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Abstract

Background: Cell polarity genes including Crumbs (Crb) and Par complexes are essential for controlling photoreceptor
morphogenesis. Among the Crb and Par complexes, Bazooka (Baz, Par-3 homolog) acts as a nodal component for other cell
polarity proteins. Therefore, finding other genes interacting with Baz will help us to understand the cell polarity genes’ role
in photoreceptor morphogenesis.

Methodology/Principal Findings: Here, we have found a genetic interaction between baz and centrosomin (cnn). Cnn is a
core protein for centrosome which is a major microtubule-organizing center. We analyzed the effect of the cnn mutation on
developing eyes to determine its role in photoreceptor morphogenesis. We found that Cnn is dispensable for retinal
differentiation in eye imaginal discs during the larval stage. However, photoreceptors deficient in Cnn display dramatic
morphogenesis defects including the mislocalization of Crumbs (Crb) and Bazooka (Baz) during mid-stage pupal eye
development, suggesting that Cnn is specifically required for photoreceptor morphogenesis during pupal eye
development. This role of Cnn in apical domain modulation was further supported by Cnn’s gain-of-function phenotype.
Cnn overexpression in photoreceptors caused the expansion of the apical Crb membrane domain, Baz and adherens
junctions (AJs).

Conclusions/Significance: These results strongly suggest that the interaction of Baz and Cnn is essential for apical domain
and AJ modulation during photoreceptor morphogenesis, but not for the initial photoreceptor differentiation in the
Drosophila photoreceptor.
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Introduction

Genetic control of apical-basal cell polarity is essential for

epithelial morphogenesis and asymmetric cell division during cell

fate specification [1]. It is also important for development of

polarized subcellular structures with specialized functions such as

the light sensing organelles of photoreceptor cells [2,3]. A small

number of evolutionarily conserved proteins play important roles

in diverse types of apical-basal cell polarization. These polarity

proteins form two major heterotrimeric cassettes consisting of Crb-

Stardust (Sdt)-Patj (Crb complex) and Par-6-aPKC-Baz (Par

complex) in the apical cell membrane [1]. Recent studies have

shown that these two protein complexes function in a coordinated

fashion [4,5,6], with the Par complex acting upstream of the Crb

complex and Baz in the Par complex acting as the nodal point

among all polarity complexes [6,7].

The Drosophila eye provides an excellent system to study in vivo

functions of these interacting polarity proteins in control of cell

polarity and organization of the rhabdomere, the light-sensitive

apical structure of photoreceptor cells. In Drosophila, about 800

clusters of 8 photoreceptor cells (R1-R8) are generated in the eye

disc epithelium during the third instar larval stage, but

morphogenesis of photoreceptor cells takes place mainly during

the following pupal stage [8,9]. During early pupal stage, the

apical region of each photoreceptor cell is involuted 90u, which

reorients the apical side toward the center of the cluster [9]. The

apical domain therefore localizes in the center and the AJ and

basolateral domains surround it on all sides (Figure 1B) at the 50%

pupal developmental stage. During the pupal stage, Crb complex

proteins are localized immediately apical to AJs (Figure 1). During

this time, developing photoreceptors undergo dramatic vertical

extension from the distal region of photoreceptor cells to the

proximal base of the retina.

Although it is not essential for establishing apical basal cell

polarity [2,3], Crb, together with Sdt and Patj [2,3,6,10,11], is

required for the proper formation of the apical domain and AJs

during photoreceptor extension along the distal-proximal axis.

The mammalian homolog of Crb, CRB1, is also localized to the

inner segment of photoreceptors, the structure analogous to the

apical membrane domain, between the outer segment and the AJ

[3]. Furthermore, mutations in CRB1 cause retinal diseases

including retinitis pigmentosa and Leber Congenital Amaurosis

in human patients [12,13].

Microtubule cytoskeletons play essential roles in determining

cell shape, cell polarity, and vesicle trafficking. As a consequence,

microtubule reorganization during differentiation is essential for
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morphogenesis. Despite their importance in cell shape and polarity

generation, the organization of microtubules in Drosophila

photoreceptors remains relatively unexplored. Therefore, we have

recently examined the presence of stabilized microtubules in

developing pupal photoreceptors and proposed its potential role in

Drosophila photoreceptor development [14].

