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Abstract

Queen fecundity is a critical issue for the health of honeybee (Apis mellifera L.) colonies, as she is the only reproductive
female in the colony and responsible for the constant renewal of the worker bee population. Any factor affecting the
queen’s fecundity will stagnate colony development, increasing its susceptibility to opportunistic pathogens. We discovered
a pathology affecting the ovaries, characterized by a yellow discoloration concentrated in the apex of the ovaries resulting
from degenerative lesions in the follicles. In extreme cases, marked by intense discoloration, the majority of the ovarioles
were affected and these cases were universally associated with egg-laying deficiencies in the queens. Microscopic
examination of the degenerated follicles showed extensive paracrystal lattices of 30 nm icosahedral viral particles. A cDNA
library from degenerated ovaries contained a high frequency of deformed wing virus (DWV) and Varroa destructor virus 1
(VDV-1) sequences, two common and closely related honeybee Iflaviruses. These could also be identified by in situ
hybridization in various parts of the ovary. A large-scale survey for 10 distinct honeybee viruses showed that DWV and VDV-
1 were by far the most prevalent honeybee viruses in queen populations, with distinctly higher prevalence in mated queens
(100% and 67%, respectively for DWV and VDV-1) than in virgin queens (37% and 0%, respectively). Since very high viral
titres could be recorded in the ovaries and abdomens of both functional and deficient queens, no significant correlation
could be made between viral titre and ovarian degeneration or egg-laying deficiency among the wider population of
queens. Although our data suggest that DWV and VDV-1 have a role in extreme cases of ovarian degeneration, infection of
the ovaries by these viruses does not necessarily result in ovarian degeneration, even at high titres, and additional factors
are likely to be involved in this pathology.
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reserves [8,9]. The honeybee polyphenism (the separation of
females into reproductive and non-reproductive castes) is deter-
mined by discrete changes during postembryonic development,

Introduction

The general decline in managed Apis mellifera L. colonies and

beekeepers in Europe and the USA, as well as some other regions
in the world, is a major challenge for ensuring adequate
pollination of crops and wild plants [1-5]. Among the numerous
possible causes involved in colony weakness and death, poor queen
quality is often reported by beekeepers as a principal contributing
factor [4]. This includes problems associated with low fecundity
and untimely requeening events [6,7].

For the honeybee (dpis mellifera L.), the queen is the sole
reproductive female of the colony, producing a large number of
sterile daughters (worker bees) who perform all the colony
maintenance tasks, principally brood care, colony defence,
construction and foraging. During the active season (spring to
autumn in temperate climates), the worker bee population is
constantly replaced, since the life span of the average adult bee is
only a few weeks. In contrast, during the inactive season (winter in
temperate climates), the queen reduces its egg-laying activity and
winter bees can survive for months on the stored colony food
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commencing with the differential feeding of female larvae [10].
Larvae destined to become queens are fed with protein-rich
glandular secretions (royal jelly) secreted by the nurse bees in much
greater amounts and for the entire duration of larval development,
while worker bee larvae receive this in much smaller amounts, and
for just a few days before switching to a blend of sugars and royal
jelly based diet [8]. The nutritional stimuli affect the TOR (target
of rapamycin) regulatory pathway [11] and trigger an endocrine
response manifested by an elevated juvenile hormone titre in
queen larvae, compared to worker bee larvae [12].

These changes result in a marked difference between the two
female castes in the number of ovarioles produced, which range
between 180 and 200 per ovary in queens and between 2 and 12
per ovary in worker bees [13]. It has been shown that the high
juvenile hormone titre in queen larvae prevents the induction of
programmed cell death in the ovarioles at the onset of
metamorphosis [12,14]. This means that the majority of ovarioles
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degenerate in worker bees, while in queens these all survive and
differentiate during development. Two regions can be distin-
guished in the ovariole: the upper filament and the germarium,
where the follicles initiate and differentiate into oocytes and nurse
cells, and the vitellarium, where the oocytes grow until they are
released into the oviducts. In the vitellarium, each oocyte is
associated to a group of sister cells whose function is to fill the
oocyte with food reserves which will be used by the future embryo
[15,16]. Once the oocyte development is completed, the nurse
cells degenerate. It is estimated that 3 to 5 follicles are produced
every day in each ovariole [17]. Besides its role as an egg-laying
machine, the queen releases different pheromone bouquets that
maintain the social cohesion of the colony [18].

Despite the possible relevance for colony collapse events, there
have been very few studies focusing on honeybee queen diseases. A
major contributor to our knowledge of queen pathologies was W.
Fyg who published in 1964 a report of his observations after he
dissected thousands of queens in Switzerland [19]. Since then, it
has been found that queens can be infected by several honeybee
pathogens, including Nosema sp. and viruses [20-22]. Recently it
has been shown that deformed wing virus (DWV), one of the most
prevalent viruses infecting bee colonies, can be sexually transmit-
ted by infected drones to the queen gonads and subsequently
transovarially by the queen to her eggs [23-25]. However, no
pathologies corresponding to such DWV infections in queens have
so far been reported.

Here we report for the first time a pathology where numerous
viral particles were found associated with degenerating ovariole
follicles, which in extreme cases was furthermore also associated
with severe fecundity problems of the affected queens. The only
virus sequences recovered in abundance from a ¢cDNA library of
such degenerated follicles were for DWV and the closely related
Varroa destructor virus 1 (VDV-1). In situ hybridization confirmed
DWYV and VDV-1 to be extensively distributed throughout the
ovarian tissues, and hence the most likely identity of the virus
particles in the degenerating follicles. However our data show that,
despite their association with this pathology, these two viruses
generally display a low virulence when infecting the queen
reproductive organs, with little effect on queen function or fitness
suggesting that other factors are most likely also involved in this
pathology.

