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Abstract

Molecular chaperones protect cells from the deleterious effects of protein misfolding and aggregation. Neurotoxicity of
amyloid-beta (Ab) aggregates and their deposition in senile plaques are hallmarks of Alzheimer’s disease (AD). We observed
that the overall content of aB-crystallin, a small heat shock protein molecular chaperone, decreased in AD model mice in an
age-dependent manner. We hypothesized that aB-crystallin protects cells against Ab toxicity. To test this, we crossed aB-
crystallin/HspB2 deficient (CRYAB-/-HSPB2-/-) mice with AD model transgenic mice expressing mutant human amyloid
precursor protein. Transgenic and non-transgenic mice in chaperone-sufficient or deficient backgrounds were examined for
representative behavioral paradigms for locomotion and memory network functions: (i) spatial orientation and locomotion
was monitored by open field test; (ii) sequential organization and associative learning was monitored by fear conditioning;
and (iii) evoked behavioral response was tested by hot plate method. Interestingly, aB-crystallin/HspB2 deficient transgenic
mice were severely impaired in locomotion compared to each genetic model separately. Our results highlight a synergistic
effect of combining chaperone deficiency in a transgenic mouse model for AD underscoring an important role for
chaperones in protein misfolding diseases.
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Introduction

Accumulation of misfolded and aggregated proteins is a

pathological hallmark of several neurodegenerative diseases. In

Alzheimer’s disease (AD), aggregated amyloid-beta peptide (Ab) is

a primary component of the senile plaques and is thought to be

central to the associated neurotoxicity. Because molecular

chaperones have evolved to protect cells against protein misfolding

and aggregation, their importance in protein aggregation diseases

must be understood. Members of the small heat shock proteins

(sHsps) family, whose expression is regulated by the heat shock

transcription factor 1 (HSF1), protect cells from a variety of

environmental conditions such as heat and oxidative stress by

antagonizing protein aggregation. In vivo, sHsps play an important

role in enhancing stress resistance, regulating actin and interme-

diate filament dynamics, and inhibiting apoptosis [1,2]. sHsps

share a conserved a-crystallin domain of 80–100 amino acids at

their C-terminus whereas their N-terminal regions are highly

variable in sequence and length [3,4]. The sHsps form dynamic

oligomeric structures ranging from 9–50 subunits associating as

either homo- or hetero-multimeric complexes [5,6]. It has been

proposed that the ATP-independent sHsps aid in refolding of

denatured proteins by holding them in a reactivation-competent

state and target them to subsequent refolding or degradation with

the help of ATP-dependent chaperones like Hsp70 [2,7].

The human and mouse genomes code for 10 genes for sHsps

differing between 45 and 85% in sequence [8,9]. Of these Hsp27

(Hsp25 in mouse), aB-crystallin, HspB6 and HspB8 are ubiqui-

tously expressed [8]. Point mutations in human sHsps lead to several

aggregation diseases [10] – for example, mutations in aA-crystallin

leads to cataract [11], mutations in aB-crystallin leads to desmin-

related myopathy [12,13,14], missense mutations in HSP27 is

associated with Charcot-Marie-Tooth disease [15]. Over-expres-

sion of Hsp27 is highly protective against toxicity induced by aSyn

[16] or polyglutamine [17] in cell culture models. Hsp27 and aB-

crystallin have been found in proteinaceous inclusions of Alzhei-

mer’s and Parkinson’s disease [18,19,20,21,22,23,24]. The sHsps

are associated with senescence and longevity in worms [25,26] and

flies [27] suggesting their importance in aging-related diseases.

Induction of aB-crystallin has been noted in Alexander’s disease

[28], Creutzfeldt-Jacob disease [22] and Alzheimer’s disease [29].

Interestingly, the amyloid precursor protein (APP) central to AD

was found to interact with aB-crystallin in worm [30] and

mammalian cell models [31]. These observations underscore the

importance of aB-crystallin (sHsps in general) in diseases of aging

and protein aggregation, but their importance in mouse models has

not been examined. To this end, we examined behavioral deficits

when AD model mice were crossed mice lacking aB-crystallin/

HspB2.

Mice knocked-out for aB-crystallin and HspB2 (genes are

CRYAB and HSPB2, respectively) [32] are viable suggesting that it

is either non-essential or redundant during development. Due to

the close proximity (,1 kb) of the HSPB2 gene to CRYAB and the

sharing of promoter elements [33], the aB-crystallin knockout

mice are also deficient for a second sHsp, HspB2. The knockout

mice showed no significant difference in development and growth
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in comparison to wild-type mice until 40 weeks of age. Older

knockout mice consistently lost weight and body fat and

subsequently developed severe spine curvature (kyphosis) and

skeletal muscle degeneration [32].

