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Abstract

Prognostic models applied in medicine must be validated on independent samples, before their use can be recommended.
The assessment of calibration, i.e., the model’s ability to provide reliable predictions, is crucial in external validation studies.
Besides having several shortcomings, statistical techniques such as the computation of the standardized mortality ratio
(SMR) and its confidence intervals, the Hosmer–Lemeshow statistics, and the Cox calibration test, are all non-informative
with respect to calibration across risk classes. Accordingly, calibration plots reporting expected versus observed outcomes
across risk subsets have been used for many years. Erroneously, the points in the plot (frequently representing deciles of
risk) have been connected with lines, generating false calibration curves. Here we propose a methodology to create a
confidence band for the calibration curve based on a function that relates expected to observed probabilities across classes
of risk. The calibration belt allows the ranges of risk to be spotted where there is a significant deviation from the ideal
calibration, and the direction of the deviation to be indicated. This method thus offers a more analytical view in the
assessment of quality of care, compared to other approaches.
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Introduction

Fair, reliable evaluation of quality of care has always been a

crucial but difficult task. According to the classical approach

proposed by Donabedian [1], indicators of the structure, process,

or outcome of care can be variably adopted, depending on the

resources available, the purpose and the context of the analysis.

Whichever indicator is adopted, quality of care is assessed by

comparing the value obtained in the evaluated unit with a

reference standard. Unfortunately, this approach is hampered by

more or less important differences between the case-mix under

scrutiny and the case-mix providing the reference standard,

thereby precluding direct comparison. To solve this problem,

multipurpose scoring systems have been developed in different

fields of medicine. Their aim is to provide standards tailored on

different case-mixes, enabling the quality of care to be measured in

varying contexts. Most of these systems are prognostic models,

designed to estimate the probability of an adverse event occurring

(e.g., patient death), basing quality of care assessment on an

outcome indicator. These models are created on cohorts

representative of the populations to which they will be applied [2].

A simple tool to measure clinical performance is the ratio

between the observed and score-predicted (i.e. standard) probabil-

ity of the event. For instance, if the observed-to-expected event

probability ratio is significantly lower than 1, performance is

judged to be higher than standard, and vice versa. A more

sophisticated approach is to evaluate the calibration of the score,

which represents the level of accordance between observed and

predicted probability of the outcome. Since most prognostic

models are developed through logistic regression, calibration is

usually evaluated through the two Hosmer–Lemeshow goodness-

of-fit statistics, ĈC and ĤH [3]. The main limitations of this approach

[4,5] are overcome by Cox calibration analysis [6,7], although this

method is less popular. All these tests investigate only the degree of

deviation between observed and predicted values, without

providing any clue as to the region and the direction of this

deviation. Nevertheless, the latter information is of paramount

importance in interpreting the calibration of a model. As a result,

expected-to-observed outcome across risk subgroups is usually

reported in calibrations plots, without providing any formal

statistical test. Calibration plots comprise as many points as the

number of subgroups considered. Since these points are expected

to be related by an underlying curve, they are often connected in

the so-called ‘calibration curve’. However, one can more correctly

estimates this curve by fitting a parametric model to the observed

data. In this perspective, the analysis of standard calibrations plot

can guide the choice of the appropriate model.

In this paper we use two illustrative examples to show how to fit

such a model, in order to plot a true calibration curve and estimate

its confidence band.

Analysis

Two illustrative examples
Every year GiViTI (Italian Group for the Evaluation of

Interventions in Intensive Care Medicine) develops a prognostic
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model for mortality prediction based on the data collected by

general ICUs that join a project for the quality-of-care assessment

[8]. In our first example, we applied the GiViTI mortality

prediction model to 194 patients admitted in 2008 to a single ICU

participating to the GiViTI project.

In the second example, we applied the SAPS II [9] scoring

system to predict mortality in a cohort of 2644 critically ill patients

recruited by 103 Italian ICUs during 2007, to evaluate the

calibration of different scoring systems in predicting hospital

mortality.