Results

1. Design of the experiments

Two sets of experiments were conducted:

A: Survey of mated queens in France. We received a total
of 130 mated queens (dpis mellifera L.) from French beekeepers
between 2007 and 2009 (sampling A). The queens were either one,
two or three years old, with roughly equal numbers of each age
class. Most of the 1-year old queens were removed by beekeepers
because of queen fecundity problems and weak development of the
colony. The 2-year and 3-year old queens were generally removed
by beekeepers as part of a regular management plan, independent
of whether these displayed egg-laying deficiencies or not. Eighty
eight queens were dissected and examined for the presence of
internal pathologies. The tissues from all 130 queens were also
processed for RNA extraction, in order to quantify the amount of
deformed wing virus RNA using quantitative RT-qPCR. Among
these 130 samples, a subset of 30 queens was analysed for the
presence of 10 different bee viruses using classical qualitative RT-
PCR assays.

For comparison, a sample of 40 virgin queens, reared in
different apiaries in the South of France, were also assayed for
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these 10 bee viruses. Obviously, the egg-laying capacity of these
queens is unknown.

B: Impact of DWV and VDV-1 infections on the queen
fecundity. In this experiment, 59 2-year old mated queens were
collected from a single apiary located in the South of France in 2008
(sampling B). All these queens had high fitness and fecundity
characteristics and headed strong honey production colonies the
previous year. Upon dissection, the ovaries were carefully checked
for the presence of yellow discoloration symptoms. From this sample,
12 queens with yellowing ovaries and 12 queens with normal ovaries
were chosen for detailed analysis, and their ovaries and abdomen
were individually prepared for RNA extraction. We determined the
presence of the 10 different bee viruses in these samples using
qualitative RT-PCR (see above). Then, in order to look for possible
impact of viral infection on ovary function, we determined by R'T-
qPCR the amounts of DWV and VDV-1 genomic RNA as well as
the relative mRNA expression of two genes relevant to queen ovary
health and function (vitellogenin and the vitellogenin receptor [26]),
using P-actin as a ‘neutral’ internal reference gene for data
normalization [27], and compared the relative expression in the
ovaries with that for the corresponding abdomens.

2. Impaired queen egg-laying associated with
degenerating ovarioles

Of the 130 mated queens sent in by beekeepers (sampling A),
65% had egg-laying deficiencies according to the beckeepers’
observations. Although egg-laying deficiency was found in all age
classes, most of the 1-year old queens sent in by beekeepers had
egg-laying deficiency, while most of the 2-year and 3-year old
queens replaced on rotation were considered healthy (Table 1).
From the 130 queens received, a random subset of 88 queens was
chosen for dissection. About half of these (56%) displayed a
yellowish coloration in the apical part of their ovaries (Table 1,
Figure 1A and 1B). In most cases this coloration was limited to a
few ovarioles located in the periphery of the ovary. The presence
of yellow discoloration in itself was not significantly correlated with
either egg-laying troubles or with the age of the queen (Table 2).
However, when comparing young and older queens subclasses, the
presence of this coloration was found to be significantly related to
an impairment in egg-laying activity in queens older than two
years (Yates Corrected Chi-Square; P =0.009). Such a relationship
was not observed for younger mated queens (Yates Corrected Chi-
Square; P=10.262). However, the implication that the relationship
between ovary discoloration and egg-laying deficiency is also
dependent on the age of the queen has to be treated with caution,
since older queens were sampled by different criteria (natural
turnover) than the young queens (egg-laying defects). Furthermore,
there are many possible causes for low fecundity among young
queens, not all necessarily related to the discoloration observed

Table 1. Percentages of mated queens (sampling A) of
different ages displaying coloration on their ovaries (ovary
coloration) upon dissection or associated with egg-laying
troubles (fecundity troubles) according to beekeeper’'s
observations.

Queen age 1 year 2 years 3 years
Ovary coloration 42% (N=36) 69% (N=39) 54% (N=13)
Egg-laying deficiency ~ 89% (N =37) 62% (N =44) 8% (N=25)

N: number of samples analysed.
doi:10.1371/journal.pone.0016217.t001
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Figure 1. Histological analysis of the queen ovary. A and B: Stereomicroscopic observation of ovaries displaying yellowish colorations in the
ovarioles. C: Clumps in the terminal filament of ovarioles observed by phase contrast microscopy (Olympus MVX 10). D: Propidium iodide staining of
an ovariole showing nuclear condensation in the terminal filament (x600). E: general view of the apex of an ovary double stained with propidium
iodide (red) and DAPI (blue). F, G and H: Toluidin blue staining of 1 um thick cuttings from the germinal region of two ovaries. F and H: ovarioles
displaying degeneration process showing detail of the disorganization of follicles surrounded by several empty ovarioles; H: presence of crystalline
arrays in the peritoneal epithelium (arrow). G, normal ovary: detail of three follicles at different developmental stages. The nurse cells chamber and
the oocyte chamber differentiation appear on the follicle located on the right. fe: follicular epithelium; pe: periteoneal epithelium; bl: basal lamina.
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I-L: In situ hybridization assays performed from paraffin embedded tissues for the detection of DWV/VDV-1 RNA. | and J: staining performed from the
terminal filament region of an ovary using either antisense (I) or sense (J) probe. K and L: in situ analysis performed from the vitellarium showing
DWV/VDV-1 RNA staining in the periphery of an oocyte (Arrow) with the antisens probe (L); K: control sense probe. Slices were counterstained with

eosin Y.
doi:10.1371/journal.pone.0016217.g001

here. Nevertheless, the possibility of an age-dependent relationship
between ovarian discoloration and queen fecundity problems has
both practical and scientific value and should be investigated in
more detail.

