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Abstract

Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific
Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two
seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin
(ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank
(upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how
substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision
guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both
seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and
cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic
communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than
other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between
the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their
substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting
faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with
cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant
positive relation with fine sediments only.
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Introduction

The exploration of the fauna associated with seamounts,

underwater mountains of mostly volcanic origin, began over 50

years ago, after their initial discovery in the 1940s [1]. Originally,

only structures of at least 1,000 m in height were included in the

term seamount, but today the smallest topographic features

termed seamount are merely 50–100 m in height [2]. Some

studies have suggested that seamounts evolutionarily and ecolog-

ically ‘function as island groups’ [3], and potentially show a high

degree of endemism. However, although different seamounts have

been shown to harbor different and species rich faunas, observed

endemism may be an artifact of undersampling [4], [5]. Few large

studies that compare data from a wide range of habitats on

seamounts and non-seamount areas have been conducted so far.

For brittle stars, an abundant benthic group, O’Hara [6] found no

difference in species richness and rates of endemism between

seamounts and non-seamount areas in the Pacific Ocean. He

found that, while seamounts vary in their faunal composition, in

species richness and endemism, probably due to differences in

their environment, as well as their geological and biological

history, the same is true for the continental slope. The marine

fauna in general is extremely undersampled, with an estimated 70–

80% of marine species remaining to be discovered [7]. Thus,

claims of endemism should be made with great caution, but the

species rich environments on seamounts offer an opportunity to

sample and study rare species with wide distributions. Since

seamount summits are found at shallower depths than the

surrounding bathyal sea floor, they are more accessible for

research.

Seamounts function as hotspots for pelagic organisms, mainly

fish, which has lead to overexploitation [8]. The benthic

communities, which attract these fish, and the interactions

between pelagic and benthic organisms, are little understood. An

increase in knowledge on seamount ecology is thus vital for the

management of a sustainable fishery and the protection of these

vulnerable habitats.

Due to volcanic and hydrothermal processes, seamounts build

up metal deposits that are potentially interesting for high-

technology industries [9]. Large scale mining on seamounts may

have severe consequences for the ecology of a whole region.

Documentation of the faunal communities living on these
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seamounts, and the study of the biological processes controlling

them are therefore essential for conservation.

Biological data are available for a small percentage of the

,12,000 known seamounts [2], mainly from the Atlantic and

Pacific Oceans. Of the Indian Ocean seamounts, 15 have been

explored biologically, but only four are well documented with

regard to benthic biology, from the others single records are known

[10]. Particularly the seamounts of the Andaman Sea have not been

explored before and are one of the geographic gaps that need to be

filled, as recommended by Clark et al. [5]. In the present study we

aim to explore the megafaunal community structure of the

Andaman Sea seamounts using a quantitative approach.

Figure 1. Bathymetric map of the Andaman Back-arc Basin including Andaman Back-arc Spreading Centre (ABSC) and locations of
the underwater video transects (TVG). All the transects were located in the Back-arc Basin region only. The TVG-9 and TVG-10 were located on
the cratered seamount (CSM) off Nicobar Island, TVG-11 and TVG-12 were located on the back-arc spreading ridge segments, while TVG-13 and TVG-
14 were located on the rift valley of the basin floor and on the off-axial highs of the back-arc basin.
doi:10.1371/journal.pone.0016162.g001
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Seamounts differ widely in environmental conditions and

habitat properties, which is reflected in the observed differences

in species richness and diversity [4], [5], [6], [11]. Among the

important environmental factors, temperature is correlated to

species richness, but to a lesser extent also depth, current velocity

and other factors may affect the fauna on seamounts [11].

McClain [4] suggested that hard substrate seamounts have

received considerably more attention than soft bottom ones,

which may result in biased datasets. It is well known that hard

bottoms promote the development of communities associated with

sessile organisms, such as corals and sponges, whereas soft bottoms

are typically inhabited by more or less motile fauna. Based on

geomorphological features and geology, we aim to investigate how

substratum types and shape affect the community structure within

and between the seamounts. We assumed that hard substratum

types such as boulders and cobbles will be species richer than fine

sediment types on Andaman seamounts along with the basin

region.

Materials and Methods

Study area
The volcanic-arc trench system of the Andaman Sea represents

a submarine extreme boundary of the Indian plate in the northern

Indian Ocean (Figure 1). The plate margins have several unique

geophysical provinces, which include the arc-volcanoes, sea-

mounts, deep sea valley, and the back-arc basin. The water depth

varies from a few hundreds of meters to more than 3000 m, thus

marking different ecological set-ups in the deep sea.

The Andaman Back-arc Basin (ABB) is an active marginal basin

in the northeastern Indian Ocean, marking the eastern boundary

of the Indian plate, sub-ducting beneath the Southeast Asian plate.