In the two examples we evaluated the calibration of the models

through both traditional tools and the methodology we are

proposing. The main difference between the two examples is the

sample size: quite small in the former, quite large in the latter

example. Any valuable approach designed to provide quality-of-

care assessment should be able to return trustworthy and reliable

results, irrespective of the level of application (e.g., single physician,

single unit, group of units). Unfortunately, due to the decreasing

sample size, the closer the assessment is to the final healthcare

provider (i.e. the single physician), the more the judgment varies.

In this sense, it is crucial to understand how different approaches

behave according to different sample sizes.

In the first example, the overall observed ICU mortality was

32% (62 out of 194), compared to 33% predicted by the GiViTI

model. The corresponding standardized mortality ratio (SMR) was

0.96 (95% confidence interval (CI): 0.79, 1.12), suggesting an on-

average behavior of the observed unit. However, the SMR does

not provide detailed information on the calibration of the model.

For instance, an SMR value of 1 (perfect calibration) may be

obtained even in the presence of significant miscalibration across

risk classes, which can globally compensate for each other if they

are in opposite directions.

The Hosmer–Lemeshow goodness-of-fit statistics are an im-

provement in this respect. In the two proposed tests (ĈC and ĤH),

patients are in fact ordered by risk of dying and then grouped in

deciles (of equal-size for the ĈC test, of equal-risk for the ĤH test).

The statistics are finally obtained by summing the relative squared

distances between expected and observed mortality. In this way,

every decile-specific miscalibration leads to an increase in the

overall statistic, independently of the sign of the difference between

expected and observed mortality. The Hosmer–Lemeshow ĈC-

statistic in our sample yielded a x2-value of 32.4 with 10 degrees of

freedom (P~0:0003), the ĤH-statistic a x2-value of 32.7

(P~0:0003). These values contradict the reassuring message

given by the SMR and suggest a problem of miscalibration.

Unfortunately, the Hosmer–Lemeshow statistics only provide an

overall measure of calibration. Hence, any ICU interested in

gaining deeper insight into its own performance should explore

data with different techniques. More information is usually

obtained by plotting the calibration curve (reported in the left

panel of Fig. 1), which is the graphical representation of the rough

numbers at the basis of the ĤH-statistic. In the example, the curve

shows that the mortality is greater than expected across low risk

deciles, lower in medium risk deciles, greater in medium-high risk

deciles and, again, lower in high-risk deciles. Unfortunately, this

plot does not provide any information about the statistical

significance of deviations from the bisector. In particular, the

wide oscillations that appear for expected mortality greater than

0.5 are very difficult to interpret from a clinical perspective and

may simply be due to the small sample size of these deciles. Finally,

it is worth remarking that connecting the calibration points gives

the wrong idea that an observed probability corresponding to each

expected probability can be read from the curve even between two

points. This is clearly not correct, given the procedure used to

build the plot.

In the second example, the SMR was significantly different from

1 (0.83, 95% CI: 0.79, 0.88), indicating a lower than expected

mortality in our sample. The two Hosmer–Lemeshow goodness-

of-fit statistics (ĈC-value: 226.7, P~4:|1043; ĤH-value: 228.5,

P~2:|1043) confirm poor overall calibration. Finally, the

calibration curve (Fig. 1, right panel) tells us that the lower than

expected mortality is proportional to patient severity, as measured

Figure 1. Calibration plots through representation of observed mortality versus expected mortality (bisector, dashed line). Left panel:
Data of 194 patients staying longer than 24 hours in a single Intensive Care Unit (ICU) taking part in GiViTI (Italian Group for the Evaluation of
Interventions in Intensive Care Medicine) in 2008; expected mortality calculated with a prediction model developed by GiViTI in 2008. Right panel:
Data of 2644 critically ill patients admitted to 103 ICUs in Italy from January to March 2007; expected mortality calculated with SAPS II.
doi:10.1371/journal.pone.0016110.g001

Calibration Belt

PLoS ONE | www.plosone.org 2 February 2011 | Volume 6 | Issue 2 | e16110



by expected mortality. The first two dots are so close to the

bisector that they do not modify the general message, despite being

above it. Since expected mortality is calculated using an old model,

the most natural interpretation is that, as expected, ICUs

performed consistently better in 2008 than in 1993, when the

SAPS II score was developed.

