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Abstract

Protein concentrations depend not only on the mRNA level, but also on the translation rate and the degradation rate.
Prediction of mRNA’s translation rate would provide valuable information for in-depth understanding of the translation
mechanism and dynamic proteome. In this study, we developed a new computational model to predict the translation rate,
featured by (1) integrating various sequence-derived and functional features, (2) applying the maximum relevance &
minimum redundancy method and incremental feature selection to select features to optimize the prediction model, and
(3) being able to predict the translation rate of RNA into high or low translation rate category. The prediction accuracies
under rich and starvation condition were 68.8% and 70.0%, respectively, evaluated by jackknife cross-validation. It was
found that the following features were correlated with translation rate: codon usage frequency, some gene ontology
enrichment scores, number of RNA binding proteins known to bind its mRNA product, coding sequence length, protein
abundance and 59UTR free energy. These findings might provide useful information for understanding the mechanisms of
translation and dynamic proteome. Our translation rate prediction model might become a high throughput tool for
annotating the translation rate of mRNAs in large-scale.
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Introduction

It is often assumed that genes with high mRNA levels also have

high protein abundance. Thus, mRNA levels are used instead of

protein abundance. However, the regulation of gene expression

takes place at many levels, from transcription to translation and to

the post-translational modification. Many studies either could not

find the assumed correlation between mRNA level and protein

abundance [1] or the correlation was very weak[2,3]. By

estimation, only 20%–40% of protein abundance is determined

by the concentration of its corresponding mRNA [4,5]. The

reason for such weak correlation between protein and mRNA

levels is that protein concentrations depend not only on the

mRNA level, but also the translation rate and the degradation rate

[6].

Translation is the third process of gene expression. In this stage,

mRNA is decoded by the ribosome which binds to tRNAs with

complementary anticodon sequences. The tRNAs carry specific

amino acids that are synthesized into a polypeptide as the mRNA

passes through the ribosome. Translation has three steps:

initiation, elongation and termination [7]. Both empirical and

theoretical studies showed that the bottleneck step in the

translation process is the initiation of protein translation

[8,9,10]. At the initiation step, the ribosome binds to the five

prime untranslated region (59UTR) of mRNA and moves along

the mRNA until it gets to the translation start site (TSS). After

initiation is completed, the ribosome enters the elongation stage.

At elongation step, the ribosome waits until it intercepts an

appropriate tRNA whose anticodon complements the codon at the

A site of ribosome. Once the correct tRNA is intercepted by the

ribosome, the amino acid from the tRNA is transferred to the

ribosome associated peptide chain, and the ribosome moves

forward one codon. The waiting for the correct tRNA limits the

elongation process [10,11]. Translational initiation rate deter-

mines protein production rate and elongation rate determines

ribosome occupancy [8]. Therefore, ribosome density is propor-
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tional to translational initiation rate which determines protein

production while it is inversely proportional to translational

elongation rate.

The regulation of translation plays as important role as

transcriptional regulation in the control of gene expression.

Changes of the mRNAs translation rate have great influence on

the actual protein abundance. Dysregulation of translation will

result in various diseases, such as cancer and neurological

disorders [12].

With ribosome-profiling technology, ribosome-protected

mRNA fragments can be deep-sequenced and the translation rate

can be monitored, but it is time-consuming, expensive and not

helpful for understanding the translation mechanisms. Here we

choose Saccharomyces cerevisiae, one of the most studied model

organisms, to perform our study and predict the translation rate.

We used the ribosome-profiling data from Ingolia’s work [13] in

which the read density of mRNA is measured by deep sequencing

of ribosome-protected mRNA fragments under both rich and

starvation conditions. According to Ingolia’s work [13], the

translation rate (or called as translation efficiency) is defined as

the normalized read density of translation (footprints) divided by

the normalized read density of transcription (mRNA). The ratio of

ribosome footprints to mRNA fragments can roughly quantify the

rate of protein synthesis [13] although further improvements could

incorporate variations in the speed of elongation along the mRNA.