The importance of sHsps in mice experiencing an increased

proteotoxic stress was previously not studied. In this report, we

inter-crossed between mice lacking aB-crystallin/HspB2 [32] and

Tg2576 transgenic mice [34], which over-produces the highly

aggregation-prone amyloid-beta. We observed that chaperone-

deficient transgenic mice developed severe locomotion defects

compared to mice with either chaperone deficiency alone or

transgene expression alone. Our results show that exacerbation of

protein aggregation and loss of chaperones produced a new

synthetic phenotype of motor defects in mice.

Materials and Methods

Mice and Animal Care
One male B6;SJL-Tg(APPSWE2576Kha) transgenic mouse

(Tg2576) [34] was purchased from Taconic Farms. The Tg2576

mice over-expresses the 695 amino acid isoform of amyloid

precursor protein (APP) harboring Swedish familial mutations

(K670N, M67IL) under the PrP promoter. These mice show

impairment in learning and behavior by 9 months and develop

extracellular amyloid plaques by 12 months. This mouse was out-

crossed to 129SvEv wild-type mice for 4 generations. The resulting

litters contained non-transgenic or transgenic mice. One breeding

pair of CRYAB-/-/HSPB2-/- mice in 129SvEv background [32]

were gifted kindly by Dr. Eric Wawrousek, National Eye Institute,

NIH, Bethesda, MD. Mice were maintained in a facility and

program accredited by the Association for Assessment and

Accreditation of Laboratory Animal Care International (AAA-

LAC) with the approval number A3307-01. The animal use

protocols were authorized by the Institutional Animal Care and

Use Committee (IACUC) of the Medical College of Georgia.

All behavioral experiments were carried out at the Small

Animal Behavior Core facility of the Medical College of Georgia

in rooms equipped with white noise generators (San Diego

Instruments, San Diego, CA) set to provide a constant background

level of 70 dB and ambient lighting of approximately 25–30 Lux

(lumen/m2). Test subjects were handled daily for several minutes

(each) for at least one week prior to experimentation. Animals

were transferred (in their home cages) to the behavioral testing

rooms each morning approximately 30 min before the beginning

of experiments. Measures were taken to minimize pain or

discomfort in accordance with the National Institute of Health

Guide for the Care and Use of Laboratory Animals (NIH

Publications No. 80-23) revised 1996. Significant efforts were also

made to minimize the total number of animals used while

maintaining statistically valid group numbers. All procedures

employed during this study were reviewed and approved by the

Medical College of Georgia IACUC and are consistent with

AAALAC guidelines.

Generation of the required genotypes
To generate aB-crystallin/HspB2 deficient mice expressing the

transgene, transgenic mice in 129SvEv background were crossed

with the CRYAB-/- mice. The resulting litters contained

CRYAB+/-/HSPB2+/-, mice with equal numbers of non-transgenics

and transgenics. The CRYAB+/-/HSPB2+/- transgenic mice were

crossed with CRYAB+/-/HSPB2+/- littermates to generate (i)

CRYAB+/+/HSPB2+/+, Tg0/0 (hereafter referred to as WT); (ii)

CRYAB+/+/HSPB2+/+, Tg+/0 (hereafter referred to as WTTg); (iii)

CRYAB-/-/HSPB2-/-, Tg0/0 (hereafter referred to as KO) and (iv)

CRYAB-/-/HSPB2-/-, Tg+/0 (hereafter referred to as KOTg) in

addition to parental genotypes CRYAB+/-/HSPB2+/-, Tg0/0 and

CRYAB+/-/HSPB2+/-, Tg+/0, which were not used further.

Genotypes of the mice were confirmed by PCR of tail genomic

DNA using appropriate primers as described in Brady et al [32] or

in Hsiao et al [34]. The use of littermates for all genotypes

minimizes the effect of out-crossing the mice. The genetic

variations between the two parental mouse strains are expected

to affect all four experimental genotypes identically.