Convergence of the plates leads to formation of several

geomorphological features, like the Andaman-Nicobar island-arc,

the Andaman back-arc spreading center, the seamount complex,

and the back-arc basin [12], [13] (Figure 1). Recently a submarine

volcano (crater seamount-CSM) with crater (160 m deep) on its

summit was discovered in the Nicobar Earthquake Swarm area

(07u559N, 94u029E) [14]. This seamount is conical in shape and

has a steep slope, similar to aerial stratovolcanoes in the Andaman-

Sumatra region. The SW-NE-trending, Andaman spreading

center is characterized by a well defined rift valley in the NE

part (maximum depth 3500 m) and is actively spreading at a

spreading rate of 38 mm/year, this features bisects the basin [12].

Two underwater video surveys and sampling (TVG-9 and TVG-

10) were carried out on the CSM off Nicobar Island. The flank of

the CSM was surveyed during TVG-9 (average depth 594 m),

while TVG-10 (average depth 434 m) was deployed inside the

summit crater to investigate the crater-floor. Another seamount

(SM2 at 10uN, 94uE, [12]), which is not a volcano but flat topped

and part of the arc-parallel seamounts chain in the Andaman Sea,

was explored with two more TVG operations and samplings.

TVG-12 was deployed on the summit (average depth 1336 m) of

the SM2, while TVG-11 (average depth 1357 m) was operated on

the flank of this seamount. TVG-13 was deployed along the rift

valley floor (average depth 2897 m) while TVG-14 was on the off-

axial high (average depth 1791 m) of the Andaman spreading

center.

Data collection
Collection of megafaunal (video) data from six transects in the

ABB was undertaken during November 2007 with the scientific

research vessel RV Sonne. The details of sampling locations and

depth are given in Table 1. Video sampling transects were selected

using the EM120 multi-beam system data. We used the global

Table 1. Video observations on seamounts (CSM and SM2) and bathyal sea floor (back-arc basin) in the Andaman Sea.

Area Station ID Date
Start Long
(E)

Start Lat
(N)

End Long
(E) End Lat (N)

Min.
Depth (m)

Max.
depth (m)

Area
covered (m2)

CSM Summit (TVG-10) 26/11/2007 94u02.638 07u56.330 94u02.693 07u56.255 373 494 1242.4

Flank (TVG-9) 25/11/2007 94u03.139 07u55.924 94u03.026 07u56.036 517 671 4159.3

SM2 Summit (TVG-12) 27/11/2007 94u00.784 10u00.243 94u00.813 10u00.255 1299 1372 972.3

Flank (TVG-11) 27/11/2007 93u57.137 09u59.500 93u57.260 09u59.526 1290 1424 2484.8

Back-arc
Basin

Off-axial highs (TVG-14) 30/11/2007 93u51.978 10u33.599 93u52.149 10u33.646 1767 1814 1404.4

Rift Valley floor (TVG-13) 30/11/2007 94u09.500 10u27.200 94u09.590 10u27.590 2876 2917 1512.5

Detail of locations, depths and approximate area covered for each transect conducted by the TVG (television operated video gripper).
doi:10.1371/journal.pone.0016162.t001

Table 2. Composition of substratum types used for assigning
substrate codes to observed habitats viewed from video
images from the TVG in the Andaman Back-arc Basin.

% of each substrate type

Substrate
code Boulder Cobble Fines

Substrate
classification

#1 100 Boulder

#2 75 25 Boulder

#3 75 25 Boulder

#4 50 50 Boulder

#5 50 25 25 Boulder

#6 25 75 Cobble

#7 25 50 25 Cobble

#8 75 25 Cobble

#9 100 Cobble

#10 25 25 50 Fines

#11 50 50 Fines

#12 25 75 Fines

#13 25 75 Fines

#14 100 Fines

doi:10.1371/journal.pone.0016162.t002
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seafloor topography from satellite altimetry and ship depth

soundings data [15] for seamount mapping.

Seamount benthic communities were sampled using video

transects collected with the TeleVision guided Gripper (TVG)

system (0.6 m3). It was operated from the starboard side of the

vessel. The system integrated 4 X ROS QL 3000 spotlight,

1XDSPLMSC 200 color, and 1XOSPREY OE 1390 black and

white digital video telemetry systems, which provided a real time

video link to the surface for maximum quality, digital through a

fiber optical LWL cable. These video images were collected on

DVD for further examination. The minimum length of the TVG

tow was 389 m while the maximum was up to 1664 m. The vessel

speed was approximately 0.7 knots during the TVG operations.

The drop frame was towed in the water column between 1 and

3.5 m (dependent on bottom substratum types) above the seabed.

The width of coverage of a single frame was approximately 2.5 m,

but varied with distance from the bottom and angle of tilt. This

width of the video has been used to calculate the total area covered

by TVG during each transect sampling.