Each mRNA is represented by various sequence-derived and

functional features related to translation, such as codon usage

frequencies, gene ontology enrichment scores, biochemical and

physicochemical features, start codon features, coding sequence

length, minimum free energy, 59UTR length, 39UTR length,

number of transcription factors known to bind at the promoter

region, number of RNA binding proteins known to bind its

mRNA product, protein abundance, mRNA half life, protein half

life and 59UTR free energy. With this dataset, an efficient

computational model to predict the translation rate was con-

structed with Nearest Neighbor Algorithm (NNA) and cross-

validated. The prediction accuracies of jackknife cross-validation

under rich and starvation condition were 68.8% and 70.0%,

respectively. More specifically, to identify the most important

features regulating translation rates under different conditions, we

applied maximum relevance & minimum redundancy and

incremental feature selection to select the important features for

predicting the translation rate in rich and starvation conditions,

respectively. Our results suggest that the following features are

correlated with translation rate: codon usage frequency, some gene

ontology enrichment scores, biochemical and physicochemical

features of protein (such as amino acids composition, polarity,

normalized Van Der Waals volume), number of RNA binding

proteins known to bind its mRNA product, coding sequence

length, protein abundance and 59UTR free energy. Our findings

might provide clues for understanding the mechanisms of

translation. The translation rate prediction model could become

a useful tool for annotating the translation rate of mRNAs in

large-scale.

Materials and Methods

Dataset
The ribosome-profiling data we used are from Ingolia’s work

[13] and publicly available at GEOs http://www.ncbi.nlm.nih.

gov/geo/query/acc.cgi?acc = GSE13750. With ribosome-profil-

ing technology, Ingolia et al. [13] deep-sequenced the ribosome-

protected mRNA fragments and monitored the genome-wide

translation with subcodon resolution in Saccharomyces cerevisiae

under both rich and starvation conditions. To get the translation

rate, we divided the normalized read density of translation

(footprints) by the normalized read density of transcription

(mRNA) [13]. The ratio of ribosome footprints to mRNA

fragments represents the translation rate and according to their

values [13], we characterize the translation rates into two groups

which are: (1) smaller than median or equal to median, (2) greater

than median. Open Reading Frames (ORFs) in the former group

have low translation rate, while the ORFs in the latter group have

high translation rate. We characterized the translation rates in

rich condition and starvation condition, respectively. The

number of ORFs with low translation rates and high translation

rates in rich condition and starvation condition can found in

Table 1.

Feature Construction
Codon usage frequency features. We downloaded the

ORF coding sequences from Saccharomyces Genome Database

(SGD) [14] and calculated the codon relative frequencies with

seqinR [15]. It was reported that highly expressed genes have

different codon preference with low expressed gene and the

pattern of codon usage can be used to predict the gene expression

level in yeast [16]. It is highly possible that ORFs with different

translation rate have different codon usage pattern, too. There

were 43~64 codon usage frequency features.

Gene Ontology features. Proteins are produced to achieve

their biological functions. As demand determines production, the

translation rate of ORF is definitely correlated with its biological

functions. The function of one protein can be better described in

protein interaction network, i.e. the network context will give a

comprehensive and robust description of its function. In this study,

the network context we used was STRING[17]. The Gene

Table 1. The number of ORFs with low translation rates and high translation rates in rich condition and starvation condition.