In summary, the above-mentioned tools for assessing quality of

care based on dichotomous outcomes suffer from various

drawbacks, which are only partially balanced by their integrated

assessment. The SMR and Hosmer–Lemeshow goodness-of-fit

statistics only provide information on the overall behavior, which

is almost invariably insufficient for good clinical understanding,

for which a detailed information on specific values of mortality

would be necessary. The calibration curve seems to provide

complementary information, but at least two main disadvantages

undermine its interpretation: first, it is not really a curve; second,

it is not accompanied by any information on the statistical

significance of deviations from the bisector. In the following

sections, we propose a method to fit the calibration curve and to

compute its confidence band. This method is applied to both the

examples.

The calibration curve
We define p the probability of the dichotomous outcome

experienced by a patient admitted to the studied unit and e the

expected probability of the same outcome, provided by an

external model representing the reference standard of care. The

quality of care is assessed by determining the relationship

between e and p described by a function f . In the ICU example,

if a patient has a theoretical probability e of dying, his actual

probability p differs from e depending on the level of care the

admitting unit is able to provide. If he has entered a well-

performing unit, p will be lower than e and vice versa. Hence, we

can write

p~f (e): ð1Þ

The function f , to be determined, represents the level of care

provided or, in mathematical terms, the calibration function of

the reference model to the given sample.

We start to note that, from a clinical standpoint, e~1 represents

an infinitely severe patient with no chance of survival. The

opposite happens in the case of e~0, an infinitely healthy patient

with no chance of dying. Moreover, in the vast majority of real

cases, the expected probability of death is provided by a logistic

regression model

e~
1

1z exp { c0zc1x1zc2x2z . . . zckxkð Þ½ � , ð2Þ

where xi are the patient’s physiological and demographic

parameters and ci are the logistic parameters. In this case the

values e~0 or e~1 can only be obtained with non-physical

infinite values of the variables xi, which therefore correspond to

infinite (theoretical) values of physiological or demographic

parameters.

This feature can be made more explicit by a standard change of

variables. Instead of p and e, ranging between 0 and 1, we used

two new variables gp and ge, ranging over the whole real axis

({?,z?), such that g0~{? and g1~z?. A traditional way

of doing so is to log-linearize the probabilities through a logit

transformation, where the logit of x is the natural logarithm of

x=(1{x). Hence, Eq. (1) is rewritten as

gp~h(ge), gp:ln
p

1{p

� �
, ge:ln

e

1{e

� �
: ð3Þ

In a very general way, one can approximate h with a polynomial

hm of degree m:

hm(ge)~
Xm
i~0

aige
i: ð4Þ

Once the relation between the logits h has been determined, the

function f , as expressed in Eq. (1), is approximated up to the order

m by

p~fm(ai; e)~
1

1zexp {
P

m
i~0aigei

� � , ð5Þ

where ge is given in Eq. (3).

When m~1, Eq. (5) reduces to the Cox calibration function [6].

In this particular case, the probability p is a logistic function of the

logit of the expected probability e. The value of the parameters ai

can be estimated through the maximum likelihood method, from a

given set of observations oj , j~1, . . . ,n, where oj is the patient’s

final dichotomous outcome (0 or 1). Consequently, the estimators

âai are obtained by maximizing

lm~ lnLm~ln P
n

i~1
pi

oj (1{pj)
1{oj

� �

~
Xn

j~1

oj lnfm(ai; ej)z(1{oj)ln 1{fm(ai; ej)
� �� 	

,

ð6Þ

where Lm is the likelihood function and lm is its natural logarithm.

The optimal value of m can be determined with a likelihood-

ratio test. Defining l̂lm the maximum of the log-likelihood lm, for a

given m, the variable

Dmz1~2(̂llmz1{l̂lm) ð7Þ

is distributed as a x2 with 1 degree of freedom, under the

hypothesis that the system is truly described by a polynomial hm of

order m. Starting from m~1, a new parameter amz1 is added to

the model only if the improvement in the likelihood provided by

this new parameter is significant enough, that is when

Dmz1wx2
1,q, ð8Þ

where x2
1,q is the inverse of the x2 cumulative distribution with 1

degree of freedom. In the present paper we use q~0:99. The

iterative procedure stops at the first value of m for which the above

inequality is not satisfied. That is, the final value of mf is such that

for each mƒmf , Dmwx2
1,q and Dmf z1vx2

1,q.