All megafauna was identified to lowest possible taxon during the

underwater video observation or later by the taxonomists (see

acknowledgement). Although every effort was made to identify the

fauna to the lowest possible taxon, assignment to species was not

always possible. For organisms that were morphologically distinct,

but not sampled, and therefore not identified to species level, we

used the higher taxon name with respect to different ‘Tag’ number

such as Octocorallia sp.1, Octocorallia sp.2 or Actiniaria sp.1 etc.

Several groups such as spider crabs, lithodid crabs, galatheidae,

corals, sponges, feather stars, and sea stars, could not be

confidently identified to species level from the video images and

were grouped into larger categories. Other species were confi-

dently identified to genus or higher taxon level. However, we

collected some specimens using the hydraulic arms of the TVG for

proper taxonomic identification. The locations were selected based

on the video image and the TVG can be closed from onboard by

transmitting a command to the arms. Samples were collected from

the end point of each TVG location. Sessile fauna such as sponges

and corals were carefully brushed from the rocks. Preliminarily, all

collected fauna was preserved in 30% ethanol, but subsequently

transferred to 70% ethanol. We also collected some bird nest

sponges from the flank of the SM2 seamount, separated them

carefully from the sediment and immediately preserved them in

70% ethanol. In the laboratory, all samples were washed carefully

and the entire faunal community associated with sponge spicules

was sorted out and preserved in 70% ethanol for further

identification.

Videos were reviewed and megafaunal communities were

identified and quantified. Bottom substratum types were

determined by estimating the percentage of boulder, cobble, or

fine sediment present, following the description of Hoff and

Stevens [16]. The substratum types were classified by size,

approximating the Wentworth grade scale [17], with boulders

being defined as large rocks (.0.2 m diameter) to complete

bedrock; cobble was rocks of 0.2–0.5 m diameter, and fines a

bottom type of similarly sized gravel, sand and finer sediments of

,0.05 m diameter. These groups were attributed an alphabetic

code between #1 and #14 on overall composition of the bottom

types (Table 2).

We defined each habitat patch as a video observation of about

5 minutes duration, which covered 108 m length. We used these

habitat patches to calculate and quantify the substrate types and

megafaunal abundances of each transect. The area of each

habitat patch was determined by multiplying the transect width

(average 2.5 m) with the length of the habitat patch. Then we

compared the community composition within and between the

seamounts.

Figure 2. Composition of substratum types of two seamounts and surrounding sea floor in the Andaman Back-arc basin, with
transect codes. Please see Table 2 for details of substratum types.
doi:10.1371/journal.pone.0016162.g002
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Categories of motility were assigned to all observed taxa and

analyzed to determine the functional role of dominant members of

the seamount communities and the basin area. Organism motility

was classified as sessile (e.g. sponges, corals), mobile (e.g.

arthropods, chordates, ophiuroids, echinoids and holothuroids)

and functional sessile (e.g. crinoids).

Statistical analysis
Only those species that could be confidently identified from up

to 3 m off the bottom were included in the analysis. The data were

subjected to univariate analyses to study the benthic community

structure, using Margalef’s index [18] for species richness (d),

Pielou’s index [19] for species evenness (J’), and the Shannon-

Wiener index [20] for species diversity (H’ by using loge).

To investigate how similarity among assemblages changes with the

substratum types and bathymetric gradients in the ABB, several

multivariate analyses were conducted using routines in PRIMER v6

[21]. Following the general recommendations of Clarke and Warwick

[22], the Bray-Curtis similarity measure was employed to assess

multivariate similarity and dissimilarity between transects based on

both presence/absence and log-transformed faunal abundance data.

The significance of transects outlined a priori was tested with

multivariate analysis (non-metric Multi-Dimensional Scaling (nMDS))

and the organisms which most contributed to the observed similarity

within and dissimilarity among groups were found by means of

SIMPER (similarity percentage). The habitat patches data of each

transect were used for the nMDS analyses, using group averages, to

explain the difference between transects for substrate types and

megafaunal abundances. Using the RELATE test in PRIMER, we

tested the Spearman rank correlation between the faunal similarity

matrices as faunal abundance and percentage of groups, and model

similarity matrix based on three different types of substratum, i.e. that

faunal similarities are related to depth differences and substratum types

among transects. Linear regression between biotic parameters (diversity

indices) and environmental variables was tested using STATISTICA 6.

Results

Habitat structure
Diversity of substrate types was greatest for both seamounts,

varying from boulders to fines (Figure 2). The boulders varied

from smooth basalt spires to jagged uplifted slabs.

Figure 4. Megafaunal group composition along the CSM and SM2 seamounts and basin area in the Andaman Sea Back-arc Basin.
doi:10.1371/journal.pone.0016162.g004

Figure 3. Megafaunal abundance along depth for two seamounts and the surrounding deep sea in the Andaman Back-arc basin.
doi:10.1371/journal.pone.0016162.g003
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CSM
Transects located at the CSM had mostly rocky substratum,

while both transect, summit and flank were dominated by boulders

and cobbles. However, eight unique combinations of physical

substrate were observed from a total of 20 habitat patches at the

CSM. The highest percentage of boulders (23.3%; code #2) and

cobbles (47.8%; code #8) were recorded from the summit and

flank of the CSM seamount. A lower percentage of fine sediment

was observed at both transects.