Among the 88 mated queens dissected from sampling A, 10
queens had an especially high degree of ovary coloration, with the
majority of ovarioles displaying a vyellow coloration which
extended to the vitellarium part of the ovary (Figure 1B). These
queens were all associated with egg-laying deficiency and had
different ages (3 were less than 1 year old, 6 were 2 years old and 1
was 3 years old). In these queens, the ovaries were intensely
coloured and appeared flat and empty when deposited on a glass
slide (Figure 1A). In these, numerous masses of a coloured opaque
material could be observed in the germinal part of the ovarioles as
well as brownish colorations in some of the already formed oocytes
located downstream (Figure 1B and 1C). Numerous dead cells
were identified in these tissues by propidium iodide staining of
individual ovarioles (Figure 1D and 1E). Classical histological and
electron microscopy analysis revealed major lesions, characterized
by cellular disorganization in the follicles, increasing intercellular
spaces and the absence of the basal lamina in diseased tissues
(Figure 1F and 1H, and Figure 2B) compared to healthy tissues
(Figure 1G and Figure 2A). Four of these queens were also
included in the complete virus survey (Table 3).

3. Extensive viral paracrystalline arrays in degenerating
ovariole follicles

Histological analysis of the germinal region of the intensely
coloured ovaries revealed extensive paracrystalline lattices of viral
particles in the follicular cells, either in the cytoplasm or near the
cellular plasma membrane (Figure 2B, 2D and 2E). These viral
paracrystalline lattices were generally arrayed with membrane-like
complexes associated with myelin whorls, numerous lipid droplets
and vacuoles (Figure 2C). In parallel, many crystalline inclusions
could also often be observed in the peritoneal epithelium either by
optical or by electron microscopy (Figure 1H and Figure 2F).
However the crystal lattice of these latter inclusions was quite
different from viral paracrystals observed in follicular cells
(Figure 2E).

The location, shape and size of the virus particles, as well as
their arrangement in paracrystalline arrays, is typical for insect
picorna-like viruses, several of which infect honeybees. To

determine the identity of the viruses arrayed in the degenerated
ovaries we screened a cDNA library made from total RNA from
degenerated queen ovaries. Twenty plasmids with ¢cDNA inserts
larger than 2 kb were sequenced. Five of these contained viral
sequences, with three clones most closely related to VDV-1 (99%
nucleotide identity) and the other two most closely related to
DWYV (98% nucleotide identity). All fragments were located in the
non structural region of the DWV or VDV-1 genomes [28,29], z.e.
close to the poly-A tail that is naturally found at the 3’ end of the
genome of this group of viruses [30]. The other fifteen clones
contained Apis mellifera RNA sequences. This high frequency of
DWYV and VDV-1 sequences in the cDNA library suggests that
these are most likely the viruses seen in the paracrystalline arrays
in degenerated follicles.

This was partially confirmed by  situ hybridization studies,
which detected large amounts of DWV/VDV-1 RNA in the
germarium as well as in the outer envelope of some oocytes
(Figure 1I and 1L). No hybridization was observed with either the
sense or non sense control probes (Figure 1] and 1K respectively).
However due to the lack of resolution of this method, we could not
certify that the signal we obtained with the DWV/VDV-1 probe
matched precisely with the viral paracrystalline lattices observed in
follicles.

4. Prevalence of honeybee viruses in queens

In order to further identify the viruses detected in queen ovaries
by electron microscopy, we analysed a subset of the mated queen
samples we received from various places in France (sampling A) for
the presence or absence of 10 different honeybee viruses, using
PCR-based assays. These data are presented in Table 3, together
with relevant apicultural queen parameters. For comparison, we
also analyzed 40 virgin queens from several apiaries and 24
healthy mated queens, half with ovary coloration and half without,
collected in a single apiary in the South of France (sampling B;
Figure 3). Only DWV (37%), sacbrood virus (SBV) (5%) and black
queen cell virus (BOCV) (57%) were detected in the virgin queen
samples. By contrast, five viruses were identified in the mated
queens: DWV, SBV, BQCV, VDV-1 and Israeli acute paralysis
virus (IAPV), with 83% of queens infected by more than one virus.
However, the viruses were not equally distributed between the
samplings A and B. Although DWYV was detected in all the mated
queens we analyzed, highly distinct prevalence values were

Table 2. Records of the different statistical tests performed from four different crossed variables (sampling A).

Egg-laying deficiency DWV titre

Queen age Ovary coloration
Queen age
Ovary coloration Pearson X*=5.95
P=0.051
Egg-laying deficiency Pearson X°=49.97 Pearson X°=0.12
P<0.001 P=0.732
DWV titre Kruskal-Wallis: 6.39 Kruskal-Wallis: 5.09
P=0.094 P=0.165

Mann-Whitney U: 2.63
P=0.067

Data were considered as significant if P<<0.05.
doi:10.1371/journal.pone.0016217.t002
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Figure 2. Ultrastructural observations in the germarium. A: TEM analysis of a normal follicle showing nurse cells (nc), the thick basal lamina
(bl) and the peritoneal epithelium (pe). B: TEM analysis of an empty ovariole with presence of viral particles (vp) and cellular debris lined by the
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peritoneal enveloppe (pe). C and D: TEM analysis showing cellular degeneration of follicular cells with myelin whorls (mw), lipid droplets (Id), viral
particles (vp) and peritoneal envelope (pe). E: TEM observation of viral particles (vp) and the virogenic stroma (vs) near the plasma membrane (pm) of
a follicular cell. F: detail of a crystalline matrix in a peritoneal epithelial cell. Bars in electron micrographs represent 5 um, 3 um, 2 um, 2 pm, 250 nm
and 3 um in figures A, B, C, D, E and F, respectively.

doi:10.1371/journal.pone.0016217.g002

recorded for SBV (3% and 29% in samplings A and B queen age or the yellowing ovary symptoms, nor were there any
respectively); BQCV (63% and 4% in samplings A and B associations among the different pathogens (not shown).
respectively); VDV-1 (67% and 100% in sampling A and B

respectively) and IAPV (10% and 8% in samplings A and B 5. DWV titre in mated queen ovaries is unrelated to
respectively). Varroa destructor Macula-like virus (VAMLYV), acute queen age, ovarian degeneration or fecundity problems

bee paralysis virus (ABPV), chronic bee paralysis virus (CBPV), We used RT-qPCR to estimate the DWV titres in all the 130
slow bee paralysis virus (SBPV) and Kashmir bee virus (KBV) were mated queens analysed here and related these to their biological
not detected. We found no association between the qualitative and pathological data. For these analyses, the entire queen was
detection of any of these viruses and either impaired egg-laying, used. Although a very wide range of DWV titres was observed

Table 3. Presence or absence of 10 different bee viruses in a sample of 30 mated queens collected from different regions of France

(sampling A).

