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Abstract

Abl kinase inhibitors targeting the ATP binding pocket are currently employed as potent anti-leukemogenic agents but
drug resistance has become a significant clinical limitation. Recently, a compound that binds to the myristate pocket of Abl
(GNF-5) was shown to act cooperatively with nilotinib, an ATP-competitive inhibitor to target the recalcitrant ‘‘T315I’’
gatekeeper mutant of Bcr-Abl. To uncover an explanation for how drug binding at a distance from the kinase active site
could lead to inhibition and how inhibitors could combine their effects, hydrogen exchange mass spectrometry (HX MS)
was employed to monitor conformational effects in the presence of both dasatinib, a clinically approved ATP-site inhibitor,
and GNF-5. While dasatinib binding to wild type Abl clearly influenced Abl conformation, no binding was detected between
dasatinib and T315I. GNF-5, however, elicited the same conformational changes in both wild type and T315I, including
changes to dynamics within the ATP site located approximately 25 Å from the site of GNF-5 interaction. Simultaneous
binding of dasatinib and GNF-5 to T315I caused conformational and/or dynamics changes in Abl such that effects of
dasatinib on T315I were the same as when it bound to wild type Abl. These results provide strong biophysical evidence that
allosteric interactions play a role in Abl kinase downregulation and that targeting sites outside the ATP binding site can
provide an important pharmacological tool to overcome mutations that cause resistance to ATP-competitive inhibitors.
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Introduction

Protein kinases are now avidly pursued as therapeutic targets for a

host of human ailments, especially cancers [1–2]. The vast majority

of reported inhibitors target the ATP binding site but because the

ATP binding pocket is highly conserved among the human protein

kinase, there can be cross-reactivity with a number of other kinases.

This cross-reactivity is, in many cases, therapeutically undesirable.

The search for more potent and target-specific ATP site inhibitors

has been met with limited success making alternative kinase

inhibition approaches involving therapeutics that target sites other

than the ATP binding pocket very attractive. As many protein

kinases have multiple regulatory sites that are often kinase specific,

these sites provide the opportunity to develop non-ATP competitive

protein kinase inhibitors with potentially higher selectivity.

Abl kinase is an important inhibitor target due to the role of the

Bcr-Abl fusion protein in the development of Chronic Myleogen-

ous Leukemia (CML). Imatinib (STI-571, Gleevec) [3], nilotinib

(AMN 107) [4] and dasatinib (BMS-354825) [5] are among the

ATP-competitive inhibitors of Bcr-Abl catalytic activity that

have demonstrated remarkable efficacy in chronic-phase CML

(reviewed in [6–9]). For example, imatinib results in a greater than

80% response rate when patients are treated in the chronic phase

of CML. However, approximately 60% of patients in the blast-

crisis phase will develop resistance to imatinib [10–12]. Drug

resistance can occur upon the emergence of cells expressing point

mutations in Bcr-Abl [9]. Of the more than 50 clinically detected

point mutations in Bcr-Abl, the majority occur in the ATP-binding

pocket and appear to result in a steric impediment to drug binding

[11,13–15]. Other mutations remote from the ATP-binding site

are thought to confer resistance by destabilizing the ‘‘DFG-out’’

conformation required for imatinib binding [5] or thorough

other allosteric mechanisms. Later generation inhibitors such as

nilotinib, dasatinib and bosutinib [16] overcome some of the

resistance created by the majority of the mutations. Both dasatinib

and nilotinib exhibit higher binding affinity for the ATP-site and

can overcome all but the T315I gatekeeper mutation [4,17]. In

addition, other new ATP-competitive inhibitors capable of

inhibiting T315I Bcr-Abl have been reported in conjunction with

co-crystal structures: PPY-A [15], SGX393 [18], and PHA-

739358 [14], AP24163 [19], DSA series compounds [20], HG-7-

85-01 [21] and AP24534 [22]; see also [23].
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We previously reported on the discovery of GNF-2, a small

molecule inhibitor of Bcr-Abl dependent cell proliferation [24].