Starvation condition The number of ORFs

The number of ORFs with Low
translation rate

The number of ORFs with High
translation rate

Rich condition The number of ORFs with Low
translation rate

1125 209 1334

The number of ORFs with High
translation rate

209 1124 1333

The number of ORFs 1334 1333 2667

doi:10.1371/journal.pone.0016036.t001

Translation Rate Prediction
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Ontology enrichment score of protein i on Gene Ontology term

jwas defined as the –log10 of the hypergeometric test p value [18]

of its neighbors on STRING network and can be computed by

equation (1):

Score
j
i~{log10 p-valueð Þ~{log10

Xn

k~m

M

k

� �
N{M

n{k

� �

N

n

� �
0
BBB@

1
CCCAð1Þ

where N is the number of overall ORFs in yeast, M is the number

of ORFs annotated to Gene Ontology term j, n is the number of

ORFs in ORF set i which includes protein iand its neighbors on

STRING network, m is the number of ORFs from ORF set i that

are annotated to Gene Ontology term j. The larger the enri-

chment score of one Gene Ontology term, the more over-

represented this term is. There were 4148 Gene Ontology (GO)

enrichment score features.

Biochemical and physicochemical features of proteins.

To encode proteins of different sequence lengths with a uniform

dimensional vector, we adopted the notion of pseudo amino acid

composition (PseAAC) [19,20]. Each protein sequence was

represented by 132 biochemical and physicochemi-

cal features which can be categorized into seven groups: (1)

amino acid composition [21,22], (2) solvent accessibility, (3)

normalized van der Waals volume, (4) polarizability, (5)

secondary structure, (6) hydrophobicity, and (7) polarity [23].

Except for amino acid composition, all the other six ones are

generated by integrating the pseudo properties of amino acid in

the protein sequence and each amino acid can be classified into

two or three pseudo groups. For secondary structure, each amino

acid can be predicted by SSpro [24] as: helix, strand or coil. For

solvent accessibility, each amino acid is predicted by ACCpro [25]

as: exposed or buried to solvent. In terms of hydrophobicity, there

are three groups of amino acid: hydrophobic (C, V, F, L, I, M,W),

neutral (G, P, H, A, S, T,Y) and polar (Q, E, R, K, D, N)[26]. For

polarizability: {Y, M, K, R,H, F,W}, {C, Q, I, P, N, V, E L} and

{S, D, G, A, T} [27]. For normalized van der Waals volume: {K,

F, M, H, R, Y, W}, {E, Q, N, V, I, L} and {S, C, G, A,T, P, D}

[28]. For polarity: {K, N, H, Q, R,E, D}, {T, G, P, A, S} and {W,

C, L, I, F,M, V, Y} [29].

To generate the global protein features by integrating the local

quantities of amino acid over the entire protein sequence, the

following three quantities are calculated: C(composition), T (tran-

(transition), and D(distribution). The detailed computational

procedures and a well illustrated example can be found in our

previous work [30]. Generally speaking, Crefers to the percent of

each pseudo group in the sequence; T to the frequencies with

which one pseudo group changes to another; and Dto the relative

position where the first, twenty-five percent, fifty-percent, seventy-

five percent, and last of each kind of pseudo letters occur.

For polarity, secondary structure, polarizability, hydrophobicity

and normalized van der Waals volume, each amino acid has three

pseudo groups and would generate 21 protein features. For solvent

accessibility, each amino acid has two pseudo groups and would

only generate 7 protein features.

Now for the amino acid composition we have 20 features; for

solvent accessibility, 7 features; and for the other five properties,

each has 21 features. Combining them together, each protein has

5 | 21 z 20 z 7ð Þ~132 features. The detailed explanation of

each biochemical and physicochemical feature can be found in our

previous work [30].

Start codon features. During the translation initiation, the

40S subunit of ribosome binds to a site upstream of start codon. It

proceeds downstream until it encounters the start codon and

form the initiation complex of translation. The start codon is

typically AUG (or ATG in DNA) and related with translation

initiation. We extracted sequences in untranslated region 3 bp

upstream of the initial ATG and sequences in coding region 3 bp

downstream of the initial ATG. We encoded the 6 bp DNA

sequences up/downstream of start codon ATG binarily and

each base pair was represented by a 4-dementional vector:

A~ 1,0,0,0f g,T~ 0,1,0,0f g, C~ 0,0,1,0f gand G~ 0,0,0,1f g.
Coding sequence length. We calculated the coding

sequence length of each ORF as a potential feature for

translation rate prediction.