SM2
Ten combinations of physical substrate were observed on 13

habitat patches of the transects located on the SM2 (Figure 2).

Fines and cobbles substrates dominated on both summit and flank.

A maximum of 41.9% (code #13) and 32.3% (code #14) of fine

sediments was observed at flank and summit respectively.

Basin
Other transects (off-axial highs and rift valley) located in

the back-arc basin, had a fine sediment type of substrates.

Particularly, the rift valley had at maximum 93.8% fine

sediments.

Megafaunal community structure
A total of 948 individuals from 58 taxa, representing eight

phyla, were observed in the collected samples and video images.

The taxonomic catalogue is available online as supporting

information (Figure S1).

Figure 5. Structure of the CSM seamount (3D model midified from Kattoju et al. 2010) with accurate locations of the TVG-10 at
summit and TVG-9 at flank, and the fauna associated with it. Megabenthic communities observed on a crater seamount in the Andaman Sea.
a: Holothurid; b: Euplectella sp.; c: Gorgonian; d: Squat lobster - Galatheidae; e: Demospongiae attached to a big rock, onboard sample; f: the squat
lobster-Liogalathea laevirostris; g: brittle star- Ophiophyllum sp; h: dense population of megafaunal communities (gorgonians, sponges, sea urchins,
brittle stars, galatheids) lived on the big boulders and uplifted slabs; i: dense patches of corals (gorgonians); j: Ophiuroidea laid on the cobbles
substratum.
doi:10.1371/journal.pone.0016162.g005
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Faunal abundances were highest on the seamount area and

lower in the basin region (especially in deeper parts). Density

counts varied from 7.4 to 345.2 ind. 1000 m22 (mean 89.966.4)

along the study area (Figure 3). The highest number of taxa (40)

and individuals was observed on the flank of the CSM seamount

(depth of 517–671 m).

Quantitative video transects at the CSM and SM2 seamounts

differed in mean faunal density. Twenty habitat patches from two

transects were identified between 373 and 671 m depth at the CSM

seamount. These transect varied in length (497 to 1664 m) and

width (1.25 to 5.8 m). Faunal density averaged 197.6614.5 ind.

1000 m22 (range = 50 to 345.2 ind. 1000 m22). Thirteen habitat

patches from two transects were identified between 1290 and

1424 m at the SM2 seamount. These transect varied in length (389

to 994 m) and width (1.12 to 3.2 m). The faunal density averaged

56.862.9 ind. 1000 m22 (range = 25.9 to 87.7 ind. 1000 m22).

Assemblage composition and dominant taxa
The overall megafauna was dominated by sponges (30.9%), but

cnidarians (25.3%) and echinoderms (24.9%) were also important

components along the study area (Figure 4).

CSM
The highest abundance (mean 345621.5 ind. 1000 m22) was

observed at the flank of the CSM seamount, at depths between

517 m and 671 m, where the substratum was categorized mostly

by cobbles mixed with fine sediments (code #8). Seven groups

were found on the CSM seamount, all of them at the flank, while

only five groups were represented at the flank. The sessile group

porifera (48.6%) was clearly dominant on the flank, while the

mobile groups echinoderms (38.4%) and arthropods (22.2)

dominated at the summit (Figure 4). Among all the transects,

the flank of the CSM exhibited the highest number (13) of

cnidarians, although this group contributed to 18.0% of the total

megafaunal abundance along the ABB. The hexactinellid sponge

Euplectella sp. was well distributed and the most dominant taxon

across the entire flank. It contributed with 33.6% to the total

megabenthic community at the flank of the CSM, followed by

demospongiae1 (10.5%) and Corallium sp. (3.2%), as the next

dominant taxa in this region. Ophiura sp. (16.3%), demospongiae2

(14.8%) were the top ranked taxon at the summit of the CSM. The

structure of CSM seamount and their associated megafauna is

represented in Figure 5.

SM2
The second abundant (87.762.6 ind. 1000 m22) area of the

megafaunal community was observed at the flank of the SM2, at

depths between 1299 m and 1424 m, where the substratum

mainly consisted of fine sediments with cobbles (code #13). Six

groups of megafauna were observed on the SM2, the flank

exhibited all groups, while only three groups were found at the

summit. The sessile group Porifera was dominant at both areas of

the SM2, contributing 57.1% and 37.5% at the summit and flank

respectively. Further, Arthropoda was the next dominant (25.3%)

group at the flank of SM2, although this group was not observed at

the summit. Cnidarians were the second dominant group next to

the Arthropoda at the summit (28.6%) and flank (20.4%)

respectively. The bird-nest sponge Pheronema sp. was the most

dominant species on both areas of the seamount SM2 and

contributed with 20.6% at the flank and 28.6% at the summit to

the megabenthic community. Further, demospongiae3 and

Viminella sp. were the next dominant at the flank of SM2

seamount. The structure of SM2 seamount is represented in

Figure 6.