Based upon mutational analysis, GNF-2 was found to bind not to

the ATP pocket, but instead to the myristate binding pocket

located at the C-terminus of the Abl kinase domain. Studies with

drug resistant mutants showed that GNF-2 maintains potency

against a subset of the clinically relevant imatinib-resistant Bcr-Abl

mutants (e.g., E255V, Y253H), but was surprisingly much weaker

against the T315I gatekeeper mutant [24]. Further evidence

showed that GNF-2 compounds do indeed bind to the myristate

pocket [25] and effectively inhibit kinase activity on their own.

In the current work, we set out to understand mechanistically

how GNF compounds inhibit kinase activity. In addition to

potentially changing the conformation of the aI helix, GNF-2

binding could allosterically influence the catalytic site resulting in

kinase inhibition through an as of yet unknown mechanism. This

hypothesis has validity because there appears to be more to the

effect of the GNF inhibitor than enhancement of SH2 docking to

the kinase domain. GNF-2 and GNF-5 are not potent cellular

inhibitors of the T315I mutant but combinations of nilotinib [25]

or dasatinib (below) with GNF-5 are very effective inhibitors of

T315I both in vitro and in vivo. The ability of the T315I mutation to

activate Abl [26] and the inability of T315I to be potently

inhibited by GNF-2/5 suggests that this mutation may cause a

more widespread conformational rearrangement of the kinase

domain that partially uncouples it from allosteric control by the

myristic acid pocket in the large lobe. In addition, because other

sites of both activating mutations and inhibitor binding can occur

well outside of the Abl active site, there seems to be evidence

supporting the existence of long-range conformational coupling

within the Abl kinase core. Therefore, allosteric inhibitors that

target the Abl kinase core may function by altering the

conformational dynamics of the active site and its ability to bind

to ATP competitive inhibitors.

Hydrogen exchange (HX) mass spectrometry (MS) was used to

study the conformational effects that result from binding of

dasatinib and GNF-5, both individually and in combination, to

wild-type Abl core (a construct containing the NCap, SH3, SH2

and the kinase domain) and a T315I mutant version of Abl core.

All experiments were performed with the Abl core expressed in E.

coli [27]; therefore, this protein was not myristoylated on the N-

terminus and it is in an active conformation, as was shown

previously [27]. While many drug-interaction studies have been

performed with the kinase domain alone, the present results are

some of a few conformational studies that make use of the entire

Abl kinase core.

The results show that dasatinib binding to Abl induced dynamic

changes near the ATP binding site only. There were no significant

changes in hydrogen exchange for Abl T315I in the presence of

dasatinib, illustrating a lack of interaction between dasatinib and

this mutant. As shown previously, GNF-5 binding to the myristic

acid site caused a reduction of hydrogen exchange in both the

myristate and the ATP site [25]. GNF-5 still elicited the same

alterations to hydrogen exchange in T315I as it did in wt Abl.

Finally, in a combination experiment, hydrogen exchange in the

T315I protein in the presence of both dasatinib and GNF-5

demonstrated changes in exchange near the ATP site that were

nearly the same as those seen when dasatinib bound to wild-type

Abl. Taken together, the results provide evidence for allosteric

communication between the two sites and indicate that the factors

leading to dasatinib resistance are somehow overcome by

simultaneous binding of GNF-5 some 25 Å away. Targeting the

Abl myristate binding site can provide an important pharmaco-

logical tool to suppress the rise of drug resistant mutations, and

overcome existent mutations that are resistant to ATP-competitive

inhibitors.

Materials and Methods

Materials
96% formic acid, deuterium oxide (99.9%), sodium chloride

and Tris-hydrochloride were purchased from Sigma-Aldrich (St.