Free energy of 42 nucleotide cross translation start

site. Kudla et al. [31] identified a region, from nucleotide (nt)

–4 to +37 relative to translation start site, for which predicted

folding energy can explain some of the of the variation to

differences in protein levels. So we calculated the minimum free

energy of 42 nucleotide (nt) –4 to +37 relative to translation start

site, with Vienna [32].

Various parameters of untranslated regions from

Tuller’s study. Tuller et al.[33] collected various properties

of untranslated regions of the S. cerevisiae genome and we used

the following 8 features from Tuller’s study: 59UTR length,

39UTR length, Number of transcription factors known to bind at

the promoter region, Number of RNA binding proteins known to

bind its mRNA product, Protein abundance, mRNA half life [34],

Protein half life and 59UTR free energy[35]. Unlike the above free

energy, here the 59UTR free energy is calculated with 59-UTR

100 nt [33,35].

Feature space of ORF
As mentioned above, there are 64 codon usage frequency

features, 4148 Gene Ontology (GO) enrichment score

features, 132 biochemical and physicochemical features, 24

start codon features and 10 other features. The total features

used in this study to represent an ORF sample would

be 64z4148z132z4|6z10ð Þ~4378.

mRMR method
In this study, we used the Maximum Relevance and Minimum

Redundancy (mRMR) feature selection method [36,37] to rank

4378 features of each ORF considering both their relevance to

translation rates and the redundancy among them. The mRMR

selected features have maximum relevance with the translation

rates and meanwhile minimally redundant, i.e., maximally

dissimilar to each other. Both relevance and redundancy are

measured with mutual information (MI), which is defined as

follows:

I x,yð Þ~
ðð

p x,yð Þ log
p x,yð Þ

p xð Þp yð Þ dxdy ð2Þ

where x and y are two vectors, p x,yð Þ is the joint probabilistic

density, p xð Þ and p yð Þ are the marginal probabilistic densities.

Let V denotes the whole vector set containing all 4378 features,

Va 5Vð Þ denotes the selected feature set with a feature vectors,

and Vb 5Vð Þ denotes the to-be-selected feature set with b feature

vectors. The relevance R of a feature f in Vb with the translation

rate class c can be computed by equation (3):

Translation Rate Prediction
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R~I(f ,c) ð3Þ

The redundancy D of a feature f in Vb with all the features in

Va can be computed by equation (4):

D~
1

a

X
fi[V

a

I f ,fið Þ ð4Þ

To select a feature fj from Vb with maximum relevance with

translation rates and minimum redundancy with selected features

in Va, the mRMR function which integrates equation (3) and

equation (4) is defined:

max
fj[V

b
I fj ,c
� �

{
1

a

X
fi[V

a

I fj,fi

� �2
4

3
5 j~1,2,:::,bð Þ ð5Þ

For a feature pool containing N ~azbð Þ features, feature

evaluation will be executed in Nrounds. After these evaluations, a

feature set S will be obtained:

S~ f1

0
,f2

0
,:::,fh

0
,:::,f

0
N

n o
ð6Þ

where each feature has an mRMR order, representing at which

round the feature is selected. The smaller order means more

important.

Nearest Neighbor Algorithm
To classify ORFs into different translation rate categories, the

Nearest Neighbor Algorithm (NNA) was applied. Its basic idea is

to predict a new ORF into its translation rate categories by

comparing the features of this ORF with the features of those with

known translation rate categories. The distance between two ORF

vectors px and py is defined as [30,38]:

D px,py

� �
~1{

px
:py

jjpxjj:jjpyjj
ð7Þ

where px
:py is the inner product of px and py, and jjpjj is the

module of vector p. px and py are consider to be more similar if

D px,py

� �
is smaller.