Microtubule formation takes place primarily at morphologically

distinct structures termed microtubule organizing centers

(MTOCs) [15]. In animal cells, centrosomes serve as the principal

MTOCs. Centrosomes organize symmetric microtubule arrays of

uniform polarity, where microtubule-minus ends are embedded in

the centrosome while the highly dynamic-plus ends extend toward

the cell periphery. In most animal cells, polarized arrays of

microtubules are nucleated from the centrosome, an organelle

composed of a pair of centrioles that recruit and organize a large

number of proteins to form the pericentriolar matrix. Within the

pericentriolar matrix, many proteins including Cnn assemble into

a scaffold that docks the c-tubulin ring complex, which nucleates

and controls microtubule growth [16]. The c-tubulin ring complex

is composed of c-tubulin and other accessory factors [17]. Cnn

localizes to the pericentriolar matrix and from there other

centrosomal proteins load onto the centrosome, including c-

tubulin. Centrosomes are non-functional without the addition of

Cnn since it is responsible for recruitment of other centrosomal

proteins. However, in many cell types microtubules are not

associated with the centrosome [18]. Noncentrosomal arrays of

microtubules are frequently generated in differentiated cells and

are likely to expand the functional repertoire of the microtubule

cytoskeleton. This is particularly true during the differentiation of

specialized cell types in multicellular organisms [19]. Microtubule

nucleation can also occur via centrosome-independent mecha-

nisms. A number of microtubule-organizing structures have been

identified in interphase cells. Among these are the nuclear

envelope [20], plasma membrane [21], and Golgi [22,23,24].

Sometimes, the relocation of microtubule-anchoring proteins to

noncentrosomal sites, such as the apical cell surface, occurs during

development [25]. We have recently identified stabilized micro-

tubules in developing pupal photoreceptors of Drosophila (Figure 1),

and found that they are essential components in Drosophila

photoreceptor morphogenesis [14].

Here we analyzed the functional role of Cnn in the localization

of apical Crb and Baz during photoreceptor morphogenesis. We

found that cnn mutant photoreceptors display severely disrupted

morphogenesis with dramatic defects of the apical membrane

including the Crb domain and AJs during the pupal morphogen-

esis stage, without affecting the early eye differentiation or pattern

formation. Our data suggest that Cnn is essential for apical

membrane domain modulation and for the proper morphogenesis

of the developing photoreceptors.

Results

Genetic interaction between baz and cnn in Drosophila
photoreceptors

Previous studies have shown that Baz is essential for localization

of Crb and AJ during photoreceptor morphogenesis [6,7].

Furthermore, overexpressed Baz in differentiating retinal cells

recruits the Crb and AJ to ectopic positions, and causes cell

polarity disruptions in photoreceptors [7]. We overexpressed Baz

[26] using GMR-Gal4 [27], which led to a roughening of the eye’s

external morphology (Figure 2A). Using this genetically sensitized

condition, we performed a genetic screen to identify additional

players that function with Baz to regulate photoreceptor

morphogenesis. From a pilot screen, we found that the rough

eye phenotype of GMR.Baz was dominantly enhanced by

reducing the level of cnn (Figure 2B). This data suggests that there

is a strong genetic interaction between baz and cnn. Overexpression

of Baz by GMR-Gal4 in developing eyes resulted in severe defects

in the apical basal pattern of photoreceptors, with abnormal

positioning of Crb and AJ [7]. In the cnn/+ heterozygous

background to reduce the Cnn level, the rough-eye phenotype

of GMR.Baz was strongly enhanced. This genetic interaction data

strongly suggests that Cnn may provide an additional positional

and/or maintenance cue for Crb and AJ positioning, because the

Crb/AJ mislocalization caused by Baz overexpression further

enhanced by the reduced cnn gene dosage (cnn/+) (Figure 2).