The choice of a quite large value of q (i.e. retaining only very

significant coefficients) is supported by clinical reasons. In the

quality-of-care setting, the calibration function should indeed

avoid multiple changes in the relationship between observed and

expected probabilities. Whilst it is untenable to assume that the

performance is uniform along the whole spectrum of severity, it is

even less likely it changes many times. We can imagine a unit that

Calibration Belt
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is better (or worse) at treating sicker patients than healthy ones, but

it would be very odd to find a unit that performs well (or poorly) in

less severe, poorly (or well) in medium-severe, and well (or poorly)

in more severe patients. Large values of q assure to spot only

significant phenomena without spurious effects related to the

statistical noise of data.

A measure of the quality of care can thus be derived from

the coefficients ai. If a1~1 and ai~0 for i=1, the considered

unit performs exactly as the general model (i.e., the calibration

curve matches the bisector). Overall calibration can be assessed

through a Likelihood-ratio test or a Wald test, applied to the

coefficients ai, with the null hypothesis a1~1, ai~0 for i=1,

which corresponds to perfect calibration. In the particular case

in which m~1, a0 and a1 can be respectively identified with

the Cox parameters a and b [6]. Cox referred to them

respectively as the bias and the spread because a represents the

average behavior with respect to the perfect calibration, while

b=1 signals the presence of different behaviors across risk

classes.

In the first example (single ICU), the iterative procedure

described above stops at mf ~1, that is the linear approximation

of the calibration function. The Likelihood-ratio test gives a P-

value of 0.048 and the Wald test gives P~0:033. Both tests

warn that the model is not calibrating well in the sample.

Notably, this approach discloses a miscalibration which the

SMR fails to detect (see section Two illustrative examples),

confirming the result of the ĤH and ĈC tests. In the second

example (a group of ICUs), the iterative procedure described

above stopped at mf ~2. The Likelihood-ratio test gives a P-

value of 10{33 and the Wald test a P-value of 10{39, indicating

a miscalibration of the model.

One approach to obtain more detailed information about the

range of probabilities in which the model does not calibrate

well, is to plot the calibration function of Eq. (5), built through

the estimated coefficients âai, with 0ƒiƒmf , where mf is fixed

by the above described procedure. In Fig. 2, we plot such a

curve for our examples in the range of expected probability for

which observations are present, in order to avoid extrapolation.

The model calibrates well when the calibration curve is close to

the bisector. This curve is clearly more informative than the

traditional calibration plot of expected against observed

outcomes, averaged over subgroups (Fig. 1). In fact, spurious

effects related to statistical noise due to low populated

subgroups (in high risk deciles) are completely suppressed in

this new plot. However, no statistically meaningful information

concerning the deviation of the curve from the bisector has yet

been provided.

The calibration belt
To estimate the degree of uncertainty around the calibration

curve, we have to compute the curve’s confidence belt. In general,

given a confidence level q, by performing lots of experiments, the

whole unknown true curve f (e) will be contained in the confidence

belt in a fraction q of experiments. The problem of drawing a

confidence band for a general logistic response curve (m~1) has

been solved in [10,11]. In Appendix S1, the analysis of [10] is

generalized to the case in which mw1. In this section we report

only the result.

Determining a confidence region for the curve p(e)~f (a,b; e) is

equivalent to determining a confidence region in the m-

dimensional space of parameters ai. This is easy once one notes

that, for large n, the estimated âai, obtained by maximizing the

likelihood of Eq. (6), have a multivariate normal distribution with

mean values ai, variances Vii:s2
ai

, and covariances Vij:saiaj
(see

Eq. (S2) in Appendix S1).