In NNA, an ORF with feature vectorpt will be predicted as

having the same translation rate class as its nearest neighbor which

has the smallest D pn,ptð Þ. That is

D pn,ptð Þ~ min D p1,ptð Þ,D p2,ptð Þ,:::,D pz,ptð Þ,:::,D pN ,ptð Þf g z=tð Þ ð8Þ

where N represents the number of training ORFs with known

translation rates.

Jackknife Cross-Validation Method
We used Jackknife Cross-Validation Method [38,39], one of the

most objective methods, to evaluate the performance of prediction.

During Jackknife Cross-Validation, each ORF in the dataset is

tested in turn by the translation rate predictor, which is trained by

the other ORFs in the data set. Each ORF is involved in training

N{1 times and is tested exactly once. To evaluate the

performance of the translation rate predictor, the prediction

accuracy for the overall ORFs can be calculated as:

Q~
ThighzTlow

NhighzNlow

ð9Þ

where Thigh and Tlow stand for the number of correctly predicted

ORFs with high and low translation rate, respectively; Nhigh

and Nlow are the number of ORFs with high and low trans-

lation rate, respectively.

Incremental Feature Selection (IFS)
When the mRMR step was completed, we obtained an ordered

feature list but still do not know how many fore features in the list

should be chosen. To determine the optimal number of features,

Incremental Feature Selection (IFS) [30,38] was applied by

constructing Nfeature subsets of the feature list S provided by

mRMR. Starting from only the first feature S1~ f1f g, the feature

subset Si is defined as:

Si~ f1,f2,:::,fif g 1ƒiƒNð Þ ð10Þ

by adding feature fi to the previous subset Si{1~ f1,f2,:::,fi{1f g.
For each feature subset Si i~1,:::,Nð Þ, we calculated the

prediction accuracy elevated by Jackknife Cross-Validation. The

prediction accuracies with different feature numbers form an IFS

curve with feature numberi as its x-axis and the prediction

accuracy as its y-axis.

The correlation between features and translation rate
To identify the direction of the correlation between features

selected by mRMR and IFS with translation rate, we calculated

the point-biserial correlation coefficient between them. The point

biserial correlation [40] is a measure of association between a

continuous variable and a binary variable. Assume that X is the

selected feature which is a continuous variable and Y is the

translation rate which is binary. The point biserial correlation is

calculated as

r~
Xhigh{Xlow

sdX

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
phigh 1{phigh

� �q
ð11Þ

where Xhigh is the mean of X with high translation rate, Xlow is the

mean of X with low translation rate, phigh is the proportion of X

with high translation rate, sdX is the standard deviation of X . The

point biserial correlation is positive when large values of Xare

associated with high translation rate and small values of Xare

associated with low translation rate.

Results

Identification of relevant features and construct
translation rate prediction model

Using mRMR method, we ranked and analyzed the top 500

relevant features to translation rate with Maximum Relevance

Minimum Redundancy method. Each of them has the maximal

relevance with translation rate and the minimal redundancy with

other features. Then in Incremental Feature Selection (IFS)

procedure, 500 prediction models were constructed using nearest

neighbor algorithm with 1, 2, 3… 499 and 500 features

respectively and tested by jackknife cross-validations as described

above. The IFS results of rich and starvation condition were

shown in Figure 1 (A) and Figure 1 (B), respectively. It can be

ð8Þ
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seen from Figure 1 (A) that the translation rate prediction model

of rich condition achieved the peak accuracy at 68.8% with 37

features. These 37 features formed the optimal feature set for

translation rate prediction model of rich condition and are

provided in Table S1. Similarly, in Figure 1 (B), the translation

rate prediction model of starvation condition achieved the highest

accuracy at 70.0% with 86 features. These 86 features formed the

optimal feature set for translation rate prediction model of

starvation condition and can be found in Table S2.