Localization of Cnn in Drosophila pupal photoreceptors
Based on the genetic interaction between baz and cnn in the eyes,

we needed to determine the localization of Cnn in developing

pupal eyes, where the cell polarity genes’ roles were well

characterized [2,3,6,7,11]. Determining the localization of

Cnn will provide information on how the acetylated microt-

ubules are originated in developing photoreceptors and how Cnn

is linked to the cell polarity genes, including baz. Subcellular

localization of Cnn was examined at the mid-pupal stages of

developing eyes by immunostaining and confocal microscopy.

Cnn is highly enriched at the basal side from the apical

(Crb) domain and AJ (E-cad) (Figure 3A9), and also basal and

adjacent to the acetylated-microtubules (Figure 3B9) [14] in the

mid-pupal eyes. The localization of Cnn was compared to that

of c-tubulin, a marker for centrosomal and non-centrosomal

Figure 1. Morphogenesis of Drosophila pupal photoreceptors. (A) Side view of developing photoreceptors at 50% pupal development stage.
The photoreceptors elongate from distal to proximal (arrow). (B) Cross-section of 50% pd pupal photoreceptors. Apical domain (green) localizes
apical to AJ (red) in the center of a photoreceptor cluster. The E-cad localizes at AJ (red) which are more basal to the apical domain. The basolateral
domains (black) are more basal to the AJ (red), and the acetylated-tubulin (blue) localizes at the outside from the AJs (red).
doi:10.1371/journal.pone.0016127.g001
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MTOC. Centrosome-independent MTOC has been reported

[28], but the acentriolar MTOC also contains c-tubulin and

requires Cnn for its architecture and function [28]. Therefore, we

examined the localization of c-tubulin and Cnn [29] in the pupal

eyes. Cnn also localizes at the same place with c-Tubulin

(Figures 3B9 and 3C9) which labels all the centrosomal MTOC

as well as non-centrosomal MTOC. Since some Cnn and c-

Tubulin staining showed perinuclear distribution (Figures 3A9 and

3B9), we examined Cnn location with Elav, a nuclear marker [30],

and Lamin, a nuclear membrane marker [31,32], and found that

Cnn localized at the perinuclear area in the mid-pupal eyes (data

not shown). Based on these confocal image analyses, we identified

the relative location of Cnn at the basal, adjacent side of the

acetylated-microtubules and at the perinuclear side in the mid-

pupal eyes (Figure 5). The localization pattern of Cnn strongly

suggests that Cnn may contribute to the organization of

microtubule arrays, rather than mitotic cell division, in post-

mitotic and fully differentiated cells of the these pupal eyes. In

summary, we precisely identified the exact and relative location of

Cnn in developing pupal eyes using several markers of the apical

domain, AJs, and acetylated-microtubules, as well as specific

nuclear markers. Given the presence of Cnn underneath the

acetylated microtubules in the Drosophila photoreceptors, Cnn may

have some potential functions for photoreceptor development as a

MTOC or microtubule modulator in the eyes.

cnn is required for localization of acetyl-microtubules and
Baz

To test whether cnn is required for developing photoreceptor

architecture, we generated mutant clones of the cnn mutation using

cnnhk21 [29] in photoreceptors using the FLP/FRT-based genetic

mosaic technique [33] with eyeless-flippase (ey-flp) [34]. Since

cnnhk21 is a null allele [35], we analyzed cnnhk21 mutation to identify

the Cnn functions. During the early larval stage, cnn mutants

showed no defects in photoreceptor differentiation or pattern

formation (data not shown). However, from the mid-pupal (50%)

developmental stage, the cnn mutation causes the acetylated

microtubules and Baz domains to mislocalize from basal to apical

positions (Figure 4A). Based on statistical analysis of Baz

membrane domains, about 3065% (n = 30) of the apical domain

size was increased in the cnn mutant (ImageJ analysis). The

acetylated microtubule bundles, at the basal side of the Baz

membrane domains, were also mispositioned (Figure 4A). Inter-

estingly, the ectopic position of acetylated microtubules (Figure 4A,

arrowheads) also recruited the ectopically positioned Baz

(Figure 4A9, arrows) at its apical side. Crb, the apical membrane

marker, also mispositioned from apical to basal in the cnn mutant

(Figure 4B, arrowheads), which is consistent with the Baz/E-cad

mispositioning in the cnn mutant (Figure 4A9 and 4B9).