Immunoblotting
To prepare brain lysates mice were euthanized using carbon

dioxide followed by perfusion with PBS. Brains were dissected out

from appropriate mice, frozen on liquid nitrogen and stored at -

80uC until use. Lysates were prepared by homogenization in lysis

buffer containing 50 mM Tris.HCl pH 7.5, 5 mM EDTA, 1%

Triton-X100 supplemented with HALT protease inhibitor cocktail

(Pierce). Lysate were cleared by centrifugation and the protein

concentration was estimated using the BCA kit (Pierce). Samples

were boiled in loading dye, separated by SDS-PAGE and

transferred to PVDF membrane. The membrane was blocked

using 10% milk in PBS with 0.1% tween-20. Primary antibodies

were anti-Hsp27 (Sigma), Anti-aBcrystallin (Stressgen), anti-Hsp70

(Stressgen) and anti-Ab (Sigma). Appropriate secondary antibodies

(rabbit anti-mouse or goat anti-rabbit) conjugated with horseradish

peroxidase were used followed by development of the immunoblot

by chemiluminescence (Danville).

Open Field Activity
Mouse open field activity monitors (27.9 cm 627.9 cm, Med

Associates St Albans, VT) were used for these experiments. The

following parameters were recorded for the 25 min test session:

horizontal activity (horizontal photobeam breaks or counts),

number of stereotypical movements, and vertical activity (vertical

photobeam breaks). Thus, spontaneous locomotor activity,

olfactory activity (rearing and sniffing movements) and stereotyp-

ical movements were assessed.

Hot Plate test (Supraspinal Nociception)
Individual mice were placed in the glass enclosed section of a

Hot-Plate Analgesia Meter, Accuscan Instruments, Inc., Colum-

bus OH. The temperature of the heating surface was elevated by

3uC per minute from a beginning temperature of 42uC to a

maximum temperature of 49uC. The time elapsed (latency) before

the subject lifted and/or licked a hind paw or jumped was

recorded as a measure of nociception. Each mouse was given 3

trials separated by a 30-minute (minimum) inter-trial interval.

Fear Conditioning
Shock Threshold. A sequence of single foot shocks were

delivered to wild type mouse subjects placed on the same

electrified grid used for fear conditioning (see below) in order to

assess the shock (i.e., sensory perception) threshold. Initially, a 0.1-

mV shock was delivered for 1 sec, and the animals’ behavior was

evaluated for flinching, jumping, and vocalization. At 30-s

intervals the shock intensity was increased by 0.1 mA up to

0.7 mA and then returned to 0 mA in 0.1-mA increments at 30-

sec intervals. Threshold to vocalization, flinching, and then

jumping were quantified for each animal by averaging the shock

intensity at which each animal manifested a behavioral response to

the foot shock. This average was determined to be 0.5 mA and

used in subsequent experiments.

Behavior of Chaperone-Deficient AD Model Mice
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Training procedure. Separate groups of mice were

subsequently evaluated for contextual and cued fear conditioning

using the mA shock levels determined in the experiments

described above. A two-pairing method of auditory cue and

mild foot shock were conducted during a 7 min test session.

Animals were initially allowed to freely explore the apparatus

(MED-VFC-NIR-M, Med Associates, St Albans, VT) for 3 min,

after which a 30-sec acoustic-conditioned stimulus (CS; white

noise, 80 dB) was delivered. At the end of the CS, a 2-sec shock

unconditioned stimulus (US) was applied to the grid floor. The

CS-US pairing was delivered again at the 5-min mark.

Context-dependent Freezing. To evaluate contextual fear

learning, test subjects were returned to the freeze monitor (i.e.,

same context) 24 hr after the training procedure described above,

and freezing behavior was scored for 5 min.

Cue-dependent Freezing. To evaluate cued fear learning,

the animals were placed in a different context (novel odor, lighting,

cage floor, and visual cues) 24 hours following contextual testing.

Baseline behavior was scored for 2 minutes, and then the CS was

presented for a period of 2 minutes, followed by another 2 minutes

period in which the auditory stimulus was absent.

Scoring Procedure. Subject movements in the freeze

monitor apparatus were determined via the Med Associates

Video-Tracking and scoring software. Data are expressed as

percent freezing in 60-s epochs, each epoch divided into 6 or 12 5-

s bins.

Statistical Analysis
All data were analyzed and graphed using SigmaSTAT and

SigmaPLOT software programs, respectively. Open field cumu-

lative counts were compared using 2-way repeated measure

ANOVA (genotype vs. time) with pair-wise multiple comparison

procedures using Holm-Sidak method. Open filed zone-time and

distance traveled data were analyzed by one way ANOVA. Data

from fear conditioning experiments were analyzed using two-way

repeated measure ANOVA with comparison between wild-type

versus knockout and non-transgenic versus transgenic genotypes.

Data from hot plate tests (temperature and time) were analyzed

using one-way ANOVA. Comparisons producing a p value ,0.05

were considered significant.