Sample Troubles Coloration Age Log10[DWV/bee] DWV VDV-1 BQCV IAPV SBV ABPV VdMLV CBPV KBV SBPV

1 no nd 3 2.9 + - - - - - - - - -

2 no nd 3 53 + - - - - - - - - -

3 no nd 2 9.7 + = = = = = = = =

4 no nd 3 53 + - - - - - -

5 no nd 3 55 + - - - - - - -

6 no nd 3 5.7 + - - - - - - - - -

7 no yes 3 6.8 + + + + - - - - - -

8 no yes 2 4.2 + - - - - - - - - -

9 no yes 2 6.7 + + + = - - - = = -

10 no yes 2 5.7 + + + - - - - - - -

11 no no 3 5.6 + + oy - - - - = = =

12 no no 1 10.6 + + - - - - - - - -

13 no no 1 104 + + ar = = = = = = =

14 no yes 2 6.8 + + - - - - - - -

15 no no 1 5.8 + + = = = = = = =

16 no yes 2 4.2 + + - - - - - - - -

17 yes nd 2 9.5 + = = = = = = = = =

18 yes no 1 6.1 + + + - - - - - - -

19 yes HIGH 1 8.9 + + = = = = = = = =

20 yes yes 1 9.6 + + + - - - - - - -

21 yes yes 1 49 + - + - - - - - - -

22 yes no 1 4.7 + + + - - - - - - -

23 yes HIGH 2 47 + + + = = = = = = =

24 yes HIGH 2 35 + + - - - - - - - -

25 yes yes 1 8.0 + + - - - - - - - -

26 yes yes 1 9.6 + - + - - - - - - -

27 yes no 1 3.0 + - + - - - - - - -

28 yes HIGH 1 8.6 + + - - - - - - -

29 yes no 2 9.0 + + - - - - - - -

30 yes yes 1 5.2 + - + - + - - - - -

% 100% 67%  63% 0% 3% 0% 0% 0% 0% 0%

The respective age, fitness status (association with egg-laying troubles) and DWV titres recorded in each queen is indicated, as well as the presence of yellow colorations

in the ovaries. nd: sample not dissected. HIGH: samples displaying a particular intense coloration in the ovary. ABPV: acute bee paralysis virus; VAMLV: Varroa destructor

macula-like virus; BQCV: black queen cell virus; CBPV: chronic bee paralysis virus; DWV: deformed wing virus; IAPV: israeli acute bee paralysis virus; KBV: Kashmir bee

virus; SBV: sacbrood virus; SBPV: slow paralysis virus; VDV-1: Varroa destructor virus-1.

doi:10.1371/journal.pone.0016217.t003
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Virus prevalence in queen honey bees

m Virgin
o Mated (A)

O Mated (B)

0%

ABPV VdMLV  BQCV  CBPV DWV IAPV

KBV

SBV SPV VDWA1

Figure 3. Detection of 10 bee viruses in virgin and mated queens. Mated queens were divided according to the 2 different samplings (A and
B). Sampling A: sample made of 130 mated queens received from beekeepers. Sampling B: sample of 24 mated two year old queens displaying a high

fitness. Virus abbreviations as in Table 3.
doi:10.1371/journal.pone.0016217.g003

among these queens, there was no significant difference in the
median DWV titre between queens of different age, between
queens with or without fecundity problems or between queens
with yellow coloration in their ovaries (Table 2 and Figure 4).

6. Pathogenicity of DWV and VDV-1 to honeybee queen
ovaries

In order to study more precisely the influence of DWV and
VDV-1 infections on queen physiology, we measured the
expression of two genes, the vitellogenin and the vitellogenin
receptor, that presumably could be affected by viral replication
and tissue destruction and whose down-regulation would have a
strong impact on queen fecundity. Because we could not link the
presence of colorations with DWYV titres nor with fertility problems
observed by beeckeepers in the 130 queens we first analysed, we

g 1012 ? ] |
-1
0 » =
O 101!] L *
2 I E i x g
8 o
< 108 -
> L
'3 108
% 104 -
L L L
Yes No Yes No
Egg laying Colorationin
troubles ovaries
(N=99) (N=88)

also analysed 24 two year-old mated queens that never displayed
any egg-laying defects and headed strong honey production
colonies the previous year (sampling B). The queens were dissected
and the ovaries and abdomens were processed separately for
pathological, viral and cellular genes (vitellogenin and vitellogenin
receptor) analyses. Half of these samples were chosen on the basis
of yellow coloration on the apical part of their ovaries while the
other half did not have such coloration. First we measured the
respective amounts of DWV and VDV-1 RNA by quantitative
RT-gPCR. Both viruses were detected in the abdomen of all these
queens, but of the corresponding ovary samples, 4 contained
neither DWV nor VDV-1, one contained only DWV, one only
VDV-1 and the remaining 18 contained both viruses. As observed
before, the virus titres varied considerably from one queen to
another, covering a 10° and 10° fold range for DWV and VDV-1,

'
" -]
<=1y  2Y 3y
L J
Y
Queen age
(N=95)

Figure 4. Distribution of DWV titres in queens samples (sampling A). Data are shown according to the presence of egg-laying troubles
detected by beekeepers, the presence of yellow coloration in the upper ovary detected upon dissection and the queen age (Y =year). DWV
quantitative values are indicated as equivalent genome copies deduced from a standard curve made of tenfold dilutions of a PCR fragment.

doi:10.1371/journal.pone.0016217.g004
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respectively (Figure 5). Significantly higher VdV-1 than DWV
titres were found in ovaries (P<<0.01). The maximum titres we
recorded in the ovaries of infected queens were about 10'? genome
equivalent copies per ovary for DWV and 10'? genome equivalent
copies for VDV-1. However our data showed a significant
difference between abdomen and ovaries for both the DWV and
VDV-1 titres (Mann-Whitney U test; P<0.001 and P<0.05,
respectively), and a strong correlation between abdomen and
ovary DWV titres (Pearson R =0.988, P<<0.001) but no such
correlation was found for the VDV-1 titres (Pearson R =0.293,
P=0.165) (see Figure S1). We found no correlation between the
DWV and VDV-1 titres in either the abdomen (Pearson
R=-0.093; P=0.665) or the ovaries (Pearson R=—0.118;
P=0.583).