Basin
Faunal abundances were poor on the basin transects. The

observed abundance of megafauna on the transect on the rift

Figure 6. The SM2 seamount with locations of TVG-12 at summit and TVG-11 at flank, and its associated fauna. a:The bird-nest sponge
Pheronema sp; b: Munida sp; c: Pycnogonid; d: Arrow indicating the underwater photograph of bird-nest sponge; e: Black coral attached to the hard
substratum.
doi:10.1371/journal.pone.0016162.g006
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valley was 23.162.2 ind. 1000 m22 at depths between 2876 m

and 2917 m, where fine sediments were completely dominant.

Among four groups found in the basin area, all were observed on

the rift valley, where off-axial highs showed two groups only.

Echinoderms (especially holothuroidea5) and cnidarians (especially

whip coral Viminella sp) were the dominant groups in the basin

area. The most dominant group were the echinoderms (50%) at

the off-axial highs, while they constituted 36% at the rift valley

transect. The striking feature was that only the sponge Hyalonema

sp. was observed on the rift valley located in the basin area.

Sessile and mobile organisms accounted for most of the

observations, while functionally sessile fauna was rare over the entire

study area (Figure 7). Sessile fauna was the largest component of the

community at the SM2 seamount, but the smallest in the basin area.

Multivariate (MDS) analysis of substratum types and
megafaunal community

The MDS plot based on the average percentage of substratum

types found two groups with 50% similarity (Figure 8). Transects

located on the flank of both seamounts formed group 1, because

the substratum type cobbles mixed with fine sediments (code #8)

contributed the highest similarity percentage (Table 3). Similarity

of fine sediment types substratum allowed to form another group 2

between the summit of the SM2 and the off-axial highs in the

basin area.

The MDS plot based on the average abundance of megafauna

also revealed two distinct groups with 25% similarity (Figure 9),

each restricted to one of the two seamounts. Transects located on

the CSM formed group A, while group B was formed by the SM2

transects. Some echinoderms (e.g., Ophiura sp., ophiuroidea1,

holothuroidea1 etc.), asteroidea1, actinaria1, galatheidae and

fishes played a major role in forming group A within the CSM

transects (Table 4). In contrast, the bird nest-sponge Pheronema sp.

and gorgonacea sp.2 were the most important organisms for

forming group B on the SM2 seamount. The dissimilarity between

the groups showed by the SIMPER analysis is presented in

Table 5. Among 57 taxa observed on two seamounts, 46 taxa

accounted for about 91% of the dissimilarity between the

seamount faunal assemblages.

Figure 8. nMDS analysis of substratum types along the study
sites in the Andaman Sea, the seamounts CSM and SM2, and
the off axis basin.
doi:10.1371/journal.pone.0016162.g008

Figure 9. nMDS analysis of megafaunal community along the
study sites in the Andaman Sea, the seamounts CSM and SM2,
and the off axis basin.
doi:10.1371/journal.pone.0016162.g009

Figure 7. Occurrences of motility catagories on both seamounts and the basin area.
doi:10.1371/journal.pone.0016162.g007
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Diversity indices
The highest number of species (S) (41) was observed at the flank

of the CSM, while the lowest (2) was recorded in the off-axial highs

area (Figure 10). Margalef’s index (d) of species richness varied

from 0.5 to 6.8, the higher value recorded at the flank of CSM and

the lower at the off-axial highs area. Pielou’s index (J’) of evenness

varied from 0.8 to 1.0, with both transects on the flank showing

lower values than other transects along the study area. Values of

Shannon-Wiener index (H’) varied from 0.7 to 1.9 along the study

area.

Correlation between substratum types and biotic
community parameters

Specific faunal groups exhibit varying responses related to

substrate composition (Table 6). Total abundances (Log x+1

transformation) of the ABB showed a significant positive

relationship with cobbles only. Porifera and Cnidaria exhibited

the strongest positive relation with cobbles rather than with

fines sediment, whereas Echinodermata and Arthropoda

showed a significant positive relation only with fine sediments.

No animal group showed a significant relation to boulders.

The correlation between faunal diversity and substratum types

was based on Pearson’s correlation analyses (Table 7).

Megafaunal species richness (S), Margalef’s index (d) and

Shannon-Wiener index (H’) were positively correlated with

cobbles, while these three diversity parameters were negatively

correlated with fine sediments. Again boulder did not play any

significant role with relation to faunal diversity parameters.

Moreover, substratum types did not show any correlation with

motility categories.

Discussion

Seamounts are vulnerable environments and should be

protected from destruction, which requires techniques and

methods of documentation that cause as little damage as possible.

To this end, most studies use under-water video images to explore

the seamount fauna. McArthur et al. [23] suggested that fauna

associated with hard substratum (e.g., cobbles, boulder) is best

explored by underwater video or images. Accordingly, we have

inventoried the megafauna of Indian Ocean seamounts, using

under-water video.