Results

Age-dependent decrease in the expression of aB-
crystallin in transgenic mice

As guardians against protein misfolding and aggregation,

chaperones protect the cells from the deleterious effects of

aggregation. Stressful conditions such as heat shock cause an

acute increase in misfolded proteins resulting in an increase in

demand for chaperones, which is normally met by the stress-

inducible expression of chaperones. On the other hand, a steady

increase in damaged proteins (oxidized and nitrosylated) takes

place due to aging, leading to a chronic demand for chaperones

and accumulation of damaged proteins. Such a reduction in

chaperone availability is thought to play a central role in triggering

the protein aggregation cascade of natively unstructured and

amyloidogenic polypeptides associated with several neurodegen-

erative diseases. Because misfolding and aggregation of the

amyloid-beta (Ab) peptide is a major hallmark of AD, we premised

that an age-dependent decrease in available chaperones might

exacerbate the increased demand for proteostasis mechanisms. We

investigated this possibility by examining the expression of Hsp70,

Hsp27 and aB-crystallin in the brains of non-transgenic and

transgenic mice at young (3 months) and older (7 months) ages by

immunoblotting (Figure 1A) and densitometric analysis of the

band intensities (Figure 1B). Due to the muscle-specific expression

of HspB2 and the unavailability of appropriate antibodies

recognizing mouse HspB2, we did not examine its expression in

the mouse brain. The expression of the human APP transgene was

examined using an antibody specific to human Ab. As expected,

only transgenic mice showed expression of APP and the band

intensities were significantly above the intensities in the same

molecular weight range in non-trangenic mice (p,0.05, two-

sample t-test). The expression of Hsp70 and Hsp27 were

unchanged at the ages tested irrespective of the transgene

expression or age of mice. A marginal elevation in the expression

of Hsp27 and Hsp70 observed in Figure 1B was not significantly

different between the two ages or between the two genotypes

(p.0.05, two-sample t-test). The equal expression levels of these

proteins also serve as control for equal protein loading.

Interestingly, the expression of aB-crystallin was significantly

decreased in older transgenic mice but not in non-transgenic mice.

Densitometric measurement of band intensities showed that aB-

crystallin levels of 3-month old transgenic mice were comparable

to that in non-transgenic mice. The levels of aB-crystallin in 7

month-old transgenic mice decreased significantly compared to 3-

month old transgenic mice (p,0.05, two-sample t-test). This

suggests that aB-crystallin may be an early indicator of protein

misfolding defects in the brains of transgenic mice.

Generation of transgenic AD mice lacking aB-crystallin/
HspB2

Based on our observations of reduced aB-crystallin in older

transgenic but not in non-transgenic mice, we hypothesized that if

this chaperone is protective, then its loss may show an exaggerated

phenotype. To examine if decreased aB-crystallin levels were

important for the manifestation of the behavioral phenotypes in

the AD model mice we crossed Tg2576 mice (B6/SJL back-

ground) with wild-type (CRYAB+/+HSPB2+/+) or aB-crystallin/

HspB2 knockout (CRYAB-/-HSPB2-/-) mice (129Sv background).

The breeding scheme is shown in Figure 2A. This intercross

resulted in litters with equal numbers of non-transgenic (Tg0/0) or

hemizygous transgenic (Tg+/0) mice, which were heterozygous for

aB-crystallin/HspB2 (CRYAB+/-HSPB2+/-). The litters were inbred

to obtain mice of the following genotypes – (i) CRYAB+/+HSPB2+/+,

Tg0/0; (ii) CRYAB+/+HSPB2+/+, Tg+/0; (iii) CRYAB-/-HSPB2-/-, Tg0/0

and (iv) CRYAB-/-HSPB2-/-, Tg+/0. From this point on, these mice

are denoted as WT, WTTg, KO and KOTg, respectively. (Mice

heterozygous for CRYAB (namely, CRYAB+/-HSPB2+/-, Tg0/0;

and CRYAB+/- HSPB2+/-, Tg+/0) that were also generated in this

cross were not used further.) By comparing only littermates for all

experimental genotypes, we minimized the influence of genetic

variation resulting from the parental strains. Further, any residual

effects of genetic variation are expected to be evenly distributed

between the four genotypes. The chaperone expression in each

genotype was confirmed by western-blotting two sets of brain

lysates from 7-month old mice for aB-crystallin, and Hsp27

(Figure 2B). The expression of Hsp27 was equal in all mice

suggesting that the expression of Hsp27 was not increased to

compensate for the loss of aB-crystallin/HspB2. The KO and

KOTg samples were devoid of aB-crystallin as expected. WT

samples showed higher amounts of aB-crystallin than WTTg

samples as observed in Figure 1. Expression of APP was observed

only in the transgenic samples (KOTg and WTTg) as expected

(not shown). Although the WTTg mice express low levels of aB-

crystallin, they are distinct from KOTg mice, which are devoid of

aB-crystallin since embryogenesis.