The expression of the vitellogenin gene (Vg) was higher in the
abdomen than in the ovaries while the reverse was observed for
the vitellogenin receptor gene (Vg-R) (see Figure S2). However we
could not find any correlation between either the DWV or VDV-1
titres and the expression of either of these genes in the ovaries
(Vitellogenin vs DWV and VDV-1: Pearson R=—0.017 and
—0.210, respectively; Vitellogenin receptor vs DWV and VDV-1:
Pearson R=0.195 and —0.286, respectively) or in abdomen
(Vitellogenin vs DWV and VDV-1: Pearson R=—0.101 and
—0.220, respectively; Vitellogenin receptor vs DWV and VDV-1:
Pearson R=—0.121 and —0.077, respectively).

Discussion

The constant renewal of Apis mellifera worker bees is a
prerequisite for maintaining the bee population throughout the
year, and a strong, numerous adult bee population is essential for
colony function, health and survival. Without an adequate adult
bee population, essential colony tasks such as brood care,
thermoregulation, defence and foraging are neglected. This invites
the replication and spread of opportunistic pathogens in the
colony, affecting brood or adults. The queen health and fecundity
is therefore an important factor for colony health and survival,
managed by natural colonies through supersedure of deficient
queens and by beckeepers through regular queen replacement.
Here we investigated the relationships between viral infections and

DWV
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a newly discovered clinical pathology of the ovaries, and assess the
extent to which these affect queen health and function.

Presence of viruses in queen ovaries associated to follicle

degeneration

We report a new pathological condition of honeybee queens,
affecting the germinal region of the ovarioles where follicles are
differentiating. This condition consists of extensive lesions that
appear at dissection level as masses of yellowish material in the
germinal part of the ovaries. At microscopic level these lesions
were found associated with large numbers of empty ovarioles.
Electron microscopy studies revealed numerous 30 nm icosahedral
viral particles in the germarium region of ovaries that were
particularly severely affected by these symptoms. These viral
particles were often assembled in paracrystalline arrays and
accompanied by critical cellular disorganization symptoms, such
as membrane-like complexes and myelin whorls which are typical
of viral infections [31]. These paracrystals were sometimes so
abundant that they could be distinguished on 1 pm sections
observed under light microscopy. Molecular analyses of affected
ovaries suggest that the viruses in these paracrystals are most likely
deformed wing virus (DWV) and Varroa destructor virus-1 (VDV-1),
two closely related, widespread and highly abundant honeybee
viruses. The viral paracrystals were universally associated with the
destruction of the basal lamina of the follicles but the peritoneal
epithelium still remained remarkably intact. Other crystal
formations that were also occasionally observed in the peritoneal
epithelial cells are most likely due to protein accumulation from
either bee or viral origin although we could not identify any
associated viral particles in this tissue. Taken together, these
observations suggest a resorption of the follicular cells, possibly
induced by viral replication and particle accumulation. Pro-
grammed cell death via apoptosis or autophagy is an important
mechanism for organ and tissue development and for the
maintenance of tissue homeostasis and immunity, specially against
viral infections [32,33]. In Apis mellifera queen, this process was
previously demonstrated in ovaries as a result of the hormonal
imbalances that regulate caste differentiation [12]. In mated
honeybee queens, cell death in the ovaries always occurs as a
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Figure 5. Distribution of DWV and VDV-1 loads in abdomen and ovaries of 24 queens samples (sampling B). DWV and VDV-1
quantitative values are indicated as equivalent genome copies deduced from standard curves made of tenfold dilutions of PCR fragments.

doi:10.1371/journal.pone.0016217.g005
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physiological consequence of oocyte maturation and ovulation;
once the oocyte reaches its full maturation, the nurse cell chamber
degenerate through an autophagic process. Pycnotic nuclei have
also been observed in the germarium of virgin queen ovaries as
well as in ovaries of workers kept in the presence of the queen,
suggesting that apoptosis mechanism plays a major role in
controlling follicle differentiation [34]. In our study, such cellular
death patterns were evidenced by propidium iodide staining, both
in the terminal filament and in the germinal part of the ovary
(Figure 1D and 1E) but, according to their large distribution in
tissues, may rather result from a pathological problem. Pro-
grammed cellular death seems also to be involved in oocyte
resorption when environmental conditions are limiting the egg
production of the queens [35]. However, the samples examined
here were collected in spring during the warm season and
consequently should not normally correspond to such environ-
mentally induced oocyte resorption. These observations suggest
that other factors could have triggered the follicle degeneration.
Cases of ovarian atrophy corresponding to a rapid disintegration
of the content of ovarioles and leading to the complete shrivelling
of the ovary was also described by Fyg [19]. However these signs
were always found associated with hypertrophy of the fat body
with presence of a yellowish viscous hemolymph that we did not
find here. Moreover Fyg never described yellowish coloration of
the apex of the ovary, suggesting a different pathology.