Factors correlated with translation rate
We compared the optimal 37-feature set of rich condition and

the optimal 86-feature set of starvation condition and found there

were 27 common features between them. These 27 common

features are provided in Table 2. To identify what kinds of

features are important for translation rate prediction, we

calculated the numbers of each kind of features in the optimal

feature set. Figure 2 shows the numbers of each kind of features

in (A) the optimal 37-feature set of rich condition, (B) the optimal

86-feature set of starvation condition. As we can see from

Figure 2, Table S1, Table S2 and Table 2, the following

kinds of features are correlated with translation rate: (1) Codon

usage frequency, (2) some Gene Ontology (GO) enrichment

scores, (3) protein features (such as amino acids composition,

polarity, normalized Van Der Waals volume) and (4) other

features (such as Number of RNA binding proteins known to bind

its mRNA product, Coding sequence length, Protein abundance

and 59UTR free energy).

Discussion

In this study, we have developed a new computational method

to predict the translation rate by integrating various sequence-

derived features and functional features. In rigorous jackknife

cross-validation test, the predictor can achieve an overall

prediction accuracy of 68.8% and 70.0% in rich and starvation

conditions, respectively. We concluded that the following features

are correlated with translation rate: codon usage frequency, some

GO enrichment scores, protein features (such as amino acids

composition, polarity, normalized Van Der Waals volume),

number of RNA binding proteins known to bind its mRNA

product, coding sequence length, protein abundance, and 59UTR

free energy. The following elucidations on these features

confirmed their informative and importance in understanding

the translation rate and translation mechanism in large-scale.

Codon usage frequency
It has been reported by several studies that codon bias is the

major factor for translation efficiency [31,41]. In this study, we

analyzed the relationship between the codon usage frequencies of

ORFs and their translation rate. Our analysis not only confirmed

the strong correlation between codon usage frequencies and

translation efficiency, but also showed that more usage of which

codon will result in high translation efficiency. It was found that

the ORFs with higher frequencies of the following codons (AAC,

TCT, ACC, TCC, GCC, GCT, CCA) tend to have higher rate of

protein synthesis; on the other hand, higher frequency of the

codons (ATA, CGA, TGC, GTA, GGA, CTT, AGG, CGG,

TAT) relates to lower translation efficiency.

Gene Ontology (GO) enrichment scores
We also analyzed 4148 Gene Ontology (GO) enrichment score

features based on the STRING network context [17]. Interest-

ingly, our analysis indicates that ORFs with different functions or

subcellular locations will have different translation rate. The

translation differences among different function groups have been

mentioned before [42]. According to our analysis, in starvation

condition, ORFs with cellular response function tend to have

higher translation rate probably to improve the survival in this

extreme condition. In starvation, high translation rate correlated

with GO groups related to ‘cellular response’ (e.g. GO:0034605 -

cellular response to heat, GO:0009409 - response to cold,

GO:0009266 - response to temperature stimulus). An interesting

Figure 1. The IFS curves of translation rate prediction in rich and starvation condition. The IFS curves for (A) the translation rate
prediction model of rich condition achieved the peak accuracy at 68.8% with 37 features and (B) the translation rate prediction model of starvation
condition achieved the highest accuracy at 70.0% with 86 features.
doi:10.1371/journal.pone.0016036.g001

Translation Rate Prediction
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contrast is the fact that the GO groups ‘GO:0005737 – cytoplasm’

and ‘GO:0001950 - plasma membrane’ are enriched with genes

with high translation rate while the GO group ‘GO:0005634 –

nucleus’ is enriched with genes with low translation rate. A

possible explanation for this result is that in starvation condition in

order to survive proteins in membrane and cytoplasm over-

express, and genes related to DNA duplication (replication in the

nucleus) under-express.