Behavior of Chaperone-Deficient AD Model Mice
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Behavioral analysis
The decrease in aB-crystallin expression in older transgenic

mice brains suggested that the over-produced APP may affect

proteostasis not only by increased demand for chaperone function

but also reduced expression. We premised that if aB-crystallin

protected the mice from Ab-mediated neuronal dysfunction, then

in its absence these deficits should manifest at an earlier age. It was

demonstrated that the Tg2576 mice showed behavioral changes as

early as 6–7 months of age [34]. Since the mice deficient for aB-

crystallin/HspB2 showed debilitating phenotypes about 9-10

months of age [32], we decided to investigate the behavioral

phenotypes of WT (n = 9), WTTg (n = 7), KO (n = 15) and KOTg

(n = 7) mice when they were 728 months (or 28–32 weeks). The

following tests were designed to examine both the effects of Ab on

locomotion defects in aB-crystallin/HspB2 deficient mice and the

effects of aB-crystallin/HspB2 loss on memory network defects in

Tg2576 mice.

Open field Test. Open field test is one of the most common

tests to monitor general motor activity, exploratory behavior and

measures of anxiety [35]. Normal behavior in mice is to seek the

protection of the periphery rather than the vulnerability of the

center. Mice that are less anxious are expected to spend more time

in the center. Mice that show signs of motor deficits are expected

to show lower horizontal distances and vertical movements. Mice

were individually placed in an open arena equipped with infrared

photobeams to monitor mice behavior for 30 minutes without the

experimenter being present in the room. The photobeams

recorded the following activities – (i) counts of ambulatory

(walking), stereotypic (repetitive activity, eg, grooming) and

vertical (rearing up) movements; (ii) distance travelled in the

center versus periphery and (iii) zone times in center versus

periphery were monitored.

First of all, WT and KO groups behaved similarly in terms of

vertical counts, stereotypic counts and ambulatory counts

indicating that loss of aB-crystallin/HspB2 alone had negligible

effect on locomotion at this age group (Figure 3A, B & C). Age

associated muscle degeneration reported with the knockout mice

was not manifested in terms of locomotion defects at this age group

as all 3 parameters counts of KO group of animals was

comparable to WT. Similarly, the WTTg group was comparable

to WT suggesting that the expression of mutant APP in mice did

not significantly affect locomotion by itself. Interestingly, when the

transgene expression was combined with aB-crystallin/HspB2

deficiency in the KOTg group, the effect was synergistically

enhanced compared to KO group (P,0.004, 2-way repeated

measure ANOVA) in ambulatory activity and vertical activity.

Differences were not statistically significant in stereotypic activity.

The total distance traveled by WT and KO mice were also very

similar underscoring the lack of locomotion deficits in aB-

crystallin/HspB2 knockout mice at this age. Distance traveled

(Figure 3D) and zone times in the center and peripheral regions

(Figure 3E) of the open field were also comparable (differences

Figure 1. Chaperone levels in AD model mice. (A) Immunoblots showing age-dependence of aB-crystallin expression in mice expressing
mutant human APP transgene. Brain lysates were prepared from two individual non-transgenic (NTg1 & NTg2) or transgenic (Tg1 & Tg2) mice each at
3 months or 7 months of age. Samples were immunoblotted for aB-crystallin, Hsp70, Hsp27, Ab and actin. 40 mg of total protein was analyzed. Similar
levels of Hsp70, Hsp27 and actin in all samples show equal protein loading. (B) Densitometric analysis of band intensities in A. Intensities were
compared by two-sample Student’s t-test for statistical signifcance. APP expression in Tg mice were significantly greater than NTg mice as expected
(p = 0.006 at 3 months, p = 0.017 at 7 months). aB-crystallin expression was significantly lower at 7-months compared to 3-months old transgenic
mice brain (p = 0.044). aB-crystallin levels in 7-month old transgenic mice was also significantly lower than non-transgenic mice at similar age
(p = 0.018). All other comparisons showed no significant differences.
doi:10.1371/journal.pone.0016550.g001

Behavior of Chaperone-Deficient AD Model Mice
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were not statistically significant). Although the total distance

traveled by WTTg mice was significantly lower than the WT

group, the zone times and distance traveled in the center and

periphery were statistically similar. Similarly, KOTg mice traveled

only about a third the distance traveled by KO mice but

differences between center and periphery were not significant.

