
Non-invasive Predictors of Human Cortical Bone
Mechanical Properties: T2-Discriminated 1H NMR
Compared with High Resolution X-ray
R. Adam Horch1,2, Daniel F. Gochberg2,3, Jeffry S. Nyman1,4,5,6*, Mark D. Does1,2,3,7*

1 Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America, 2 Institute of Imaging Science, Vanderbilt University,

Nashville, Tennessee, United States of America, 3 Department of Radiology and Radiological Sciences, Vanderbilt University, Nashville, Tennessee, United States of

America, 4 VA Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America, 5 Department of Orthopaedics and Rehabilitation, Vanderbilt

University Medical Center, Nashville, Tennessee, United States of America, 6 Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United

States of America, 7 Department of Electrical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America

Abstract

Recent advancements in magnetic resonance imaging (MRI) have enabled clinical imaging of human cortical bone,
providing a potentially powerful new means for assessing bone health with molecular-scale sensitivities unavailable to
conventional X-ray-based diagnostics. To this end, 1H nuclear magnetic resonance (NMR) and high-resolution X-ray signals
from human cortical bone samples were correlated with mechanical properties of bone. Results showed that 1H NMR
signals were better predictors of yield stress, peak stress, and pre-yield toughness than were the X-ray derived signals. These
1H NMR signals can, in principle, be extracted from clinical MRI, thus offering the potential for improved clinical assessment
of fracture risk.
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Introduction

Current bone diagnostics are incomplete. The estimate of areal

bone mineral density (BMD) by dual energy x-ray absorptiometry

(DXA) does not fully predict fracture risk: for a given DXA score,

there is an unexplained increase in fracture risk with age [1,2], as

well as with progression of various disease states, such as diabetes

[3]. The limitations of DXA related to BMD depending on bone

size [4] may be somewhat overcome by quantitative computed

tomography imaging, but, ultimately, any X-ray based diagnostic

is only sensitive to the mineral portion of the bone, which accounts

for only <43% of bone by volume. The remaining soft-tissue

components of bone, including collagen and collagen-bound

water, are essentially invisible to DXA and quantitative computed

tomography. In contrast, clinical magnetic resonance imaging

(MRI), which is based on the 1H NMR signal, cannot directly

detect bone mineral but is sensitive to the soft tissue of bone.

Further, a recent study has demonstrated that 1H NMR transverse

relaxation time constants (T2) distinguishes proton signals from

collagen, collagen-bound water, and pore water [5]. With this

technology and the idea that the presence and hydration-state of

collagen play a critical role in dissipating energy in bone [6], we

hypothesized that 1H NMR can report on the material strength of

bone, and we present here compelling experimental observations

of 1H NMR, X-ray CT and mechanical tests of cadaveric bone

samples which indicate that MRI has the potential to better

diagnose fracture risk than DXA.

Results

Figure 1 shows the mean (and standard deviation and range)

spectrum of 1H NMR transverse relaxation time constants (T2

spectrum) from 40 cadaveric bone samples. In this mean spectrum

and in each individual sample spectrum, signals from three distinct

domains of T2 were readily identified, as previously found [5]:

50 ms,T2,150 ms, defined as pool A, due primarily to collagen

methylene protons; 150 ms,T2,1 ms, pool B, due primarily to

collagen-bound water protons; and 1 ms,T2,1 s, pool C, due to

water protons in pores in lipid protons. From these three signals,

six parameters were extracted: 3 signal amplitudes (SA, SB, SC, in

absolutes units of mole 1H per liter bone) and 3 corresponding

mean relaxation rate constants (R2,A, R2,B, R2,C in s21). Note that

while the signal amplitudes are computed in absolute units of

concentration, the correspondence between signal amplitudes, SA,

SB, and SC, and actual concentrations of collagen methylene

protons, bound water protons, and pore-water or lipid protons,

respectively, is potentially affected by a number of factors,

including the line shape of the methylene protons, the magneti-

zation exchange rate between bound and methylene protons, and

overlap of T2 components from different sources.