Furthermore, other apical markers (Sdt and Patj) showed the

same patterns of Crb in the cnn mutant (data not shown). The

localization of E-cad, an AJ marker, was co-distributed with Baz

(Figure 4C) in the cnn mutant, which is consistent with the Baz

localization at the AJs in the pupal eyes [6,7]. During the extensive

morphogenetic rearrangement of the photoreceptors, the absence

of Cnn causes the mispositioning and/or defects of the localization

of acetylated microtubules. Furthermore, this mispositioned

acetylated microtubule recruits the ectopic localization of Baz

which causes the mislocalization of Crb and AJ/E-cad. These

mutant phenotypes of cnn strongly suggest that Cnn is dispensable

in early eye pattern formation, but is required for the regular

localizations of Crb, Baz/AJ, and acetylated tubulins during

photoreceptor morphogenesis in the pupal eyes.

Overexpression of Cnn causes apical domain expansion
in pupal photoreceptors

The loss-of-function analysis of the cnn mutation (Figure 4)

strongly suggests that cnn might affect AJ/Baz positioning and the

apical membrane domain (Crb) in photoreceptor morphogenesis.

Next we conducted a gain-of-function analysis of cnn using eye-

specific GAL4 lines, GMR-GAL4 [27], to increase the Cnn level in

the photoreceptors. We employed the established UAS-GFP-Cnn

[36] to examine the effects of Cnn overexpression for photore-

ceptor morphogenesis. Cnn overexpression in the mid-stage (50%)

pupal photoreceptors dramatically expanded the apical membrane

domains in an apical to basal fashion (3006100% expansion,

n = 100, Figure 5B), with concurrent mispositionings of Baz

(Figure 5B9) from the apical center of the photoreceptor. Similarly,

the AJ marker E-cad showed the same pattern as Baz (data not

shown) in the case of Cnn overexpression. In rare occasions of

Cnn overexpression (,5%), the Crb domain expansion was so

dramatic that the apical Crb domains were completely removed

from the apical position and reallocated to a much more basal

location (Figure 5C). Although the mislocalization of Crb and

Baz/E-cad was dramatic, there were no defects in cell polarity

since the Crb apical marker still localized more apically compared

to Baz/AJ (Figure 5B and 5C). Interestingly, it was noticed that the

ectopically positioned Baz always recruits Crb at its apical side

(Figures 5B and 5C, arrows).

Role of Cnn in apical domain regulation in pupal
photoreceptors

Our results strongly suggest that Cnn specifically controls

membrane domain size of the apical domain and AJs during pupal

eye development based on the genetic interaction (Figure 2), loss-

of-function (Figure 4) and gain-of-function (Figure 5) phenotypes

of cnn. These data strongly suggest that Baz receives the primary

defects created by loss of Cnn or Cnn overexpression, perhaps due

to Cnn’s role in microtubule organization or modulation. The

apical Crb domain could be the recipient of secondary defects

caused by Baz defects, since apical Crb’s dependency on Baz at the

AJs has been previously found in developing pupal eyes [6,7].

However, we cannot exclude other possibilities of (1) independent

control of Crb and Baz by Cnn, and (2) primary defects of Crb and

subsequent secondary defects of Baz/AJs, since the apical Crb

domain and Baz/AJ expansions were concurrent (Figures 4 and 5).

In summary, our results strongly suggest that Cnn and its

interaction with Baz are essential in photoreceptor morphogenesis.

Figure 2. Genetic interaction of baz and cnn in Drosophila eye.
(A–B) Adult eye phenotype of +/+; GMR.Baz/+ (A) and cnnhk21/+;
GMR.Baz/+ (B).
doi:10.1371/journal.pone.0016127.g002
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Discussion

We have recently demonstrated that the Drosophila photoreceptor

cells have acetylated microtubules in their pupal stage [14].

Therefore, the microtubule modulators and organizers might have

important roles in the photoreceptor development and organization.