Total distance traveled by KOTg mice was also significantly lower

than that of WTTg mice highlighting the synergistic effects

observed in ambulatory activity counts (Figure 3A). These results

suggest that the differences between transgenic (WTTg and

KOTg) and non-transgenic (WT and KO) mice were due to

locomotion defects rather than defects in anxiety or exploratory

behavior. The KOTg mice appeared to be unable to distinguish

between center and periphery compared the WT group (Figure 3E)

suggesting that they were significantly less anxious than WT mice.

Although, direct comparisons between KOTg and WT groups are

complicated, our data suggests synthetic effects of aB-crystallin/

HspB2 deficiency and APP transgene expression.

Hot plate test. To understand whether the observed

locomotion defects were coupled with sensory defects, we

examined the mice for pain sensitivity to thermal stimulus

(nociception). Each mouse was placed on a hot plate and the

temperature of the heating surface was raised by 3uC per minute.

The minimum time and temperature required to elicit response

(paw licking or jumping) was noted (Figure 4). Somatosensation

and its response as motor activity were scored to test for spinal

cord related reflexes. The KO, WTTg and WT mice showed

comparable responses and the differences were not significant.

Maximum latency and higher temperatures were required for the

KOTg group to elicit a response and were significantly greater

than all other groups of mice with respect to both time and

temperature. This result suggests that the combined effect of aB-

crystallin/HspB2 loss and transgene expression caused a decreased

sensory function not observed with each genotype individually,

thus underscoring the synergism.

Fear conditioning test. In order to examine whether

learning behavior was impaired in transgenic mice lacking aB-

crystallin/HspB2, we performed fear-conditioning test. In this test

paradigm the associative learning of a neutral cue (eg, sound tone)

or a neutral context (eg, environment) with a brief aversive

stimulus (eg, mild electric shock) is measured by monitoring the

freezing behavior in mice (Figure 5). Fear conditioning test was

performed by placing a mouse in a box equipped with a

mechanism for monitoring the freezing behavior of the animal

by recording photobeam breaks. The mice were first trained to

associate the surroundings or a sound pulse (cue) with the mild

aversive stimulus. Cue-dependent freezing was tested in a novel

environment (i.e., one with different lighting, and olfactory and

visual cues) and the freezing behavior associated with the tone was

measured. Context-dependent freezing was monitored to evaluate

the learned aversion of an animal for the environment associated

with the mild aversive stimulus.

No significant differences in freezing behavior were obvious

during the training period (Figure 5A) indicating that the

locomotion defects observed with WTTg and KOTg mice

(Figure 3) did not significantly affect the freezing response to the

mild aversive stimulus. During training, mice did not exhibit

freezing during the first cue-foot shock pair at 3 minutes, but

freezing increased in all mice during the second cue-foot shock

pair at 5 minutes. The subsequent increase in freezing at the end

of 6-minute period suggested an anticipatory behavior for a third

cue-foot shock pair or could also suggest decreased exploratory

behavior due to familiarity with the surrounding.

In response to a tone cue (Figure 5B), the mice behaved

similarly with no significant differences in the freezing behavior.

Mice did not exhibit freezing and explored their novel environ-

ment during the first 2 minutes. All mice responded readily to the

tone cue presented to them for 2 minutes by freezing. The mice

mostly stayed frozen beyond the 4-minute time point. These

results indicated good associative learning in all mice.

Interestingly, in response to contextual associative learning there

were notable differences (Figure 5C). First, WT and WTTg mice

froze similarly at the start of the experiment but differed

significantly at later time points (p = 0.003). While the WT mice

rapidly froze subsequently and reached maximum freezing at the

2-minute time point, the WTTg mice only showed a gradual

increase in freezing till the 5-minute time point. This suggested

that context-dependent associative learning may be one of the first

manifestations of APP transgene expression. Second, KO and

Figure 2. Generation of the required genotypes of mice. (A)
Schematic diagram showing the mouse crosses that lead to the
required genotypes. (B) Immunoblots showing aB-crystallin and Hsp27
expression in two sets of mice at 7 months of age. WT is CRYAB+/+HspB2+/+,
Tg0/0; WTTg is CRYAB+/+HspB2+/+, Tg+/0; KO is CRYAB-/-HspB2-/-, Tg0/0 and
KOTg is CRYAB-/-HspB2-/-, Tg+/0.
doi:10.1371/journal.pone.0016550.g002

Behavior of Chaperone-Deficient AD Model Mice
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KOTg mice showed a high degree of freezing behavior from the

start of the experiment in comparison to their wild-type

counterparts. This is an intriguing result – mice lacking aB-

crystallin/HspB2 mice were seemingly better at contextual

learning than their wild-type counterparts. This result cannot be

satisfactorily explained by the locomotion defects in the knockout

mice because the same mice are normal in the cued experiment.

