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Abstract

Auditory information is widely used throughout the animal kingdom in both terrestrial and aquatic environments. Some
marine species are dependent on reefs for adult survival and reproduction, and are known to use reef noise to guide
orientation towards suitable habitat. Many others that forage in food-rich inshore waters would, however, benefit from
avoiding the high density of predators resident on reefs, but nothing is known about whether acoustic cues are used in this
context. By analysing a sample of nearly 700,000 crustaceans, caught during experimental playbacks in light traps in the
Great Barrier Reef lagoon, we demonstrate an auditory capability in a broad suite of previously neglected taxa, and provide
the first evidence in any marine organisms that reef noise can act as a deterrent. In contrast to the larvae of species that
require reef habitat for future success, which showed an attraction to broadcasted reef noise, taxa with a pelagic or
nocturnally emergent lifestyle actively avoided it. Our results suggest that a far greater range of invertebrate taxa than
previously thought can respond to acoustic cues, emphasising yet further the potential negative impact of globally
increasing levels of underwater anthropogenic noise.
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Introduction

Across the animal kingdom, acoustic information is frequently

used in orientation, habitat selection and predator avoidance.

Marine coastal habitats, for example, are characterised by a high

level of biological and abiotic noise, and coral reefs are particularly

noisy due to high densities of resident shrimps, urchins and fishes

[1,2]. Underwater, sound has two major components: in the

acoustic nearfield (confined to an area within 1 or 2 wavelengths)

particle velocity dominates, while in the acoustic farfield, the

propagating pressure wave component dominates [3,4]. These

acoustic components are detected by animals in two ways: sensory

hair-like receptors are used to detect one-way particle displace-

ment of water in the nearfield, whereas membranous receptors are

used for the detection of farfield two-way particle oscillations.

While these sensory mechanisms are well understood for fish and

marine mammals, there is a relative paucity of information on

whether aquatic invertebrates can also detect and utilise acoustic

cues.

Many benthic marine organisms undergo an early develop-

mental stage at sea and must settle to suitable habitat for juvenile

and adult life [5]. A number of studies have shown that settlement-

stage larvae of a broad range of coral reef fishes can detect, and are

attracted to, the noises of coral reefs [6–9]. There is also evidence

that the larvae of some crabs and fishes in temperate waters use

acoustic cues from urchin-dominated reefs to detect and locate

settlement sites (see [4]). In addition to species that settle to reefs,

the surrounding waters are home to a diverse community of free-

swimming organisms (many of them crustaceans) that do not dwell

in reef habitats; rather, their chances of survival are likely to be

greatly enhanced by avoiding such areas of high potential

predation risk [10,11]. Selection might therefore be expected to

act on these species to evolve an ability to detect and avoid reef

noise, but this possibility has never been explored.

Here we use experimental playbacks and light traps in the

waters of the Great Barrier Reef lagoon to test the responses to

coral reef noise of a broad suite of tropical crustaceans with a

range of life-history strategies. We predict that larval stages of taxa

that inhabit reefs as adults will, if they can detect the sound, be

attracted to reef noise. In contrast, we predict that both pelagic

taxa (those that remain in the water column throughout their lives)

and nocturnally emergent taxa (those that ascend into the water

column at night, but spend the day hidden in soft benthic

sediment) will, if they are capable of detecting it, be deterred by

reef noise.

Methods

Ethics Statement
All work was carried out under the guidelines of the Ethics

Committees of the Australian Institute of Marine Science and

Lizard Island Research Station, and with permission from the

Great Barrier Reef Marine Park Authority, Australia.

The study was conducted between November 2001 and January

2002 at Lizard Island Research Station (14u409S 145u289E), Great

Barrier Reef, Australia. We sampled for 34 nights using a pair of

light traps which consisted of an 8 W fluorescent light housed in a

clear Perspex box with one 1625 cm entry slit on each side [12].

These traps are highly effective for sampling mobile, photopositive

fishes and crustaceans [13]. Traps were attached to permanent
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moorings, 180 m apart and .500 m from shore, in 10–15 m depth