Each of the three NMR signal amplitudes (SA, SB, SC) was found

to linearly correlate (r2 = 0.34, 0.68, 0.61, p,0.05) with peak stress

(Fig. 2), but note that the sum of all three signals did not (r2 = 0.06,

p.0.05). Similar pair-wise linear correlations (and lack thereof)

also existed between NMR signal amplitudes and the other three
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measured mechanical properties. These findings indicate that peak

cortical bone stress, and the other measured mechanical

properties, are directly related to the amount of collagen and

collagen-bound water in bone, and inversely related to the bone

pore volume. Micro-computed tomography (mCT)-derived mea-

sures of bone porosity and the apparent volumetric bone mineral

density (avBMD, akin to DXA) were also found to linearly

correlate with mechanical properties, but SA and SB were better

predictors (i.e., higher r2 values) than mCT-porosity for three of

four mechanical properties (flexural modulus being the exception),

and better predictors than avBMD (i.e., DXA) for all four

mechanical properties. Table 1 summarizes the pairwise linear

correlations between imaging measure (1H NMR and X-ray) and

the four mechanical properties.

Note that without the two apparent outlier data (peak stress

<100 MPa), the predictive power of SB and SC decreased to r2

values of 0.52 and 0.49, respectively, but the r2 of avBMD with

peak stress decreased to a greater extent (to 0.16). That is, the

relative predictive power of SB and SC compared with avBMD

increased without these two data points. Also note that multiple

linear regression analysis told a similar story: combination of

NMR signal parameters (RB and SB) best predicted of three of four

mechanical properties (adjusted R2: 0.56-0.70, again, flexural

modulus was the exception), and better predicted all four

mechanical properties than did avBMD.

Discussion

As a surrogate to radiation-based CT, MRI has been developed

to characterize trabecular volume and architecture as a means to

assess fracture risk [7,8]. For example, such MRI-derived

measurements of bone volume fraction and trabecular thickness

Figure 1. Summary of T2 spectra measured from 40 human cortical bone samples. All spectra exhibited a short-T2 component (T2<60 ms),
derived primarily from collagen protons, an intermediate T2 components (T2<400 ms), derived primarily from collagen-bound water protons, and a
broad distribution of long-T2 components (1 ms,T2,1 s), derived from a combination of pore water and lipid protons.
doi:10.1371/journal.pone.0016359.g001

Figure 2. Correlations of measured peak stress and T2 spectral component amplitudes (NMR, left) and avBMD measured by mCT
(right). Blue, red, and green data show integrated amplitudes (SA, SB, and SC) of the T2-discriminated signals from pools A, B, and C, respectively. The
black data show the total 1H NMR signal (SA+SB+SC), and the purple data are derived from mCT-based measures of avBMD. Each of the NMR signals
amplitudes shows a significant linear correlation with peak stress and both SB and SC correlate more strongly with peak stress than does avBMD. Note
that the total 1H NMR signal does not correlate well with peak stress.
doi:10.1371/journal.pone.0016359.g002

1H NMR Predicts Bone Mechanical Properties

PLoS ONE | www.plosone.org 2 January 2011 | Volume 6 | Issue 1 | e16359



correlated with the compressive strength of human trabecular bone,

although the correlations were not as strong as that between CT-

derived BMD and strength [9]. These MRI techniques do not assess

the inherent quality of the bone tissue, and this is a significant

shortcoming given the importance of ultrastructural characteristics

of the extracellular matrix (e.g., collagen integrity) to the fracture

resistance of bone [10]. From ex vivo studies of bone, various

quantifications of water by NMR have been correlated with the

mechanical competence of bone. In a rabbit model of diet-induced

hypomineralization, a 1H NMR-derived measurement of water

content was directly related to the bending strength of cortical bone

[11]; however, in a study of ovariectomized and treated mice, only

group-mean total water 1H NMR signal correlated with mechanical

properties—no correlation was found across pooled data from 60

bones, which may be explained by the findings of total 1H signal

shown here (Fig. 2). Also, an NMR technique known as ‘‘decay from

diffusion in an internal field’’ (DDIF) found an inverse correlation

between this NMR-derived pore water parameter and the yield

stress of bovine trabecular bone in compression [12], in rough

agreement with the present observations of pore-water. Prior to the

present study though, only one study attempted to correlate NMR

measurements of both pore water and water bound to the

extracellular matrix to the mechanical properties of human

bone [13]. That study used T2
*-discriminated rather than T2

-discriminated (used herein) 1H NMR signals at low static magnetic

field, and while a direct relationship existed between the so-called

T2
*-defined bound water and peak stress, it described a much lower

fraction of the peak stress variance (r2 = 0.36, compared to 0.68,

above). Also, the translation of T2
* based discrimination to clinical

imaging may be problematic due to the presence of lipid in bone

[5,11], and the inability of T2
* to discriminate bone 1H pools at

clinical field strengths (no discrimination was found at 4.7T [5] and

no discrimination has been reported at clinical fields strengths

($1.5 T)).