This leads us to suggest that the mice lacking aB-crystallin/HspB2

were perhaps hyper-sensitive to a particular contextual signal (such

as auditory, visual, olfactory or tactile), which may have allowed

them to associate this signal as a strong unitary cue with the

aversive stimulus. The nature of this cue is unclear.

Discussion

In this study, we aimed to investigate the effect of chaperone-

deficiency in a mouse model for AD. When expression of APP was

combined with loss of aB-crystallin/HspB2, we observed that new

phenotypes involving locomotion and sensory function deficits

were revealed. Neither loss of aB-crystallin/HspB2 nor transgenic

expression of APP by themselves produced these phenotypes. The

synthetic sick phenotypes underscore a negative synergy between

expression of APP, which is thought to increase the production of

the aggregation-prone Ab peptide and reduced chaperone (aB-

crystallin and HspB2) function.

When misfolding-prone proteins are overproduced, cellular

health may depend on its ability to also overproduce chaperones.

Figure 3. Open field test. Counts for Ambulatory (A), Vertical (B) and Stereotypic (C) activities of mice over a period of 25 minutes in the open field.
Symbol representations are - KOTg (open grey square; n = 7), KO (closed grey square; n = 15), WTTg (open black circle; n = 7) and WT (closed black
circle; n = 9). Mean values 6 SEM are plotted. Data were analyzed by two-way repeated measure ANOVA, which indicated that KOTg group showed
significantly less (p = 0.004) than other groups. Differences were not statistically significant between other groups. (D) Total distance (in cm) traveled
by the mice over a period of 30 minutes. Mean values 6 SEM are plotted. Data were compared by t-tests. KOTg was significantly different from KO
(p = 0.007) and WT (p = 0.017). (E) Zone time in center (black bars) and periphery (grey bars) for the mice during the 30 minutes. Data were compared
by t-tests. Center zonetimes of both KO and KOTg were significantly different from WT (p = 0.023 for KO and p = 0.0006 for KOTg). Peripheral
zonetimes were similar for all groups. (n = 7 for KOTg; n = 15 for KO; n = 7 for WTTg and n = 9 for WT).
doi:10.1371/journal.pone.0016550.g003

Figure 4. Hot plate test. The duration of time to elicit a thermo-
sensitive reflex response in mice is shown on the left axis (black bars).
The temperature at which the response was recorded is shown on the
right axis (grey bars). Mean values 6 SEM are plotted. Data for different
groups were compared by t-tests. Both the time and temperature
required elicit a response in KOTg were significantly higher than those
for KO (p = 0.022 and 0.031, respectively), WT (p = 0.001 and 0.001,
respectively) and WTTg (p = 0.05 and 0.05, respectively). All other
groups were statistically similar. WT is CRYAB+/+, Tg0/0; WTTg is CRYAB+/+,
Tg+/0; KO is CRYAB-/-, Tg0/0 and KOTg is CRYAB-/-, Tg+/0. (n = 7 for KOTg;
n = 15 for KO; n = 7 for WTTg and n = 9 for WT).
doi:10.1371/journal.pone.0016550.g004
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In AD brains, where the load of misfolded proteins is high, others

have observed that aB-crystallin expression was high in glial cells

in areas surrounding plaques and tangles [20,36]. However, we

observed that aB-crystallin levels in brain lysates decreased in an

age-dependent manner in transgenic AD model mice compared to

non-transgenic littermates. The contrasting observations may be

attributed to the differences in methods - while others have

monitored relatively small regions by immunohistochemistry in

human AD brains [20,36], we monitored the expression levels by

immunoblotting lysates from the entire brains of a mouse model

for AD. In this regard, we would like to point out that other studies

have observed no significant differences in the expression of aB-

crystallin in various regions of AD brains by immunoblotting

methods [37], by mass spectrometry based protein identification

methods [38] and by immunohistochemical methods [39].

Further, we speculate that the difference between the human

and mouse results could be due to differential cellular responses

towards the entire gamut of pathologies in AD brains versus the

predominantly plaque pathology in the AD model mice used in

this study. However, the exact reasons for these observations are

presently unclear and require further experimentation.