The analysis of the video images showed that the volcano CSM

consists of a rugged rocky environment made up of large boulder

fields, and various sized cobble on the flank (Figure 5). Hard

substrata, typical for the deep-sea environment, are common on

seamounts and may take the form of rocks or cobbles [24].

Seamounts are primarily of volcanic origin, dominated by pillow

lavas and basalts, which form boulders or cobbles later [25].

Table 4. Abundance SIMPER analysis of faunal communities on two seamounts (CSM and SM2) in the Andman Back-arc Basin;
average abundance (avg. abund), average similarity (as. simp), contributed percentage (contr%), cumulative contribution (cum%).

Species Av. Abund Av. Sim Contrib% Cum%

Group A (summit and flank of CSM). Average similarity: 26.15 Ophiura sp 1.88 3.27 12.5 12.5

Ophiuroidea sp.1 1.93 3.27 12.5 25

Asteroidea sp.1 1.61 3.27 12.5 37.5

Holothuroidea sp.2 1.55 3.27 12.5 50

Actiniaria sp.2 1.55 3.27 12.5 62.5

Galatheidae sp.1 1.71 3.27 12.5 75

Anguilliformes sp.1 1.66 3.27 12.5 87.5

Actinoperygii sp.1 1.55 3.27 12.5 100

Group B (summit and flank of SM2). Average similarity: 26.56 Pheronema sp. 2.54 10.82 40.74 40.74

Gorgonacea sp.2 1.64 7.87 29.63 70.37

Elasmobranchii sp.1 1.55 7.87 29.63 100

doi:10.1371/journal.pone.0016162.t004

Table 3. SIMPER analysis of the substrate on two seamounts (CSM and SM2) in the Andman Back-arc Basin; average abundances
(av. abund), average Simper (av. simp), contributed percentage (contrib%) and cumulative contribution (cum%).

Codes Av. Abund Av. Sim Contrib% Cum%

Group 1 (flanks of CSM and SM2). Average similarity: 53.52 #8 36.73 26.06 48.69 48.69

#11 12.71 11.62 21.71 70.4

#4 9.61 7.88 14.73 85.13

#2 4.49 3.72 6.96 92.09

Group 2 (SM2 summit and off-axial highs in basin). Average similarity: 65.63 #14 26.56 20.8 31.7 31.7

#10 24.75 18.03 27.47 59.16

#13 22.67 16.92 25.79 84.95

#8 12.83 9.88 15.05 100

doi:10.1371/journal.pone.0016162.t003
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Accordingly, the CSM which has been reported as a submarine

volcano, also presented the largest proportion of hard substrata,

formed by boulders and cobbles. Underwater video analysis of

substratum types also showed the highest percentage of boulders

and lowest percentage of fine sediments at the crater summit of the

CSM seamount. Further, this crater summit has been suspected as

a mouth of the volcano, which may be the reason for the high

percentage of boulders and cobbles on the CSM.

Figure 10. Transect-wise distribution of megafaunal community structure indices (S: number of species, d: Margalef’s index, J’:
evenness, H’: Shannon diversity).
doi:10.1371/journal.pone.0016162.g010

Table 5. SIMPER analysis of average abundance dissimilarity between organism groups A and B on two Andaman Sea seamounts.

Group A Group B

Species Av.Abund Av.Abund Av.Diss Diss/SD Contrib% Cum.%

Pheronema sp 0.77 2.54 3.91 1.14 4.26 4.26

Ophiuroidae sp.1 1.93 0 3.39 2.35 3.68 7.94

Anguilliformes sp.1 1.66 0 3.31 1.5 3.6 11.55

Galatheidae sp.1 1.71 0 3.16 1.92 3.44 14.98

Gorgoncea sp.2 0 1.64 3.12 1.74 3.4 18.38

Asteroidae sp.1 1.61 0 3.05 1.74 3.32 21.7

Holothuroidea sp.2 1.55 0 2.99 1.65 3.25 24.95

Actiniaria sp.2 1.55 0 2.99 1.65 3.25 28.2

Elasmobranchii sp.1 0 1.55 2.99 1.65 3.25 31.45

Actinopterygii sp.1 1.55 0 2.99 1.65 3.25 34.7

Demospongiae sp.2 1.06 0 2.98 0.81 3.25 37.94

Ophiura sp 1.88 0.77 2.75 0.79 2.99 40.93

Demospongiae sp.1 1.81 1.06 2.51 1.16 2.73 43.66

Euplectella sp 2.38 0 2.51 0.86 2.73 46.4

Decapoda sp. 1 0.77 0 2.17 0.81 2.36 48.76

Spider crab 0.77 0 2.17 0.81 2.36 51.12

Paragorgiidae sp.1 0.86 0.77 1.82 0.72 1.99 53.1

Average dissimilarity = 91.92. Average abundance (av. abund), average dissimilarity (av. diss), quotient of dissimilarity and standard deviation (diss/SD), contributed
percentage (contrib%), cumulative contribution (cum%). Here we presented the faunal contribution percentage for dissimilarity between the groups up to 50%.
doi:10.1371/journal.pone.0016162.t005
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Compared to the surrounding areas of fine sediment-covered