Cell death in the honeybee queen ovaries may also be induced
by different pathogens such as Nosema sp. infections which have
been reported to be able to induce ovarian resorption. However
these signs were found mostly initiated in the basal part of the
ovary, in contrast to the condition we described here [36,37].
Moreover we did not detect either Nosema apis or Nosema ceranae
using PCR in the ovaries of the 24 queens suggesting that this
pathogen 1s not directly involved in this pathology. During this
survey we observed in rare cases melanisation processes or
presence of nodules in the ovaries associated with fungal or
bacterial infections, such as those described by Fyg [19]. However
these cannot account for the degenerative symptoms we describe
here (see Figure S3). Conversely the presence of extensive viral
paracrystals in follicular cells is indicative of an intense viral
replication and raises the question whether viral infections could
also trigger such an autophagic process. Viral invasion of the
terminal filament or the upper germarium where follicles
progressively differentiate from stem cells can account for the
ability of viruses to be transmitted vertically, as has been shown for
a number of honeybee viruses, including DWV [23,38-40].
Nevertheless very few viral particles should be involved in this
process to avoid host responses such as apoptosis and the intense
viral replication that we observed here is presumably not
compatible with a regular vertical transmission pattern of viruses.

Virus infections in queens

Although there are many viruses that can infect honeybees
[20,41], many were not detected in our queen samples. Here, the
queens were found to be infected by DWV, VDV-1, BQCV,
IAPV, and SBV, while the samples were negative for CBPV,
ABPV, SPV, KBV and VAMLV. A similar virus survey performed
in the USA from 30 mated queens collected in the same apiary
showed the presence of DWV, BQCV, SBV, CBPV and KBV, but
not ABPV [39]. Both surveys had a high incidence of co-infection
(83% in our samples and 93% in USA), with DWV (100% in both
surveys) and BQCV (63% in this survey and 86% in the USA) as
the most prevalent viruses. Earlier studies from Australia using an
immunological detection method also showed that BQCV was
highly prevalent in queens [42]. Here we found however that
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BQCYV prevalence was very variable according to the origin of the
samples. Such apiary-specific differences were also observed for
SBV. The prevalence of SBV in our study (3% and 29% in
sampling A and B, respectively) was considerably lower than for
the USA survey, where 62% of queen samples were found SBV
positive [39]. Such large differences in virus prevalence according
to geographic origin are also common for worker bee populations.
For example, SBV prevalence was very low in Hungarian and
United Kingdom surveys, relatively high in Austria and very high
in Denmark and in France (2%, 1.4%, 49%, 81% and 86%,
respectively). Likewise, BQCV prevalence in these surveys was
54%, 1.4%, 30%, 1% and 86%, respectively [43-46]. These
contrasting results might be related to different local environmen-
tal conditions that may affect the transmission and epidemiology of
the virus, to genetic polymorphism in viral genomes or to different
host susceptibilities. From our data, the virus frequencies could not
be associated with any deficiency in egg-laying or with the
presence of primary pathology describe here, the degeneration of
the ovarioles.

DWYV and its close relative VDV-1 were found in a majority of
the queens we examined, and at a range of titres. The result for
DWY concurs with previous observations [24,40,47] and suggests
that DWV at least is a common infection of honeybee queens. In
our studies, VDV-1 was not detected in virgin queens. However,
VDV-1 naturally has a far sparser prevalence and distribution
than DWV in French worker bee populations, and is naturally
more prevalent in Varroa mite populations than in the
corresponding honeybee populations ([48]; de Miranda, Tour-
naire, Paxton and Gauthier, unpublished). We found large
differences in DWV titres between mated queens of the same
age suggesting that some individuals may be more permissive to
DWYV infection. Partly as a result of this large internal variation,
no significant difference in the median DWV titre could be
observed between queens of different ages. A more detailed
analysis of 24 apparently healthy and fully functional queens of the
same age showed a strong correlation between DWV titres in
abdomen and ovaries but an absence of a similar correlation for
VDV-1. The reason for this discrepancy is unknown. The virus
titres were higher in abdomen than in the ovaries, suggesting that
other tissues such as fat body and gut where this virus was
previously identified by @ siu hybridization [24] may be the
primary tissues for DWV replication. The observation that DWV
actively replicates in multiple tissues involved in egg production,
such as the fat body and the ovaries, suggest that DWV could have
a major impact on queen fertility. To address this question, we first
tried to correlate the DWYV titres recorded from a large sampling
(130 mated queens) with the queen health status reported by each
corresponding beekeeper. No statistically significant correlation
could be found between DWYV titres and the queen egg-laying
performance in these samples, nor with the presence of coloration
on the ovaries. We therefore analysed 24 healthy queens of the
same age in order to estimate the impact of DWV and VDV-1
infections on the yolk protein precursor (vitellogenin) gene
expression as well as the expression of the vitellogenin receptor
gene. In honeybees, in addition to being the primary egg yolk
precursor, vitellogenin also serve as a precursor of larval food
proteins secreted by the hypopharyngeal glands of nurses [49].
Moreover, this protein is involved in immunity and ageing through
hormonal regulatory pathways [50] and is therefore a common
molecular marker for the overall health of individual bees. As
expected, we found a higher expression of vitellogenin in abdomen
than in ovaries while the reverse was observed for the vitellogenin
receptor. Vitellogenin is produced mainly in the fat body cells and
transported to the ovaries where it is absorbed and incorporated in
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the oocyte until its complete development. However we found no
significant relationship between the expression of these genes and
the DWV or VDV-1 titres in the different queens, or indeed with
the presence of yellow coloration of the ovaries, related to ovariole
degeneration. Our data therefore show that DWV and VDV-1 are
at best faintly pathogenic for queen honeybees, in the tissues and
at the titres encountered in these studies. Their clear association
with the degeneration of individual follicles, resulting in the clinical
yellowing pathology first described, only seems to affect the
functioning of the ovaries as a whole in extreme cases, marked by
deeply coloured ovaries. Cases of mild yellowing and follicular
degeneration apparently can be compensated for at functional
level by the remaining, healthy follicles. This limited pathogenicity
of DWV and VDV-1 contrasts with the strong association of
DWYV incidence in worker bees with winter mortalities of colonies
[51-53] and the induction of the typical deformed wing
pathologies and drastically reduced life expectancy in workers
bees [30] as well as sublethal behavioural defects though infection
of the brain tissues [54-56]. However, in worker bees, most of
these symptoms are directly related to quantitative transmission of
DWV or VDV-1 by Varroa destructor during the pupal phase
[40,57], while the oral and vertical transmission routes, or even
Varroa-mediated transmission between adult bees are again
minimally pathogenic [30]. One explanation for these discrepan-
cies in pathogenicity may be that transmission by Varroa
introduces DWV to certain critical tissues at a particularly
sensitive stage of pupal metamorphosis, with the combination of
timing, tissue and titre resulting in a lethal pathology, while the
reduced titres and tissue restrictions of the other transmission
routes result in morphologically and functionally normal bees [58].