We were unable to examine the effect of aB-crystallin/HspB2

loss on the deposition of Ab plaques in the mice because the

KOTg and the KO mice were considerably debilitated by the age

of 9–10 months as previously reported for aB-crystallin/HspB2-

deficient mice [32]. At this age, WTTg mice do not have

significant levels of plaque pathology and plaques develop only in

mice older than 10-12 months of age [34]. Immunohistochemical

examination of mice brains at 7 months revealed no plaques under

our experimental conditions (data not shown). However, it is

thought that plaques may not be causative and others have shown

that decreased dendritic spine density, impaired long-term

potentiation (LTP), and behavioral deficits occurred many months

before detectable plaques [40].

We observed a modest locomotor deficit in WTTg mice by

open field tests (Figure 4D) suggesting that the expression of hAPP

affected muscle function. In Tg2576 mice, expression of the APP

transgene has been observed in muscle tissue [41] where the

function of aB-crystallin and HspB2 is expected to be crucial [32].

The presence of amyloid oligomers in muscle cells has been shown

to have potent toxicity [42]. Thus, the high degree of synergistic

toxic effects of aB-crystallin/HspB2 loss and transgene expression

in the skeletal muscle precluded the examination of plaque

pathology at later ages. Because sHsps block the fibrillization and

toxicity of Ab [43,44] it is suggested that in the absence of aB-

crystallin/HspB2 enhanced Ab toxicity may contribute to the

manifestation of the synergistic phenotypes. An alternative

explanation for the locomotion defect is that since APP is

expressed throughout the brain in this mouse, it might contribute

to deficits in the brain motor centers. The locomotion defects

observed in the WTTg mice are important because these

transgenic mice are routinely used in learning and memory tests

that involve locomotion (eg, swimming in water maze). In

agreement with our observations, motor deficits in Tg2576 have

been observed at 6–7 months in a recent publication [45]. No

significant perturbation in the motor reflexes was observed in

WTTg mice as the mice could perceive and respond to thermal

stimulus in the supraspinal nociception (hot-plate) test. However,

reduced chaperone levels in the transgenic mice produced a

sensory defect suggesting that this synergism also affected

nociception.

In the WTTg mice, we also observed a significant limitation in

their ability to associate mild aversive stimulus with the

environmental context but not with an auditory cue. This

difference in associative learning can be interpreted as follows –

Contextual learning may be based on weak associations between

the footshock and diverse signals (including visual, olfactory,

auditory and sensory stimuli) and thereby differences between WT

and WTTg are manifested significantly [46]. It has been thought

that animals may associate only a subset of contextual elements,

which leads to weak associative learning. The inability of WTTg to

Figure 5. Fear conditioning test. Percent freezing of mice over time
during Training (Top), Cued test (middle) and Contextual test (bottom).
Mean values 6 SEM are plotted. Data were analyzed by two-way
repeated measure ANOVA. Differences between groups were not
significant for training and cued tests. In contextual tests, WT
performed significantly better than WTTg (p = 0.003); difference
between WTTg and KOTg was significant (p = 0.014); other groups
were not significantly different. Blue hatched boxes represent two
separate auditory signals (80dB) of 30 seconds each during training and
a single auditory signal for 2 minutes during cued test followed by 2 sec
foot shock. Symbol representations are - KOTg (red circle), KO (orange
circle), WTTg (yellow triangle) and WT (green triangle). (n = 7 for KOTg;
n = 15 for KO; n = 7 for WTTg and n = 9 for WT).
doi:10.1371/journal.pone.0016550.g005
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associate and integrate the complex contextual signals with the

aversive stimulus indicates a reduced hippocampal function.

Contextual associative learning deficit in Tg2576 has been

previously observed [40,45]. On the other hand, associative

learning may be reliably paired with footshock when a strong

unitary cue (such as an auditory tone) is provided and a Pavlovian

response is established [47], which may overcome the minor

differences in learning between different genotypes. The ability of

WTTg mice to normally associate the fear of footshock with an

auditory cue indicates that there is no obvious impairment in

amygdala under these conditions. An alternative explanation for

the superior contextual learning in KO and KOTg mice is a

possibility that aB-crystallin and/or HspB2 may be involved in the

folding or degradation of proteins that modulate this learning.

Because molecular chaperones prevent excessive misfolding and

aggregation, cellular demand for chaperones are greater in aged

and stressed cells, which accumulate damaged proteins. Our

results demonstrating synergistic effects of reduced chaperones in

the context of a mouse model for AD highlights the in vivo

importance of sHsps in diseases characterized by protein

misfolding and aggregation.
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