Protein features
In our study, the protein features such as amino acids

composition, polarity, normalized Van Der Waals volume were

correlated with translation rate. The correlation between amino

acid composition and protein abundance level has been reported

[43] and it is possible that the amino acid composition may

influence translation. The reason for the importance of protein

features in translation efficiency prediction maybe that these

features are strongly related to its function. And the translation

difference among different function groups was mentioned in

Ghaemmaghami’s work [42].

Other features
There are additional features that are useful for translation rate

prediction. ‘Number of RNA binding proteins known to bind its

mRNA product’, ‘Coding sequence length’, ‘Protein abundance’

and ‘59UTR free energy’ are examples of such features. Firstly,

there are a number of RNA binding proteins known to influence

mRNA translation rate by bind its mRNA. For instance, RNA-

binding proteins HuR and PTB promote the translation of

Hypoxia-Inducible Factor 1a [44]. Cytochrome c mRNA

translation is controlled by TIA-1 and HuR [45]. Furthermore,

the correlation between protein abundance and the level of gene

expression has been intensively studied (mainly on yeast). It was

suggested that the relatively weak correlation between protein and

mRNA abundance is due to different rates of translation and

protein degradation [46]. Here we found that the ORFs with

higher protein abundance tend to have higher translation rate.

Thus, it is possible that the relatively weak correlation between the

mRNA levels and protein abundance can be partially explained by

the fact that translation rate is an important determinant of protein

abundance that can’t be estimated from mRNA levels. The last

factor is 59UTR free energy. It supports that previous studies that

suggested that base-pairing potentials analysis of 59UTR in various

prokaryotes indicated that 59UTR free energy is important for

translation initiation [47].

Taken together, these sequence-derived and functional features

are significantly-related to mRNA translation. Therefore, our

prediction model might become a high throughput tool for

Table 2. The common features for translation rate prediction in both rich condition and starvation condition.

Name Feature Type
Point-Biserial
Correlation (rich)

Point-Biserial
Correlation (starvation)

ATA Codon usage frequency 20.3641809 20.320724134

V123 Amino acids composition 0.217345654 0.249518281

CGA Codon usage frequency 20.297473206 20.244839127

TCC Codon usage frequency 0.251689274 0.234058044

NoofRNABindingProteins Other (Number of RNA binding proteins known to bind
its mRNA product)

0.22353164 0.194339726

GCT Codon usage frequency 0.279887045 0.266483213

V126 Amino acids composition 20.180096048 20.149802124

GGA Codon usage frequency 20.208428434 20.176300373

cds.length Other (Coding sequence length) 0.097429773 20.03025402

V72 Polarity 0.279590151 0.307614177

CGG Codon usage frequency 20.189139955 20.147269889

PA Other (Protein abundance) 0.141561548 0.120850079

AGG Codon usage frequency 20.199042873 20.154301709

CCA Codon usage frequency 0.282776605 0.283726919

ACC Codon usage frequency 0.24618065 0.230897941

TGC Codon usage frequency 20.220759013 20.173512017

GO:0005737 GO (GO:0005737_cytoplasm) 0.242558032 0.206209243

GCC Codon usage frequency 0.268835706 0.270918872

GTA Codon usage frequency 20.212847373 20.20408338

GO:0042277 GO (GO:0042277_peptide binding) 0.137845496 0.139232871

CTT Codon usage frequency 20.203855194 20.190162108

TCT Codon usage frequency 0.194907502 0.185575651

TAT Codon usage frequency 20.188268811 20.173452245

AAC Codon usage frequency 0.143590251 0.176587498

GO:0006878 GO (GO:0006878_cellular copper ion homeostasis) 0.134957407 0.131972094

V55 Normalized Van Der Waals volume 20.19022717 20.191407228

doi:10.1371/journal.pone.0016036.t002
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annotating the translation rate of mRNAs. As a preliminary

predictor of translation rate, the current model can only give the

high or low categories of translation rate. When more in-depth

understanding of translation is accumulated, the regression model

might be tried to construct a more practical predictor which can

directly estimate the translation rate.
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