The low pathogenicity and high prevalence of DWV and VDV-
1 in the host population is a common feature of viruses with long-
standing associations with their hosts, particularly when main-
tained through parent-to-offspring  (vertical) transmission
[23,24,40] and is also found for harmless viruses of other insect
species, such as for instance the Sigma virus of drosophila [59], the
small RNA virus discovered in Solenopsis invicta [60] or the large
DNA virus infecting the salivary glands of Glossinia pallidipes [61].

Conclusions

Here we present a newly discovered pathological condition of
honeybee queens that in extreme cases can lead to complete ovary
impairment. These lesions were found associated with virus
particles in massive paracrystalline arrays. Molecular and u situ
hybridization studies identified these viruses to be most likely
DWYV and/or VDV-1. However, a large survey of queens showed
that in general, DWV and VDV-1 infections had little impact on
the health and functional status of the queen, at least in the tissues
and at the titres encountered here, suggesting that in most cases
the pathology can be compensated for at functional level. This
suggests that the accumulation of viral particles in queen ovaries
above a certain threshold may lead to the pathological symptoms
we observed in some cases, although other factors could also be
involved in this phenomenon, including as yet undescribed (viral)
pathogens or the accumulation of chemical toxins through the
large quantities of food ingested by the queen during its life and
the presence of many chemicals residues in pollen [62,63]. These
additional possibilities require further investigation.

Materials and Methods

1. Sample collection
Virgin and mated honeybee queens were received alive from
different beekeepers and were immediately dissected in cold PBS
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buffer under a stereomicroscope or stored at —20°C before RNA
extraction.

2. ¢cDNA synthesis, PCR and gPCR for the detection and
quantification of pathogens in honeybee queens

Total RNA was extracted from individual queens, their ovaries
or their abdomens using the Macherey Nagel Nucleospin RNA 1T1®
kit, according to manufacturer’s instructions. Briefly, each sample
was crushed in a 2 ml Eppendorf tube with a 5 mm metal bead in
500 ul denaturing buffer (RA1 from the Nucleospin RNA II®
Macherey Nagel Kit) and homogenized for 30 sec with a Tissue
Lyzer® apparatus (Qiagen) at maximum speed. Fifty microliters of
the homogenate was used for total RNA extraction. About 2 ug of
total RNA was retro-transcribed at 25°C for 10 minutes and at
50°C. for one hour with the Thermoscript® RT-PCR kit
(Invitrogen) using random primers as anchor. A master mix was
used for cDNA synthesis. The cDNA was diluted 10-fold in water
and stored at —20°C for future qualitative or quantitative PCR
assays. An exogenous internal reference RNA consisting of 5x 10’
copies of Tobacco Mosaic Virus (I'MV) was introduced into each
sample during total RNA preparation. This allowed us to monitor
the efficiency of RNA purification and cDNA synthesis steps, and
to reveal the presence of PCR inhibitors in the samples [64].

The qualitative PCR assays for DWV, BQCV, CBPV, ABPV,
KBV and SBV were as described previously [46,64] except that
the Eurogentec Gold Taq polymerase and buffer were used. The
same reagents, protocols and reaction conditions were used in
combination with four newly designed primer pairs for the
detection and quantification of four more viruses in the samples:
SBPV [65], VDV-1 [29], IAPV [66] and a newly discovered virus
(VAMLV; de Miranda, Tournaire, Haddad and Gauthier,
unpublished). Assays for Nosema apis and Nosema ceranae detection
were performed as described previously [67].

The quantitative qPCR assays for cDNAs corresponding to the
DWYV and VDV-1 genomic RNA, and the mRNAs of vitellogenin,
vitellogenin receptor [26], and B-actin [27] used the Eurogentec
MasterMix Plus for SYBR-Green®, the Applied Biosystems ABI-
PRISM 7000 thermocycler and the reaction protocols and
conditions described previously [64]. The primer sequences are
listed in Table S1, together with the gPCR performance indicators,
when appropriate. The qPCR data were converted to the initial
amount of each target in the reaction (Np) using the LinReg software
[68]. The LinReg software calculates the reaction efficiencies (E) for
each individual sample and the means of these reaction efficiencies
(E) for the different targets, as well as other qPCR performance
indicators, are shown in Table S1. The DWV and VDV-1 titres
were deduced from Ny values calculated from standard curves made
of serial dilution series of known amounts of the amplicons [64]. In
the analysis of the 24 high-fecundity queens from sampling B (12
with yellow ovaries; 12 with normal ovaries), the DWV and VDV-1
titres were normalized using the amount of B-actin mRNA in each
sample as a marker for the quantity and quality of RNA, and are
presented as equivalent viral copies per bee or tissue. The amount of
vitellogenin and vitellogenin receptor mRNA in each sample was
similarly normalized and is expressed relative to the corresponding
amount of B-actin mRNA in the sample.

3. Histological analysis of honeybee queen tissues

a. Ultrastructural analysis of ovarian follicles. For
transmission electron microscopy (TEM) studies, the germar-
ium part of the ovary was dissected with fine scissors,
incubated in 2% glutaraldehyde in a 0.1 M cacodylate buffer
(pH 7.4) for 2 hours at 4°C and postfixed in 2% osmium
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tetroxide for 1 hr at room temperature. The samples were
then dehydrated in increasing concentration ethanol baths
and embedded in Epon resin for 24 hours. The Epon resin
was polymerized for 2 days at 60°C. 0.1 um cuttings were
taken with an ultramicrotome and fixed on copper grids (75—
100 mesh). Finally the slices were contrasted with uranyl
acetate and lead citrate.