basin area, there was a marked difference in the abundance of

coral and sponges on the seamount. The higher mean faunal

density found on the CSM seamount, which has a shallower

summit than the SM2 seamount, is likely due to nutrient

availability, which increases with depth globally in concert with

an exponential decline in faunal abundance and biomass [26]. In

areas of upwelling, sessile suspension feeders, such as corals and

sponges and the associated fauna, find suitable conditions on hard

bottoms [16]. Hoff & Stevens [16] found for the Patton Seamount

(Alaska) that suspension feeding communities were most abundant

in the upper 1500 m, where it is still possible to take advantage of

the photic zone. We observed lower faunal abundance and species

diversity for the summit of the CSM seamount that is located just

beneath the photic zone, than for the flank. Further, the SM2 also

showed the same results as the CSM, with higher abundances and

diversity on the flank than on the summit. This may be due to

(unknown) differences in current velocities, because filter feeders

require relatively fast currents [5].

The MDS analysis of faunal abundances did not find any group

between seamounts, because of distinctness of the seamount faunal

communities. This faunal distinctness between the seamounts was

caused by those species which had their highest abundance on the

same seamount and contributed some percentage to the

dissimilarity (Table 5). Some species, such as Euplectella sp., were

dominant and found only on the CSM seamount, whereas others,

such as Pheronema sp., were dominant and only seen on the SM2.

Dense aggregations of the bird-nest sponge are also known to

occur at depths of 750–1300 m on the slope of the Porcupine

Seabight in the NE Atlantic Ocean [27] and off Morocco [28].

Species presence restricted to a specific area is a character of

endemism, although the degree of endemism cannot be ascer-

tained from this study. Further, faunal distinctness between

seamounts was also caused by differences in environmental

conditions, such as depth and substratum types. During the

underwater observation, it was found that faunal abundance

changed with changing substratum types. This was confirmed by

the MDS analysis, which showed that faunal abundance and

substratum types followed the same pattern, and by the RELATE

analysis, which showed a significant positive relation (r= 0.001)

between abundance and substratum types (Table 5). Further,

cobbles substratum also showed up in the MDS of substratum

types, with 50% similarity between the flanks of both seamounts.

Abundances were also higher on flanks than on summits of both

seamounts and in the basin area. These findings support our

hypothesis that geomorphology plays an important role for

structuring the megafaunal communities in the ABB.

During the underwater observation we noticed that categories

of motility changed with changing substratum types. However,

faunal motility and substratum types did not show any correlation

within the study area, probably because of the presence of some

sessile categories such as sponges Hyalonema sp., Demospongiae

sp.1 and whip coral Viminella sp., found attached to the hard

substratum, as was occasionally observed in the basin transects. A

large proportion of the fauna on the ABB seamounts consists of

many attached and sessile, as well as mobile suspension feeders

(sponges, corals, crinoids, brittle stars and holothuroids). The

shallower transect, located at the summit crater, showed a

comparatively large component of mobile Ophiura sp. It was

observed that attached and sessile suspension feeders were fewer in

the crater area than on the flank of the CSM seamount. This may

Table 6. RELATE analysis between substratum types and
biotic parameters in the Andaman Back-arc-Basin (ABB). Bold
numbers indicate significant values.

Substrate type Transformation Group Rho r-value

Boulders Log x+1 ABB total 20.083 0.95

P/A ABB total 20.073 1

Porifera 20.134 1

Echinodermata 0.015 0.34

Cnidaria 0.032 0.281

Arthropoda 20.043 0.71

Chordata 20.039 0.69

Mollusca 0.024 0.29

Sipuncula 20.053 0.602

Cobbles Log x+1 ABB total 0.394 0.001

P/A ABB total 0.024 0.39

Porifera 0.239 0.002

Echinodermata 0.093 0.062

Cnidaria 0.133 0.001

Arthropoda 0.055 0.151

Chordata 0.024 0.247

Mollusca 0.195 0.031

Sipuncula 0.005 0.476

Fines Log x+1 ABB total 0.302 0.00001

P/A ABB total 0.017 0.456

Porifera 0.143 0.007

Echinodermata 0.118 0.013

Cnidaria 0.115 0.02

Arthropoda 0.122 0.037

Chordata 0.065 0.116

Mollusca 0.079 0.157

Sipuncula 20.005 0.498

doi:10.1371/journal.pone.0016162.t006

Table 7. Linear regression based on Pearson correlation showing the relationship between the substratum types and faunal
diversity parameters in the Andaman Back-arc Basin.

