cascade of malignant transformation and tumor

evolution. This mathematical expression of multistage oncogenesis

is strikingly complementary to the V theory [4,5]. Additionally, as

simulated in the Fig. 4, rapid growth of an increasingly malignant

cell population will be accompanied by massive cell death thus

creating a potential mechanism of metastasis that does not require

but facilitate further mutations. This result provides a quantitative

interpretation of Jones’ genomic analysis [5] opposing the long

held paradigm that the appearance of metastatic cell populations is

driven by additional mutations [4,5].

The V theory of tumorigenesis posits the fundamental role of

genetic mutations in malignant transformation as the pathway for

tumor progression. While it is likely that only a small number of

mutations are driver mutations and the rest are passengers, our

model accounts for the contribution of every potential mutation in

a normal distribution and, from this, the collective roles played by

all mutations can be quantified. The precise contribution of a

specific mutation has to be analyzed in patient samples [12].

Sequencing of many tumor genomes is increasingly being realized

with the initiation of Cancer Genome Altas and Cancer Genome

Anatomy project.

Tumor evolution is described by many investigators analogously

to Darwinism with tumors being a clonally-derived cell populations

and progression the result of some cells acquiring advantages

through mutations [31,32]. The descriptive theories are comple-

mented by our quantitative analysis that has a potential to interpret

a wide range of different cancer phenotypes. Use of our model either

in population level or single cell level may prove useful in the

reconciliation of some seemingly contradicting observations.

Advancing age is the most potent of all carcinogens [33]. On the

other hand, cellular senescence (ageing) is as potent as apoptosis in

suppressing spontaneous tumorigenesis [34]. In our model the

probability of malignant transformation increases significantly as

generations progress at the single cell level. However, senescence

significantly increases when generation progresses (equation 3).

These factors play against each other and the balance will be shifted

to favor transformation if environmental stimulation increases to

escape senescence by providing cell proliferation beyond intrinsic

potential. At the tissue level, the probability of emergence of a

malignant cell will increase with age since an older individual will

have more cell cycles in their lifetime and, consequently, increased

cancer incidence.

Our model uses cellular generations as a biologic clock which is

a fundamental variable in determining cellular proliferation and

differentiation. While cell division is intuitively simple and clear

from a morphological perspective, a mathematical expression is

necessary to provide a usable description of propagation of an

individual cell during a clone lifetime. Cell divisions are

determined by proliferation potential that depend on proliferation

history and specific factors, such as mutations and environmental

cues. This approach allows us to follow the time course of a cell

during a clone lifetime without a need for counting cell divisions

experimentally, therefore measuring intra-tumor heterogeneity at

any time quantitatively. A proposed generation limitation is a

quantitative interpretation of replicative senescence.

Our model simultaneously describes individual cells as well as

cell populations (or tumors), thus preserving population heteroge-

neity. This approach captures qualitative change in individual cells

as the critical event for tumor progression (cascade of tumor

evolution). This additive approach to summarizing individual cells

may allow us to prospectively describe incidences of dormant/

transient cancers (those cancers either not easily diagnosed

clinically or not diagnosed at all [20,23]). In the future, detailed

comparison between lethal cancer and non-disease cancer will be a

much more informative way in which to identify truly causal

genetic alterations. In a normal physiologic scenario, growth of a

clone or an individual cell of the clone will have minimal effect on

the environment. However, growth of a malignant mass is fast and

can be extensive, exceeding normal physiological limits. Thus, the

impact of the mass on its surroundings will be significant and,

conversely, the reaction of the surrounding environment will also

be dramatic (equation 12). This will cause massive cell death

(Fig. 4), here identified as a potential mechanism of the initiation of

metastasis.

Our model is best described as a classic theoretical model of

insight and theory approach and the coherence of the model is fully
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embedded in the mathematical equations. It is a novel approach

and still at an early stage of development. Numerous tissue- and

cell- specific variables have to be quantitatively determined before

such a model can be experimentally applied to a wide range of

cancer phenomena. Modeling of environment effects in this model

also will require modification over time. Fortunately, there are

many excellent models regarding the role of environment factors

in oncogenesis and tumor progression [35–39]. Our hope is that

we may be able to integrate our model with those existing models.

Such a theoretical approach should be complimentary to empirical

and bioinformatic approaches to cancer research in a way that

data are used iteratively to test and update equations and laws.