Given a confidence level q, it is possible to show (see Appendix

S1) that the confidence band for p(e) is

CI(p(e))~ pmin,pmax
� �

~
1

1zexp({gmin
p )

,
1

1zexp({gmax
p )

 !
, ð9Þ

where the confidence interval of the logit gp is

Figure 2. Calibration functions (solid line) compared to the bisector (dashed line) for the two discussed examples. The stopping
criterion yielded mf ~1 for the left curve and mf ~2 for the right one. To avoid extrapolation the curve have been plotted in the range of mortality
where data are present. Refer to the caption of Fig. 1 for information about the data sets.
doi:10.1371/journal.pone.0016110.g002
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CI(gp)~(gmin
p ,gmax

p )~
Xm
i~1

aige
i{

 
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2,q

Xm
i,j~1

V̂V ijgeizj

vuut ,
Xm
i~1

aige
iz

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2,q

Xm
i,j~1

V̂V ijgeizj

vuut
1
A

ð10Þ

and x2
2,q is the inverse of the x2 cumulative distribution with 2

degrees of freedom. The above the variances denotes that the

values are estimated through the maximum likelihood method.

It is worth noting the one-to-one correspondence between this

procedure to build the confidence band and the Wald test applied

to the set of parameters ai. In fact, when the test P-value is less

than 1{q, the band at q confidence level does not include the

bisector and vice versa.

We are now able to plot the confidence belt to estimate the

observed probability p, as a function of the estimated probability

e, given by a reference model. Since the parameters of the

calibration curve and belt are estimated through a fitting

procedure, in order to prevent incorrect extrapolation, one must

not extend them outside the range of expected probability e in

which observations are present. In Fig. 3 we plot two confidence

belts, for both examples, using q~0:80 (inner belt, dark gray) and

q~0:95 (outer belt, light gray). Statistically significant informa-

tion on the region where the calibration curve calibrates poorly

can now be derived from this plot, where the bisector is not

contained in the belt.

In the first example (mf ~1), the confidence belts do not contain

the bisector for expected mortality values higher than 0.56 (80%

confidence level) and 0.83 (95% confidence level). This clarifies the

result of the Hosmer–Lemeshow tests which have already

highlighted the poor miscalibration of the model for the particular

ICU. Now it is possible to claim with confidence that this

miscalibration corresponds to better performance of the studied

ICU compared to the national average for high severity patients.

In the second example, given the larger sample, the number of

significant parameters is 3 (mf ~2) and the information provided

by the calibration belt is very precise, as proven by the very narrow

bands. From the calibration belt, the observed mortality is lower

than the expected one when this is greater than 0.25, while the

model is well calibrated for low-severity patients. The lower-than-

expected mortality is not surprising and can be attributed to

improvements of the quality of care since SAPS II was developed,

about 15 years before data collection.

Discussion

Calibration, which is the ability to correctly relate the real

probability of an event to its estimation from an external model, is

pivotal in assessing the validity of predictive models based on

dichotomous variables. This problem can be approached in two

ways. First, by using statistical methods which investigate the

overall calibration of the model with respect to an observed

sample. This is the case with the SMR, the Hosmer–Lemeshow

statistics, and the Cox calibration test. As shown in this paper, all

these statistics have drawbacks that limit their application as useful

tools in quality of care assessment. The aim of the second

approach is to localize possible miscalibration as a function of

expected probability. An easy but misleading way to achieve this

target is to plot averages of observed and expected probability over

subsets. As illustrated above, this procedure might lead to non-

informative or even erroneous conclusions.

We propose a solution to assess the dependence of calibration

on the expected probability, by fitting the observed data with a

very general calibration function, and plotting the corresponding

curve. This method also enables confidence intervals to be

computed for the curve, which can be plotted as a calibration

belt. This approach allows to finely discriminate the ranges in

which the model miscalibrates, in addition to indicating the

direction of this phenomenon. This method thus offers a

substantial improvement in the assessment of quality of care,

compared to other available tools.

Figure 3. Calibration belts for the two discussed examples at two confidence levels. q~0:80 (dark shaded area) and q~0:95 (light shaded
area); mf ~1 for the first example (left panel), mf ~2 for the second (right panel). bisector (dashed line). As in Fig. 2, the calibrations bands have been
plotted in the range of mortality where data are present. Refer to the caption of Fig. 1 for information about the data sets.
doi:10.1371/journal.pone.0016110.g003
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Supporting Information

Appendix S1 Computation of the confidence band. In this

Appendix, we compute the confidence band for the calibration

curve. By generalizing the procedure given in [10] to the case in

which mw1, we demonstrate the results reported in Eqs. (9) and

(10).
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