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Abstract

We have recently developed image processing techniques for measuring the cortical thicknesses of skeletal structures in
vivo, with resolution surpassing that of the underlying computed tomography system. The resulting thickness maps can be
analysed across cohorts by statistical parametric mapping. Applying these methods to the proximal femurs of osteoporotic
women, we discover targeted and apparently synergistic effects of pharmaceutical osteoporosis therapy and habitual
mechanical load in enhancing bone thickness.
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Introduction

The femur, with its complex load bearing properties and

eventual fragility, has been a key anatomical site of study for

biologists, engineers and anthropologists across several centuries

[1,2,3]. Indeed, the seminal concept of ‘functional adaptation’,

whereby deformation is sensed by bone cells and transduced into

biological signals to optimise skeletal architecture, was based on

observations of proximal femoral structure [1,3,4]. This idea has

long been used to inform orthopaedic practice, and it is in this

tradition that we here address an open question in human bone

biology: where, precisely, is bone regenerated in response to

osteoporosis therapy? With annual hip fracture rates predicted to

exceed six million by 2050, and the distribution of cortical bone in

the proximal femur believed to be the key determinant of fracture

resistance [5,6], this question is of scientific, social and economic

importance. The established clinical intervention to stimulate new

bone formation is parathyroid hormone (PTH), administered by

daily subcutaneous injection [7]. Invasive animal studies point to a

synergistic effect of PTH and localised mechanical stress on bone

cells [8], but the more limited experimental techniques applicable

to living human beings have, to date, revealed only gross

differences in response between heavily loaded sites like the femur

and lightly loaded sites like the radius [7].

Further insight has been hampered by the limited resolution of

whole-body computed tomography (CT) systems and the per-

ceived futility of using such systems to pinpoint tiny changes in

cortical bone distribution. Now, however, a new CT image

processing technique [9] allows us to display cortical thickness as a

colour map over the bone surface (Fig. 1a), with several thousand

independent measurements across each proximal femur and

sufficient sensitivity to detect even small changes (,30 microns)

when expressed systematically by a suitably sized cohort. By making

reasonable assumptions, that the actual cortical density does not vary

dramatically for a given subject at a given time, and that the imaging

blur is roughly Gaussian in shape, thickness can be measured to

super-resolution accuracy, except at the femoral head where the

proximity of the acetabulum is problematic. The methodology has

been validated against gold standard thickness measurements

obtained from micro-CT scans of cadaveric femurs [9].

Methods

Here, we use this technique to map the small changes in cortical

bone distribution stimulated by pharmaceutical treatment for

osteoporosis. In one branch of the EUROFORS study [10], 69

women with severe osteoporosis were treated with recombinant

human PTH (hPTH-(1-34)) for 24 months, with quantitative CT

scans at baseline and 24 months. All data from this cohort was

analysed in the present study, with the exception of those femurs

compromised by metalwork and those where one or both of the

CT scans did not extend as far as the lesser trochanter. This

yielded 119 femurs from 65 women (mean age 67.566.8 years).

Participants were from twelve investigative centres in Germany

and Spain [11]. Institutional Review Board approval was obtained

from each of the clinical study sites, and written informed consent

for EUROFORS (ClinicalTrials.gov ID NCT00191425) and the

QCT sub-study were obtained from each participant. The present

analysis was approved by Cambridgeshire 4 research ethics

committee (LREC07/H0305/61).

Analysis of the 238 thickness maps followed established practice

within the neuroimaging community, who have pioneered

techniques for statistical inference from dense, spatially correlated

data. To account for variations in inter-subject morphology, each
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map was spatially realigned with a canonical femur surface using a

B-spline free-form deformation [12] calculated by the iterative

closest point registration algorithm [13]. The spatially normalized

maps were then smoothed with a 10 mm full-width-half-maximum

filter. Thickness changes were summarised for each subject by

subtracting the baseline maps from the 24-month maps and

averaging the left and right responses where both were available.

This resulted in 65 summarised response maps, 54 derived from

averaged left-right data and 11 from single femurs. Formal

inference was accomplished by statistical parametric mapping

[14], as implemented in the SurfStat package [15]. The model

fitted to the summarised data comprised a constant term and a

random-effect term for left-right averaging: this allows for unequal

variances between the averaged and unaveraged data. T-statistics

were calculated to test the significance of the constant term,

corresponding to positive thickness change. Random field theory

then furnished P-values, corrected for multiple comparisons to

control the overall image-wise chance of false positives.