Substratum type S D J’ H’

Boulder 0.0376, p = .811 0.0321, p = .838 0.2645, p = .087 0.1622, p = .299

Cobbles 0.6577, p = .000 0.4915, p = .001 0.1285, p = .411 0.4286, p = .004

Fines 0-.6065, p = .001 20.4596, p = .002 20.2110, p = .174 20.4830, p = .001

Bold numbers indicate significant values.
doi:10.1371/journal.pone.0016162.t007
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be caused by to the geomorphological setting, such as the crater

formation of the area, possibly creating a weak current flow, thus

limiting the effect of the productive upwelling characteristics.

Many sessile animals, such as gorgonians and black corals, require

hard substrata and strong currents that supply them with food and

oxygen, remove waste products and continuously keep the

substratum, including the corals, completely clear of sediment

[29], [30]. In the deep-sea such types of conditions are observed in

very few habitats, seamounts are one of them. The high

abundance and diversity of sessile fauna on both seamounts

compared to the basin area also support our assumption that the

hard substrata of seamount habitats are more favorable for rich

megafaunal diversity than fine sediments.

New insights from the present study
The degree of endemism and speciation on the Andaman

seamounts is unknown, although new species (e.g., Hyalascus

andamanensis Sautya et al., 2010 [31]) and new records (e.g., the

epibiont Thecacineta calyx Schröder, 1907 [32]) have been reported

from the CSM. Several of the ophiuroids collected by us are

unknown species and will be described in a separate publication.

Further, the present investigation provides additional knowledge

of the seamount fauna as well as the deep-sea biodiversity of the

Indian Ocean (Figure 11). Records of sponges from the

seamounts of the world oceans (Figure 12) also confirm the

earlier notion that the Indian Ocean is a poorly studied region.

Prior to this study, there were only reports on Porifera and

Figure 11. Number of taxa reported from the Indian Ocean seamounts including the present study. A: Bezrukov, B: Equator (Indian), C:
Fred, D: Lena, E: Mount Error Guyot, F: Ob’ Seamount, G:Shcherbakov, H: Travin Bank, I: Unnamed Seamounts – 1234, J: Walters Shoal, K: CSM - ABB,
L: SM2- ABB.
doi:10.1371/journal.pone.0016162.g011

Figure 12. Comparison of sponges recorded from seamounts around the globe.
doi:10.1371/journal.pone.0016162.g012
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Hexactinellida from the Indian Ocean seamounts, while the

present study not only added some more records of sponge

species (e.g., Pheronema sp.; Figure 13) to the global seamount

map, but also showed potential for the discovery of new species, if

sampled systematically.

Conservation of Andaman seamounts
The present investigation demonstrates the pristine condition of

benthic communities on the seamounts, with negligible evidence of

human impact. The communities are found in greater abundance

and better health than those found in less-optimal habitat,

suggesting that seamounts may be a source, rather than a sink,

for some species [33]. Deep-water black corals (antipatharians)

have substantial potential as proxy records of historical oceano-

graphic and biogeochemical changes [34]. Their long life-span,

wide geographic distribution and wider depth range [35] suggest

that they may provide environmental information for geographic

locations and for periods of time that are not available from other

sources. Thus, they can be a potential source for paleoceano-

graphic studies. Our study suggests that the seamounts in the

Andaman Sea are biologically rich, home for many new species,

and an optimal habitat for benthic organisms. We suggest that the

region should be conserved for future biodiversity research.

Conservation of these seamounts is also expected to ensure a

survival and supply of ecologically important species that can

disperse to depleted areas and replenish them.

Summary and Conclusion
This study reveals several novel characteristics of the structure

of megafaunal communities and their response to differences

within and between the seamount habitats in the Andaman Back-

arc Basin, Indian Ocean. The geomorphological settings,

bathymetric gradient and substratum types in the study sites

generate the habitat differences between the seamounts as follows:

1) CSM: This shallower seamount demonstrated a large

component of hard substrates (e.g. boulders and cobbles),

with higher species abundance and diversity. The sponge

Euplectella sp. was dominant on the flank which was more

diverse than the crater summit.

2) SM2: This seamount is characterized by cobbles and fine

sediments types of substratum, with medium faunal abun-

dance and diversity. The bird-nest sponge Pheronema sp. was

dominant on the flank.

3) Basin: The basin area was dominated by fine sediments and

very poor faunal abundance and diversity. Echinoderms were

dominant in the basin area.

Faunal composition and diversity differed within and between

the seamounts which can be explained by geomorphological

features and substratum types. Due to lack of extensive sampling

and other environmental data, this study was unable to explain the

high species diversity on the shallower seamount. Further study is

required to understand the processes involved in creating a high

biodiversity, and other aspects, such as biogeography and

endemism of megafaunal communities at different seamounts

and also at other habitats like the ridge area in the Indian Ocean.

Finally, it can be concluded that this study will be useful as a

baseline for the Indian Ocean seamount region, which is still

poorly investigated.
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