Taken together, our modeling of malignant transformation and

tumor progression, based on a few assumptions and a few

mathematical equations, is capable of comprehensively describing

major cancer phenotypes and has suggested some interesting

features for neoplasm: 1) incidence of neoplasm is much higher

than what is diagnosed in clinics due to the frequent existence of

dormant/transient neoplasm; 2) neoplastic cells are heterogeneous

in a tumor and the aggressive cells (with low differentiation

coefficients) have a growth advantage that allows them to

dominate the tumor during its evolution; 3) rapid proliferation

can result in cell death and lead to cell dislocation and metastasis;

4) more aggressive cancer cells have less chance to survive

metastasis but are more capable of growing into a clinically

significant lesion. Therefore, an aggressive tumor, defined by the

presence of cancer cells with low differentiation coefficients, will

have a poor patient outcome since the significant number of k&0
cells will ensure fast growth in the primary and ectopic sites in

most environmental conditions.

Methods

The Model
In this paper, we discuss a fundamental model for cancer that

has shown the capability to systematically capture many varied

cancer phenotypes. The quantitative interpretation of oncogenesis

is preceded by a comprehensive description of normal tissue

regeneration in uterine epithelium, based on the assumption that

every one of billions of normal cells follows an inherent program

for proliferation and differentiation through a cellular interpreta-

tion of chronological time. The landscape of physiological tissue

regeneration provides a picture of normal cell heterogeneity and

dynamics, and serves as the reference for tumor development

resulting from genetic insults and environmental stimulations. It is

a single-cell based model, where the evolution of each tumor is

described in terms of the evolutionary dynamics of its constituent

cells. The quantitative basis of the model is a quantification of a

cell’s differentiation status, a measurement of how ‘‘normal’’ a cell

is, and how this status varies due to different mutations. The

cellular dynamics are defined on a per cell basis by the system of

equations:

n(t)~

ðt

tn

a(s)ds,
da

dt
~r(t)zb(t), r(t)~k(t):(ap(t){a(t)),

k(t)~kp(t)z
Xn

i~1

mi,

where a(t) is a cell’s proliferation potential at time t and k(t) is its

differentiation coefficient. The parameters mi are the mutational

effects on the differentiation coefficient, and are distributed

according to a Gaussian distribution with mean m and standard

deviation s, mi*N(m,s). The parameter b(t) is the environmental

effect and is considered as an overall effect over the course of one

day, and is also chosen from a Gaussian distribution. Each cell has

associated with it certain programmed levels of proliferation

potentials, ap(t)~(1=L’):(L{g(t)):g(t), and differentiation coeffi-

cients, kp(t)~Kmax½1{e({K ’:g(t))�, which are dependent on the

maturity of the cell, measured by its generation number,

g(t)~ceiling(

ðt

0

Da(s)Dds). The resistance potential (r(t)) is a

restorative force, acting to restore a back to its programmed level.

A measure of the cell’s status toward either dividing or dying is

provided by n(t), where the cell was born at time tn. This system of

equations is valid over the lifetime of the cell, that is, from the time

it is born (tn) until it either dies (n(t)~{1) or divides (n(t)~1). In

the case that the cell divides, the two daughter cells inherit a, k,

and g from the parental cell. Each cell then proliferates

independently of the other according to this system of equations.

The developmental process continues with cell-specific b’s, and the

mutations accumulated by each daughter cell are independent of

those accumulated by the other daughter cell.

In all of the simulations presented in this manuscript, we

consider the model case where L~10, L’~7, Kmax~3:78, and

K ’~0:4, so that the programmed proliferation potentials and

differentiation coefficients are given by ap(t)~(10{g(t)):g(t)=7
and kp(t)~3:78:½1{e({0:4g(t))� respectively. In all cases consid-

ered in this manuscript, we arbitrarily take mi*N(0,0:1).
However, the frequency of these mutations and the distributions

for the environmental effects vary among the experiments

considered.

Each simulation is performed using the computer programming

language Fortran 90, with the resulting graphics generated with

Matlab. The time-step for each simulation is dt~1=30. Over the

course of one time-step, the system can be solved explicitly, with

an algorithm outlining this process provided as Supporting

Information S1. At time tn, a b is chosen for each cell, and a, n,

and g are advanced over dt. If the cell advances in generation

number (gnewwgold ), the cell gains a number of mutations,

dependent on the experiment. If n§1, the cell has proliferated,

with the (2floor(n)) daughter cells inheriting the parent’s a and k. If

nƒ{1, then the cell is considered dead and is removed from the

simulation.

The clone lifetime of uterine epithelial cells
In this section, we consider two experiments. The first

experiment, illustrated by Fig. 2a, is an analysis of the clone size

in uterine epithelium when there is little or no estrogen exposure.