Here we examined Cnn as a potential microtubule organizer and/or

modulator in the developing pupal photoreceptors. Based on our

results in which (1) Cnn was identified as a genetic interaction

partner of Baz, (2) Cnn localized at the basal side of the acetylated

microtubules, (3) acetylated microtubules were defective in the cnn

mutant, and (4) Baz was mislocalized in the absence of Cnn, we

propose that Cnn may contribute to the organization of microtubule

arrays which might in turn contribute to Baz localization, rather

than mitotic cell division, in post-mitotic and fully differentiated

photoreceptor cells in the pupal eyes. Therefore, the absence of Cnn

causes abnormal localization of acetylated microtubules which cause

the mispositioning of Baz (Figure 4A). Since Baz is essential for

proper targeting of Crb and AJ [6,7], mispositioned Baz in cnn

mutants causes the defects of Crb and AJ (Figure 4B).

We investigated where Cnn localizes compared to other cell

polarity markers, including the Crb and Par complexes, in mid-

stage pupal photoreceptors. The localization results of Cnn and c-

Tubulin in pupal eyes strongly indicate that Cnn and c-Tubulin

localize at a perinuclear position, as well as adjacent to the basal

side of the acetylated microtubules (Figure 3). Similar perinuclear

localization of c-Tubulin was reported in Drosophila myotube [37].

In the third instar larvae eye disc, it was reported that Cnn was

basally positioned in epithelial neuronal precursors, based on the

localization of Cnn-GFP expression [38].

Cnn has a microtubule organizing activity. Therefore, the

expected results in the loss of cnn are the loss of acetylated

microtubules in the pupal eyes. However, most of the acetylated

microtubules were still present, although they were mislocalized and

mispositioned from apical to basal locations in the cnn mutants

(Figure 4A). One potential possibility is that non-centrosomal and

non-Cnn-dependent-MTOC is not affected in cnn mutants. This

possibility is supported by several reports of MTOC in the golgi and

other intracellular structures [20,21,22,23,24,25]. However, our

Figure 3. Localization of Cnn in Drosophila pupal photoreceptors. Localization of Cnn in mid-stage (50% pd) of pupal eyes were examined.
(A) Pupal eyes were stained with Crb (apical marker, red, A), E-cad (green, AJ, A) and Cnn (blue, A9). The Cnn (blue, A9) localized more basal to the
apical domain of Crb and AJ of E-cad. (B) The Cnn (green, B9) localized more basal and adjacent to the acetylated microtubules (Acetub, red, B). (C)
Acetylated microtubules (red, C) localized more apical and adjacent to the c-Tubulin (c-Tub, green, C9).
doi:10.1371/journal.pone.0016127.g003
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results (Figure 4) strongly suggest that the presence of the Cnn-

independent MTOCs are not sufficient to preserve the acetylated

microtubules in their correct location and that Cnn is thus essential

in the proper Crb/Baz localization in the photoreceptors (Figure 4).

Baz defects might not be caused by the defect of Baz membrane

targeting because (1) there were no early eye defects in the larval

or early pupal stage, (2) there were no cell polarity defects, and (3)

only the Crb/Baz/AJ domains were defective. Therefore the cnn

mutant defects might be the apical membrane domain controls

which may be regulated by the Baz-dependent apical targeting of

Par-6/aPKC or Crb/Sdt/Patj. This hypothesis is further support-

ed by the gain-of-function of Cnn which shows a dramatic

expansion of Crb (Figure 5). Further research is needed to answer

these important questions.

Since Cnn functions in many diverse cellular processes, it was

assumed to be impossible to examine a specific developmental

defect in the photoreceptor. However, our analysis of the cnn

mutation in the photoreceptor showed defects that are quite

specific in the pupal photoreceptors based on (1) a lack of defects

in early eye pattern formation during the larval stage, and (2) an

absence of defects detected in eye accessory cells of pigment cells

and cone cells in the pupal stage eyes (data now shown).