Light microscopy observations. For light microscopy
studies, the upper part of the ovaries was fixed in 4%
paraformaldehyde in phosphate-buffered saline (PBS) for 24 h
at 4°C immediately after dissection. The samples were then
dehydrated in increasing ethanol concentration baths, with a
final incubation for 24 h in 100% ethanol, before replacing
the ethanol with the hydrophilic resin Unicryl (SPI supplies)
for 8 hrs at room temperature. The resulting resin blocks were
polymerized at 4°C for 3 days, cut in 1 um slices with a
ultramicrotome and stained with 1% Toluidine blue solution.

c. In situ detection of DWV RNA in queen ovaries. The
wm situ localization of DWV in the ovaries was done as
described previously [24]. Briefly, the ovaries were fixed and
dehydrated as for light microscopy, embedded in paraffin
blocks and cut in 10 pwm slices with a Minot microtome. After
rehydration the tissue sections were challenged with the
following oligonucleotide probes at a concentration of
200 pmol/ml:

— DWVantisense:  5'-*"" TACTGTCGAAACGGTATGGTAA-
ACTGTAC*™-Digoxygenin

~ DWVsense: 5'-***GTACAGTTTACCATACCGTTTCGA-
CAQTA891 ’-Digoxygenin

— DWVnonsense:  5'-CATGTCAAATGGTATGGCAAAGCTG-
TCAT-Digoxygenin

The underlined nucleotides in the sense and antisense probes
refer to those positions where DWV is different from the closely
related VDV-1. These probes hybridize to the negative and
positive strand RNA respectively of the DWV/VDV-1 RNA
polymerase RNA dependent domain, nucleotides 8889-8917,
while the nonsense probe has a similar composition but no affinity
to any part of the DWV/VDV-1 genome. The antisense probe
was used to detect DWV genomic RNA while the sense and
nonsense probes were used in parallel as controls. The hybridized
probes were detected by incubating the sections with alkaline
phosphatase-conjugated anti-digoxygenin antibody (Roche) and
were developed with nitroblue tetrazolium and 5-bromo 4-chloro
3-indolyl phosphate.

d. Propidium iodide staining. Individual ovarioles were
separated in cold PBS and incubated in PBS supplemented
with 1 ug/ml of propidium iodide for 15 min at room
temperature. The ovarioles were then washed three times in
PBS and observed under a fluorescent microscope (Zeiss
Axiovert 200M). Alternatively, propidium iodide stained
ovaries were embedded in paraffin blocks and cut in 10 pm
slices with a Minot microtome. After rehydration the tissue
sections were counterstained with DAPI (4',6-diamidino-2-
phenylindole), a fluorescent stain that binds strongly to DNA.

4. Cloning and sequencing of viral genomic sequences
from queen ovaries

For the ¢cDNA cloning of viral sequences, 12 mated queen
ovaries displaying coloration were homogenised in 20 ml of a
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10 mM Tris—400 mM NaCl buffer and clarified at 5000 g for
15 min. The supernatant was then ultracentrifuged in a TLA 110
rotor (Beckman) for 1 hr at 110,000 g to concentrate the virions,
together with other subcellular particles. The pellet was directly
resuspended in Trizol (InVitrogen) and the RNA was extracted
according to manufacturer’s instructions. About 4 pg of total RNA
was used for reverse transcription with the Superscript-III ™
Reverse Transcriptase (InVitrogen), using anchored oligo-dT as the
c¢DNA primer. The cDNA/RNA heteroduplex was digested with
RNAse H and converted to double strand DNA, using the partially
digested RNA fragments of the heteroduplex as primers for second
strand ¢cDNA synthesis [69]. The ds ¢cDNA fragments were 5'-
dephosphorylated using shrimp alkaline phosphatase (Promega), a
specific requirement for topoisomerase-based ligation into pCR®II-
Blunt-TOPO® (InVitrogen). The ligation mixture was transformed
into TOP10 Electrocomp ™ E. coli cells (InVitrogen) plated on LB
agar plates supplemented with 50 pg/ml of kanamycin before
screening the colonies for the presence of recombinant plasmids.

5. Statistics

When the assumptions of normality for ANOVA were not fulfilled
(Shapiro-Wilk and Anderson Darling test) analysis were done using
non-parametric statistics. The Kruskal-Wallis test was used to test
equality of medians among groups. If the population medians were
not equal, a post-hoc Mann-Whitney U-test was applied. Correla-
tions between the data sets were analysed using Pearson correlation.
P-values lower than 0.05 were considered significant. We also
performed Chi-square analysis with Pearson Chi-square or Yates
correction to compare discontinuous data, eg. the presence or
absence of egg-laying problems, ovary coloration or the different bee
viruses (Table 3). All statistical analyses were performed using Systat
(Version 12, Systat Software Inc., San Jose, California, USA).

Supporting Information

Table S1 List of the primers used in this study for classical or
quantitative PCR assays. Size: amplicon size. Molarity: primer
molarity used in PCR assays. E: qPCR efficiency calculated with
the LinReg analysis method. Tm: melting temperature of the
amplicon. n.a.: not applicable.

(PDF)

Figure S1 Correlation between DWYV equivalent genome copies
recorded from abdomen and from ovaries in 24 queens displaying
a high fitness.

(TIF)

Figure 82 Expression levels of vitellogenin (Vg) and vitellogenin
receptor (Vg-R) mRNA in abdomen and in ovaries of 24 mated
queen samples (sampling B). Data were normalized using the B-
actin gene.

(TIF)

Figure 83 Additional anomalies and pathologies observed
during our queen survey. A, presence of bacterial nodules at the
basis of the ovary (arrow). B, melanisation of part of the ovarioles.
C, hypoplasia of an ovary. D, presence of fungal infection at the
basis of the ovaries. E, sperm clots in the oviducts.

(TIF)
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