A b value is assigned to an existing cell every day, randomly and

independently. Four different trials are considered: b~0,

b*N(0,1), b*N(0,2), and b*N(1,1). 101 simulations were

performed for each trial, with Fig. 2a illustrating the median

curves for each trial, and the maximal, 75th percentile, the

median, 25th percentile, and the minimal sizes of clones are

presented in Fig. S1.

The second experiment, illustrated by Fig. 2b, is an analysis of the

clone size in uterine epithelium with the presence of monophasic

contraceptives. The exposures to large concentrations of estrogen

are represented here by strong and positive b’s. Three trials are

considered: b*N(60,6), b*N(90,9), and b*N(120,12). These

environmental effects are applied for 21 days before being removed.

As in the previous figures, 101 simulations were performed for each

trial and the median clone sizes are presented. All experiments are

performed in the absence of mutations. The maximal, 75th

percentile, the median, 25th percentile, and the minimal sizes of

clones are presented in Fig. S2.
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Malignant transformation during dynamic epithelial cell
development

According to this model, the differentiation coefficients are

altered solely due to mutations. In this section, we consider the

accumulated probabilities of a cell to attain a differentiation

coefficient of kƒ0 or kƒ2 after n generations. We assume that

one mutation occurs per generation, with each mutation

being random and independent, with mi*N(0,0:1). Since the

mutations are independent by assumption, the random

variable M~
Pn

i~1 mi is also normally distributed, with

M*N(0,0:1
ffiffiffi
n
p

). Table 1 shows the probability P(MƒL{kp),
where L~0 or 2.

Tumor evolution: growth of a heterogeneous mass
consisting of cells with various differentiation coefficients

In this section, the evolution of a mass comprising cells with

various differentiation coefficients is explored. Four separate trials

are considered. Each trial begins with 1000 cells that have

reached maturity, that is, ap~0. Each cell is assigned a

proliferation potential with a(0)*N(0,1). Every cell was assigned

a k-value from either N(0,0), (2,1), (3,1) and (4,1), depending on

the trial. Only nonnegative k values are considered in this paper,

so if kv0, we set k~0. No mutations were considered, and

therefore each cell and its descendants retained their initial k-

value. For each cell, the environmental effects were chosen with a

neutral mean, b*N(0,1). The simulations were performed until

either a simulation period of 2 years had passed or the total cell

number had reached 1012. Fig. 3a represents the median mass

sizes of 101 simulations among each of the four trials, while

Fig. 3b illustrates the evolution of the median k-values of the cells

within the median masses of each trial. The maximal, 75th

percentile, the median, 25th percentile, and the minimal values of

mass sizes and k values are presented in Fig S3 and S4,

respectively.

Calculation of cancer incidences including subclinical
(transient and dormant) and clinically detectable tumors

In Table 1 it is shown that, for the test case, the probability of a

specific cell reaching kƒ2 due solely to mutations by the time it

reaches programmed senescence, that is apv0 after 11 genera-

tions, is 6|10{8. Assuming that there are roughly 1010 epithelial

cells at any time, each with a lifespan of 1 year, a human with a

lifetime of 100 years would have 1012 epithelial cells throughout

their lifetime, with roughly 60,000 cells having kƒ2 due solely to

mutations. In this section, we analyze the evolution of these 60,000

cells to calculate empirical probabilities of having masses of various

orders of magnitude during a lifetime. Two separate experiments

are considered, each with four separate trials. In both experiments,

we begin with 60,000 cells, each with k~2. The cells begin at the

senescent stage, with ap~{2. However, their actual proliferative

potential is a(0)~0:2. In the first experiment, there is an

environmental effect present for six months every year, while in

the second experiment, the environmental effect is present year-

round. The four trials for each experiment have either one or two

mutations per generation, and an environmental effect following

b*N(3,1) or b*N(4,1). For each trial, 101 simulations are

performed, and empirical probabilities are calculated from the

data generated. The mean number of tumors of various sizes that

can be expected among the 60,000 cells are illustrated when the

probability of having at least one tumor of each magnitude was

one. In the case that a tumor cannot be probabilistically

guaranteed, the probability of having at least one tumor of each

magnitude is illustrated.