Differential defects in larval or pupal eye development are

common, since some cell polarity genes such as crb are not required

in larval imaginal discs (Izaddoost et al., 2002), although they

become essential later during the pupal stage when the photore-

ceptor cells undergoes dramatic reorganization. Our analysis of

pupal eyes suggests that Cnn is required for the maintenance of

apical and AJ domains of photoreceptor cells, as Baz and apical

markers fail to form correct localizations in cnn mutant clones. These

pupal specific-phenotypes are similar to the defects shown

previously in the eyes of Crb complex mutants [2,3,6]. Like cnn

mutations, loss of these gene functions also affects the morphogen-

esis but not apical basal cell polarity. Since Baz is essential for proper

targeting of Crb complex proteins, loss of Cnn function may result

in mislocalization of Crb complex through affecting Baz localiza-

tion, although it is possible that Cnn may also be directly involved in

localization of Crb complex proteins independent of Baz.

We have characterized the Cnn in the developing photoreceptors

and examined its roles in Drosophila photoreceptor morphogenesis.

Understanding the genetic basis for photoreceptor organ develop-

ment is important for finding cures for retinal degeneration caused

by genetic defects. Recent Drosophila and mammalian studies suggest

that the genes involved in cell polarity play important roles in the

morphogenesis of photoreceptor cells. Understanding Cnn’s role in

Baz targeting will provide important clues in understanding the cell

polarity. Because of the conservation of cell polarity genes and Cnn

in higher mammals including humans, similar cooperative

mechanism between Baz and Cnn could have a role in the

development and degeneration of the human photoreceptor.

Materials and Methods

Genetics
UAS-Baz [26] and GMR-Gal4 (on chromosome 3 from Andreas

Bergmann, MD Anderson) were recombined on the same

chromosome for a genetic modifier screening. Mitotic recombi-

nation was induced by using the FLP/FRT method for clonal

analysis [33]. cnnhk21 is a null allele with a nonsense mutation that

truncates the protein at amino acid 106 [29]. cnnhk21 mutant clones

were produced by eye-specific expression of FLP in y w ey-flp/+;

Figure 4. Cnn is essential for photoreceptor morphogenesis in the mid-stage developing pupal eyes. (A, B) Pupal eyes (50% pupal
developmental stage) with cnnhk21 null mutant clones marked by the absence of the GFP (green). (A) Acetylated tubulin (Acetub, red, A) and Baz
(blue, A9) were mislocalized from apical to basal in the absence of the Cnn (absence of the GFP, A0). Ectopic mispositioned acetylated tubulins (A) and
Baz (A9) are indicated by arrowheads (A) and arrows (A9), respectively. (B) Crb (red, arrowheads, B) and E-cad (blue, arrows, B9) were mislocalized from
apical to basal in the absence of the Cnn (absence of the GFP, B0). (C) Baz (red, arrowhead, C) and E-cad (blue, arrow, C9) were co-mislocalized from
apical to basal in the absence of the Cnn (absence of the GFP, B9).
doi:10.1371/journal.pone.0016127.g004
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FRT42D cnnhk21/FRT42D Ubi-GFP. Overexpression of cnn was

induced by crossing UAS-GFP-Cnn [36] with GMR-GAL4 [27] at

29uC. cnnhk21 and UAS-GFP-Cnn were obtained from Bloomington

Stock Center at Indiana University.

Immunohistochemistry
The following primary antibodies were used: mouse anti-

acetylated tubulin (Sigma), 1:1000; rabbit anti-c-tubulin (Sigma or

Abcam), 1:1000; rabbit anti-Baz [26], 1:1000; rat anti-E-cadherin

(DSHB) [39], 1:10; guinea pig anti-Cnn [40], 1:1000; rat anti-Crb

[41], 1:400; rat anti-Elav (DSHB) [30], 1:50; sheep anti-GFP

(Biogenesis or Serotec), 1:100; mouse anti-Lamin (DSHB) [32],

1:50; mouse or rabbit anti-Patj [41], 1:500; rabbit anti-Sdt, 1:500

[42]. Secondary antibodies obtained from Jackson Laboratories

conjugated with Cy3, Cy5, or FITC. Fluorescent immunostaining

and confocal analysis of pupal eyes was carried out as reported

[14,43]. Fluorescent images were acquired on an Olympus

FV1000 confocal microscope. Image analysis and quantification

were performed using ImageJ and Adobe Photoshop.
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