Current uTE protocols on human MRI systems use echo times

,100 ms [14] (and references therein), more than short enough to

capture the majority of the bound water signal and some of the

collagen proton signal, but the translation of the present findings to

clinical MRI will require practical imaging methods of distin-

guishing these short-T2 signals from the longer-T2 pore water and

lipid signals. There are numerous strategies for integrating T2-

selective magnetization preparation into a clinically practical uTE-

type sequence [15,16,17], and the optimal approach for bone

imaging has not yet been determined. However, Fig. 3 shows two

T2 spectra from one bone specimen. The solid line shows the

normal T2 spectrum, as used in the above analysis, while the

dotted line shows the spectrum that results following the complex

average of two CPMG signals, with and without the preceding

hyperbolic secant radiofrequency (RF) pulse. This RF pulse

effectively inverts only the long T2 signals while largely saturating

the collagen proton and bound-water signal, so the complex

average cancels only the long T2 signals and results in a net NMR

signal that is <95% derived from protons with T2,1 ms. This

result demonstrates in principle that a simple RF pre-pulse, which

can be readily integrated into a standard uTE pulse sequence, can

distinguish pore water from collagen protons and collagen bound

water protons in bone. Once implemented on clinical scanners,

such an MRI method can then assess both the contribution of

structure to whole bone strength as well as the contributions of

collagen integrity and porosity, thus proving a more complete

assessment of fracture risk than current X-ray based methods.

Materials and Methods

Human cortical bone processing
The Musculoskeletal Tissue Foundation (Edison, NJ), a non-

profit tissue allograft bank, and the Vanderbilt Donor Program

Table 1. A summary of Pearson’s r2 for pairwise correlations
between imaging measures (1H NMR and X-ray) and
mechanical properties.

Yield
Stress

Peak
Stress

Flexural
Modulus

Pre-Yield
Toughness

R2,A 0.10 0.12 0.04* 0.12

R2,B 0.19 0.22 0.12 0.19

R2,C 0.00* 0.01* 0.01* 0.00*

SA 0.41 0.34 0.39 0.34

SB 0.62 0.68 0.48 0.57

SC 0.57 0.61 0.49 0.49

SA+SB+SC 0.05* 0.06* 0.06* 0.03*

AVBMD 0.43 0.44 0.46 0.33

POROSITY 0.58 0.60 0.59 0.46

All correlations were significant (p,0.05) except those indicated with *. The
imaging measure that was most predictive (highest r2) of each mechanical
measure is indicated with boldface type.
doi:10.1371/journal.pone.0016359.t001

Figure 3. Solid line shows a the T2 spectrum from a typical bone sample, and the dotted line shows the spectrum that results
following the complex average of two signals, with and without an adiabatic full passage magnetization preparation. The total
integrated signal from this long-T2 suppressed spectrum is 95% from signals with T2,1 ms, thereby demonstrating in principle a simple and practical
method for generating a MRI contrast dominated by SA+SB.
doi:10.1371/journal.pone.0016359.g003
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(Nashville, TN) supplied human femurs from 40 cadaveric donors

(26 male, 14 female, aged 21-105 years old, mean 6 standard

deviation: 67624 years) under instruction to not provide tissue

from donors who had tested positive for a blood borne pathogen

(e.g., HIV or Hepatitis C). One human cortical bone sample per

donor was extracted from the medial quadrant of the mid-shaft

and was machined to 706562 mm3 dimensions via end mill.

During dimensioning, care was taken to remove endosteal and

periosteal surfaces such that the final specimens were pure cortical

bone. From each milled sample, three specimens were extracted

for NMR, mCT, and mechanical testing (Fig. 4). Specimens were

stored in phosphate-buffered saline at 220uC then thawed at 4uC
for approximately 18 hours prior to NMR measurements. (No

more than three freeze-thaw cycles were involved for a given

specimen, and separate experiments found that up to six freeze-

thaw cycles had negligible impact on the NMR properties.) Final

specimen dimensions were measured with digital caliper for

volume determination.