An alternative potential mechanism of the initiation of
cancer metastasis: destruction of intercellular structure
resulting from massive cell death

In this section, the reaction of the microenvironment surround-

ing the tumor is included into the model as an additional

environmental effect. The impact of a cell on its environment (Ci)

is proportional to its rate of growth
dNi

dt
, so Ci~cai(t)Ni. The total

environmental impact of a tumor is then

C~
XNs

i~1

Ci~c(
XNs

i~1

ai

Ni

Ns

)~camNs,

where am is the expected value of the ai’s. The environmental

response to this cumulative force acts on each cell in a stochastic

fashion, with mean Bm~{Cm~(
PNs

i~1 Ci)=Ns and standard

deviation Bs~Cs~(
PNs

i~1 (Cm{Ci)
2=Ns)

1=2. Fig. 4 illustrates

the outcomes of four trials. Each trial begins with one cell. A weak

growth stimulation following b1*N(1,0:2) is chosen, with this

value being the initial environmental effect for all four trials. Their

initial proliferation potentials are all identically a(0)~1. However,

their initial differentiation coefficients differ, with either k~0, 0:5,

1, or 2. No mutations are considered, so these k-values remain

constant among all descendant cells. At each time step, a new

growth stimulation b1*N(1,0:2) and environmental reaction

b2*N(Bm,Bs) are calculated. One hundred and one simulations

were performed for each trial, and Fig. 4 illustrates the median

curves for the mass sizes and the accumulated number of cell

deaths occurring for each trial.

Survival of metastatic cells in the circulation and
development of clinically detectable metastatic lesions

In this section, the likelihood of cancer cell survival during the

metastatic process is explored, along with the role of the

differentiation coefficient in the establishment of a metastatic

lesion. The cancer cells are assumed to take five steps to reach an

ectopic site and establish a metastatic lesion. The five steps are

represented by negative growth stimulations. Three trials are

considered. Each trial begins with 10,000 cells. The k-values of all

10,000 cells are either k~0, 1, or 2, depending on the trial. No

mutations were included, so all descendants retained the same

k-value. Their initial proliferation potentials are chosen from

a(0)*N(0,1). Each cell underwent the following environmental

effects over the course of the five steps: b*N({6,0:2) for 3 days

representing dissemination at the primary site, b*N({10,0:2) for

2 days representing intravasation, b*N({20,0:2) for 1 day

representing circulation, b*N({10,0:2) for 2 days representing

extravasation, and b*N({6,0:2) for 3 days representing survival

at the ectopic site. This was followed by an environmental effect of

b~0 for 5 years. 101 simulations were performed for each, with

the median curves for the number of surviving cells illustrated in

Fig. 5. The maximal, 75th percentile, the median, 25th percentile,

and the minimal values of mass sizes are presented in Fig S5.

Supporting Information

Figure S1 A clone lifetime of uterine epithelial cells
during menopause, illustrated by change of cell number
of the clone over time. 101 simulations are performed for all

cases, with the following trajectories presented here: minimum,

25th percentile, median, 75th percentile, and maximum. (a)
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Results for b~0. (b) Results for b*N(0,1). (c) Results for

b*N(0,2). (d) Results for b*N(1,1). (e) Results for b*N(2,1).
(EPS)

Figure S2 A clone lifetime of uterine epithelial cells with
oral contraceptives, illustrated by change of cell number
of the clone over time. 101 simulations are performed for all

cases, with the following trajectories presented here: minimum,

25th percentile, median, 75th percentile, and maximum. (a)

Results for b*N(60,6). (b) Results for b*N(90,9). (c) Results for

b*N(120,12).
(EPS)

Figure S3 Simulations of tumor evolution: size change
of intra-tumor subpopulations of tumors with heteroge-
neous cells. The growth curves of four masses with 1000

heterogeneous cells each, specified by different differentiation

coefficients to indicate the loss of differentiation. 101 simulations

are performed for all cases, with the following trajectories

presented here: minimum, 25th percentile, median, 75th percen-

tile, and maximum. (a) Results for k~0. (b) Results for k*N(2,1).
(c) Results for k*N(3,1). (d) Results for k*N(4,1).
(EPS)

Figure S4 Simulations of tumor evolution: redistribu-
tion of k-values among intra-tumor subpopulations of
tumors with heterogeneous cells. Change of the median

value of differentiation coefficients with respect to time for the

masses presented in Figure 3. (a) Results for k~0. (b) Results for

k*N(2,1). (c) Results for k*N(3,1). (d) Results for k*N(4,1).

(EPS)

Figure S5 Modeling of cancer cell survival during
metastasis and the establishment of metastatic lesions.
101 simulations are performed for all cases, with the following

trajectories presented here: minimum, 25th percentile, median,

75th percentile, and maximum. (a) Results for k~0. (b) Results for

k~1. (c) Results for k~2.

(EPS)

Supporting Information S1 Computational Algorithm
and Additional Figures for ‘‘Quantitative Interpretation
of a Genetic Model of Carcinogenesis Using Computer
Simulations’’.

(PDF)
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