of water over sand at one of three locations (two in front of the

Research Station and one at Coconut Beach, location determined

by prevailing weather conditions; [7]). Each night, one light trap

was randomly allocated a sound system while the other had a

dummy rig attached to eliminate modification of the catch arising

from additional floating objects. Our sound system consisted of a

waterproof barrel containing a 12 V marine battery, 70 W amplifier

and portable CD player, playing back reef noise through an

underwater speaker (UW-30, frequency response 0.1 to 10 kHz,

University Sound, Buchanan) fixed 1 m below the water surface

and 1 m from the light trap. We used a 4-min recording of reef noise

(Fig. 1), made using a calibrated Clevite CH17 hydrophone (flat

response between 1.1–15 kHz, 5 dB drop-off below 1 kHz), a

RANRL preamplifier (40 dB gain) and a Sony TCD-D7 digital tape

deck. The recording was from a mid-shelf reef on the Great Barrier

Reef which is similar to the reefs surrounding Lizard Island, and

captured the dusk chorus of biological noise recorded during the

new moon phase, consisting of a chorus of pops made by nocturnal

fishes together with a higher frequency (2.5– .20 kHz) but lower

intensity background crackle produced by snapping shrimps as well

as other feeding, movement and calling sounds. The recording was

played back throughout the night on a continuous loop at a

broadband (root mean square, rms) playback level set at 104 dB re

1 mPa, which ensured that the trap without playback did not receive

additional noise above local ambient sound levels (measured at dusk

at rms level of 93.8 dB re 1 mPa; Fig. 1). Using p = rcv (where p =

pressure in Pa, r= water density in kg m23, c = speed of sound in m

s21, and v = particle velocity in m s21 [3]), the particle velocity near

to the speaker during playback would be 6.6861028 m s21.

Traps were deployed at dusk and retrieved at dawn. The catch was

preserved in 70% ethanol and the crustaceans separated from the fish

prior to categorisation and counting. To ensure that the numbers of

captured crustaceans had not been modified by fish predation in the

traps, we dissected 90 pelagic baitfish and 90 settlement-stage reef fish

selected evenly from the two sound treatments and randomly from

nine different nights. We found no fish with freshly consumed

crustaceans in their mouth, throat or stomach, so rule out the possibility

that differential predation drives any differences in crustacean catches.

The vast majority (99.3%) of the nearly 700,000 crustaceans

caught were divided into 15 reliably distinguishable categories

using a dissecting microscope; the remainder were not included in

analyses. Any categories for which more than 50% of nights

produced no catch in both traps (implying that there were no

individuals of this category in the location on that occasion) were

discarded prior to analysis. This criterion eliminated Euphausia-

cea, Palinura and Stenopodidae. Remaining categories for which

the mean nightly catch was less than 200 individuals were also

discarded. This criterion eliminated Isopoda, Sergestidae and

Stomatopoda. We therefore had nine categories for statistical

analysis: two larval developmental stages of reef-settling Brachyura

(zoea and megalops), two pelagic taxa (Copepoda and Hyperiidea),

and five taxa that tend to be mostly nocturnally emergent

(Caridea, Cumacea, Gammaridea, Mysidae and Ostracoda).

Data were analysed using generalised linear mixed models

(GLMMs) to allow the inclusion of random as well as fixed terms

and thus control for repeated measures from the same trap locations

and paired trapping on the same night. For each crustacean category,

we used a separate GLMM with a Poisson error distribution and a log

link function to examine how sound treatment (reef noise playback;

ambient-noise, no-playback control) affected number of individuals

caught in the trap. Each GLMM was based on 68 catch totals from

paired trapping on 34 nights at three different locations. Variance

components were estimated using the Restricted Maximum Likeli-

hood (REML) method, and random terms were retained unless the

variance component was found to be zero (and hence their removal

did not influence the analysis). The significance of fixed terms was

determined using the Wald statistic, which approximates the x2

distribution. In each model, we included trap pair (i.e. the two traps

from the same night) nested in trap location as a random term.

Statistical analyses were two-tailed and were conducted in Genstat

(13th edition, Lawes Agricultural Trust, Rothampstead, Harpenden,

UK).

Results

Of the approximately 691,000 individuals analysed statistically,

9.3% were developmental stage reef-settling Brachyura (megalops:

Figure 1. Acoustic representation of the reef recording and experimental conditions. Reef recording used (left) and acoustic conditions at
the trap with (centre) and without (right) playback. Top row: time signal; Middle row: spectrogram; Bottom row: spectral levels.
doi:10.1371/journal.pone.0016625.g001
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5.7%; zoea: 3.6%), 18.9% were pelagic taxa (Copepoda: 1.7%,

Hyperiidea: 17.2%), and 71.8% were taxa that tend to be mostly

nocturnally emergent (Caridea: 2.4%; Cumacea: 12.6%; Gam-

maridea: 9.5%; Mysidae: 42.1%; Ostracoda: 5.3%).

There was no significant difference in the number of

brachyuran megalops caught depending on sound treatment

(GLMM: Wald statistic = 3.05, df = 1, P = 0.085), but brachyuran

zoea were caught in significantly higher numbers in traps playing

back reef noise compared to control traps (Wald statistic = 5.63,

df = 1, P = 0.021; Fig. 2a).