Results and Discussion

Baseline measurements reveal the anatomical distribution of

cortical thickness seen in advanced osteoporosis (Fig. 2a). The

nonuniformly thin cortex is of clinical relevance, since fractures

commonly traverse the neck (Fig. 1c) or split the trochanteric

region during sideways falls (Fig. 1d) [5]. The variation in thickness

partly reflects femoral growth, with thick bone of the inferomedial

aspect preserved into late adulthood by lifelong functional

adaptation to stress, and a thin cortex apparent superiorly. In

other areas, such as the trochanters and their connecting crest,

thin cortices overlie predominantly trabecular bone near bony sites

of muscle and tendon insertion (entheses). Following hPTH-(1-34)

treatment, and in striking contrast to the expected ageing effects

[5], the percentage change map (Fig. 2b) shows marked cortical

thickening. Figure 2c shows corrected P-maps for positive

thickness change, based on the magnitude of peaks (sensitive to

focal effects) and on the extent of connected clusters exceeding an

Figure 1. Visualising the femur in health and trauma. (a) A cortical thickness map of a healthy adult male femur with thick (blue/green) cortex
at sites of high load during walking, (b) cortical and trabecular bone. Typical fractures in the (c) femoral neck and (d) inter-trochanteric regions.
doi:10.1371/journal.pone.0016190.g001
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uncorrected P-value threshold of 0.001 (sensitive to distributed

effects).

New bone is targeted to regions that predictably encounter high

stress during normal locomotion, namely the infero-medial

junction of the cortex with the load-bearing calcar femorale, and

the head-neck junction of the superior cortex. Both these sites are

commonly involved in fracture. No regions of statistically

significant thinning are apparent. Foci of new bone are also

evident at the entheses of powerful locomotion muscles; on the

greater and lesser trochanters at the attachment sites of the gluteus

medius and psoas, and at the inter-trochanteric insertion of the

quadratus femoris.

Parathyroid hormone is an established clinical intervention to

stimulate new bone formation in human osteoporosis. Previous

studies have shown that hPTH-(1-34) treatment in postmenopaus-

al women with osteoporosis increases cortical thickness at various

skeletal sites, but this is the first to demonstrate the precise regional

effects at one of the key sites of fragility fracture, the human hip.

hPTH-(1-34) is also known to increase porosity (at least early in

treatment) and reduce the mineral density, since new bone

stimulated by the drug is relatively under-mineralised compared to

older bone [16]. The cortical thickness measurement is robust to

any consequent changes to the average cortical density, since the

average density value is estimated independently in each data set.

It is equally robust to any regional changes in the quality of the CT

data, since the extent of the imaging blur is estimated at every

measurement location.

Intriguingly, both load and PTH act rapidly on the entombed

’load sensing’ osteocytes to profoundly reduce secretion of a key

molecular inhibitor of bone formation, sclerostin [17]. Released

from inhibition, the osteoblasts (surface targets of sclerostin) can

then secrete new bone matrix. Fig. 2b suggests a possible

synergistic effect of habitual load and PTH in the human proximal

femur, since peak effects are seen at sites that are highly stressed by

Figure 2. Cortical thickness maps showing severe osteoporosis and the increase in thickness following hPTH-(1-34) treatment. (a)
Medial, superior and posterior views of the average pre-treatment cortical thickness map in advanced osteoporosis showing remnants of thicker,
highly loaded bone (blue/green) at A) the inferomedial cortex and B) the calcar femorale regions. Elsewhere there is thin, sub-millimetre cortex (pink/
red) at key fracture sites including C) the subcapital superior neck region. Also labelled are the insertion sites of key muscles of locomotion; D) gluteus
medius, E) psoas major and F) quadratus femoris (on the inter-trochanteric crest). (b) Post-treatment percentage change and (c) statistical significance
maps which together indicate regeneration of bone at A), B), C), D), E) and F).
doi:10.1371/journal.pone.0016190.g002
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walking. In the light of this, we ask whether hPTH-(1-34)

treatment for osteoporosis might be more effective if combined

with enhanced skeletal loading. Cortical thickness mapping is the

ideal tool to answer this and other open questions in bone biology.
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