NMR
From one of the three specimens per donor sample, 1H NMR

transverse relaxation (T2) characteristics were measured and

reduced to three independent signal components, which we have

recently identified as being primarily derived from collagen

methylene protons, collagen-bound water protons, and water

protons in pores [5]. All NMR measurements were performed in a

Varian/Magnex 4.7 T horizontal bore magnet with a Direct

Drive Receiver. An in-house loop-gap style RF coil with Teflon

structural support was used (similar to the coil described in [18]),

which provided 90u/180u RF pulses of <8 ms/16 ms duration and

contributed negligible background 1H signal (<1% of net HCB

signal).

Carr-Purcell-Meiboom-Gill (CPMG) measurements with a total

of 10000 echoes were collected at 100 ms echo spacing, which was

empirically determined to be a suitable minimum threshold for

both maximizing the range of T2 detection while minimizing spin-

locking effects. Echo magnitudes were fitted to a sum of 128

decaying exponential functions (with time constants log-spaced

between 20 ms and 10 sec) in a non-negative least-squares sense,

subject to a minimum curvature constraint, which produced a so-

called T2 spectrum [19]. In order to quantitatively compare the

absolute signal amplitudes of T2 components across days, a

reference sample with long T2 (<2 s) and known proton content

was included in each CPMG measurement. The presence of the

reference sample, together with the known specimen volumes,

enabled the calculation of proton concentrations in the bulk bone

specimens for each CPMG relaxation component by comparing

integrated areas of each T2 spectral component to the area of the

marker. As a simple demonstration of the potential for acquiring

signal from a specific T2 domain without the full CPMG

acquisition, from one bone specimen, an additional CPMG

measurement was acquired with a preceding a 10-ms duration,

3500 Hz bandwidth hyperbolic secant inversion pulse [20], so

chosen to selectively invert the long-T2
1H signal.

mCT
The second specimen from each donor sample (, volume of

40 mm3) was studied at high resolution (6 mm), with low noise

micro-CT (mCT) to quantify apparent volumetric bone mineral

density (avBMD) and intracortical porosity (for pores $6 mm in

diameter). Note that for a given specimen size avBMD is a

volumetric analog to areal BMD as measured by DXA, and

intracortical porosity at this resolution is not readily determined

from clinical radiographs or QCT including high-resolution

peripheral QCT scanners (which obtain resolutions of 80–

100 mm) [21]. The specimen was scanned by acquiring 1000

projections per 180u at 70 keV using a Scanco, model mCT-40.

From an hydroxyapatite (HA) phantom image (acquired weekly),

linear attenuation coefficients derived from the mCT images were

equated to volumetric bone mineral density (vBMD) in units of

mg-HA/cm3. Using the Scanco software, the outer perimeter of

the sample was defined to determine the total bone volume. The

avBMD was defined as the mean of vBMD for all voxels within the

total bone volume. The bone tissue volume was segmented from

air or soft tissue at a threshold of 800 mg-HA/cm3 to determine

the porosity ( = 1 minus bone tissue volume per total bone volume)

(Fig. 5).

Figure 4. From each cadaveric bone studied, one strip of
cortical bone was extracted, three separate pieces of which
were used for NMR, mCT, and mechanical testing.
doi:10.1371/journal.pone.0016359.g004

Figure 5. Axial mCT images are shown for cortical bone
specimens from a 48 y.o. male donor (left) and an 82 y.o.
male donor (right). For the 48 and 82 y.o. donors, respectively,
avBMD was 1222 and 1135 mg-HA/cm3, and porosity was 4% and
11.3%.
doi:10.1371/journal.pone.0016359.g005
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Mechanical
Finally, we subjected the third, parallelpiped specimen (nominal

dimensions of 2 mm65 mm640 mm) from each donor sample to

a three point bending test, and measured four mechanical

properties relevant to fracture risk in bone: yield stress, peak

stress, flexural modulus, and pre-yield or elastic toughness. A

material testing system (Dynamight 8841, Instron, Canton, OH)

recorded the force-displacement data (Fig. 6) from a 100 N load

cell and the linear variable differential transformer, respectively, at

50 Hz, as the hydrated bone was loaded to failure at 5 mm/min.

The span was 35 mm, and all tests were performed at room

temperature. Applying the flexure formula to the yield force, as

determined by the 0.2% offset, or to the peak force endured by the

bone specimen, and applying the deflection equation to the slope

of the linear section of the force-displacement curve provided the

material properties, yield stress, peak stress, and flexural modulus,

respectively [6]. Pre-yield or elastic toughness was the area under

the force-displacement curve from zero displacement to the yield

displacement divided by the cross-sectional area of the bone

sample to account for slight differences in specimen dimensions.
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