Both pelagic taxa were found in significantly greater numbers in

the control traps compared to those with reef noise playback

(Copepoda: Wald statistic = 17.22, df = 1, P,0.001; Hyperiidae:

Wald statistic = 22.31, df = 1, P,0.001; Fig. 2b). Of the five taxa

that tend to be mostly nocturnally emergent, Cumacea did not

show a significant response to reef noise playback (Wald

statistic = 2.79, df = 1, P = 0.100), but Caridea (Wald statis-

tic = 18.89, df = 1, P,0.001), Gammaridea (Wald statistic = 24.39,

df = 1, P,0.001), Mysidae (Wald statistic = 16.88, df = 1,

P,0.001) and Ostracoda (Wald statistic = 52.87, df = 1,

P,0.001) were all significantly more common in control traps

compared to those playing back reef noise (Fig. 2c).

Discussion

Our study demonstrates that a wide range of crustaceans with a

variety of habits and life-history strategies are capable of detecting

and responding to acoustic information. Previous evidence for

Figure 2. Catches of crustacean taxa in light traps with and without reef noise playback. Mean 6 se difference in total number of
individuals of (a) larval developmental stage of reef-settling Brachyura, (b) pelagic taxa and (c) nocturnally emergent taxa; negative values indicate
greater numbers in noise traps, positive values indicate greater numbers in control traps. N = 34 pairs of traps on separate nights. Numbers above or
below bars indicate total number of individuals sampled.
doi:10.1371/journal.pone.0016625.g002
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such behaviour is restricted to the larval stages of a subset of taxa

(mostly crabs) that recruit to reef habitat [14,15]. Furthermore, we

provide the first experimental evidence in any marine organisms

that taxa found in the proximity of reefs, but which do not settle to

them, actively avoid reef noise. These taxa can potentially benefit

from such avoidance behaviour because reefs are home to a wide

variety of mobile and site-attached predators that feed there both

day and night [10,11]. Exploitation of the rich resources available

in inshore waters must be balanced against this risk of predation,

and mechanisms for optimising this trade-off should be selected

over evolutionary time. Sound provides an excellent indicator of

the direction and proximity of reefs [16] and there is a clear

survival benefit in utilising acoustic information to detect and

avoid such hazardous locations.

As predicted, zoea, the pre-settlement larval stage of Brachyura,

were attracted to reef noise. This is consistent with findings from

temperate waters (e.g. [10]), but provides the first evidence for

such a response in the tropics. The ability of zoea to use acoustic

cues to help locate and remain within the proximity of suitable

settlement habitat could be critical for recruitment success, despite

any increased predation pressures. In contrast to zoea, megalops,

the larval settlement stage of Brachyura, appeared not to be

attracted to reef noise. One possible explanation for this is that any

attraction of these late-stage larvae to reef noise (see [4]) was

countered by a downward-swimming settlement response induced

by the same noise (see [17]), causing some megalops to move away

from those traps coupled with noise playback.

In addition to a diverse suite of biological noises, the soundscape

in shallow water environments is influenced by local bathymetry,

seabed characteristics and surface conditions [3]. These factors

combine to determine the distance over which reef noise

propagates above ambient offshore levels [16]. Since hearing in

crustaceans is poorly understood, and may be in the farfield via

specialised acoustic pressure detectors [18] or limited to the

nearfield through particle motion detection, a broad taxonomic

investigation of hearing mechanisms and thresholds is needed to

enable predictions of the likely distance of detection of reef habitats

by crustaceans.

Coral reef noise is heterogeneous in time and space, and these

differences relate directly to habitat type [19,20] and the density of

fishes [21]. The reef sounds we played back were largely

comprised of a background crackle generated by snapping shrimp

and the pops, grunts and gurgles of nocturnal fishes (predomi-

nantly Holocentriae and Apogonidae). More work, potentially

using in situ choice chambers [22,23], is needed to determine the

level of selectivity of crustaceans to different sounds, and whether

specific sounds (e.g., predatory fish vocalisations) or general

broadband noise levels drive their directional behaviour.

There is much recent concern that natural marine soundscapes

are being modified or dominated in some places by anthropogenic

noise arising from, for example, shipping and small boats, drilling

and mining, seismic surveys and offshore construction [24]. In

modified acoustic environments, this can lead to masking of

naturally important cues [25] which, given our results, may mean

that reef-settling crustaceans detect suitable adult habitat over

smaller distances, and non-settling crustaceans are less able to

detect and avoid potentially dangerous reef environments. In

addition, a recent study has demonstrated that, following several

hours of exposure, reef fish larvae can become attracted to

artificial sounds that would normally be avoided [22]. If this was

also the case for crustaceans, anthropogenic noise could lead to

maladaptive behaviour by invertebrate taxa that underpin critical

foodwebs and fisheries. Our study, demonstrating detection and

ecologically relevant use of reef noise in a broad suite of tropical

crustaceans, suggests that the use of sound for orientation is far

more widespread than previously thought, and highlights the need

for further research into the impact of anthropogenic noise

throughout marine ecosystems.
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