Louis, MO). Acetonitrile and water (W5-4 HPLC grade) were

purchased from Fisher Scientific. Potassium phosphate was

purchased from EMD Biosciences. All chemicals were used

without further purification unless otherwise specified. GNF-5

[25] was synthesized according to published procedures and

dasatinib was purchased from LC Laboratories (Woburn, MA).

Preparation of recombinant proteins
The bacterial expression of human c-Abl kinase (residues 46–

515, Abl 1a numbering [28]) was performed as previously

described [29]. A pET-28a encoded Abl was co-expressed with

YopH phosphatase in Escherichia coli BL21DE3 cells. Cultures

were grown to an OD600 of 1.2 at 37uC, cooled for 1 h with

shaking at 18uC prior to induction for 16 h at 18uC with 100 mM

IPTG. Cells were harvested by 10 min centrifugation at 7000 g at

4uC and resuspended in 50 mM Tris (pH 8.0), 500 mM NaCl,

5% glycerol, 25 mM imidazole (buffer A). Insoluble protein and

cell debris of cell lysate were sedimented by centrifugation at

40,000 g for 40 minutes at 4uC. The supernatant was loaded onto

a Ni affinity column (HisTrap FF, GE Lifescience), equilibrated

with buffer A. The loaded column was washed with five column

volumes of buffer A, and protein was eluted with a linear gradient

of 0–50% of buffer B (Buffer A plus 0.5 M imidazole). The peak

fractions were analyzed by SDS-PAGE. Fractions containing the

kinase were pooled and dialyzed against 20 volumes of buffer QA

(20 mM Tris-pH 8.0, 100 mM NaCl, 5% glycerol, 1 mM DTT)

using a 13-kDa molecular weight cutoff membrane. Tobacco etch

virus protease TEV (expressed in bacteria using a plasmid kindly

provided by M. J. Eck lab at DFCI) was added to the pooled

protein to cleave the His tag (the ratio of TEV to total protein was

1 to 60). Dialysis and protease digestion were carried out overnight

at 4uC. Subsequent anion exchange chromatography (HiTrap Q

FF, GE Lifescience) at room temperature was used to remove

protease and phosphatase contaminants. Proteins were eluted with

a linear gradient of 0–35% buffer QB (buffer QA plus 1 M NaCl),

and peak fractions were analyzed by SDS-PAGE.

Purity and mass of all proteins were verified by electrospray

mass spectrometry (see Supplemental Figure S1). The proteins

were not myristoylated or Ser69 phosphorylated. No inhibitors or

ATP/Mg2+ were used during purification of Abl proteins or data

acquisition. See Ref. [27] for amino acid sequence information.

Kinetic characterization of Abl inhibition
The ATP/NADH-coupled assay system in a 96-well format was

used to determine the initial velocity of Abl tyrosine kinase

catalyzed peptide phosphorylation. The reaction mixture con-

tained 20 mM Tris-HCl, (pH 8.0), 50 mM NaCl, 10 mM MgCl2,

2 mM PEP [2-(Phosphonooxy)- 2-propenoic acid, Sigma-Aldrich,

cat. P-7002) and 20 mM Abl peptide substrate (EAIYAAP-

FAKKK, New England Biolabs, Cat No. P6051L), fixed or varied

(to determine inhibitor kinetic parameters) concentration of

inhibitor applied, 1/50 of the final reaction mixture volume of

PK/LDH enzyme (pyruvate kinase/lactic dehydrogenase enzymes

from rabbit muscle, Sigma-Aldrich, cat. P-0294), 160 mM NADH,

0.16 mM Abl, and ATP added last to start the reaction.

Absorbance data were collected every 20 s at 340 nm using a

Allostery in Abl Kinase

PLoS ONE | www.plosone.org 2 January 2011 | Volume 6 | Issue 1 | e15929



SpectraMax M5 Microplate Reader. The two-substrate kinase

reaction was simplified to two one-substrate reactions to determine

ATP kinetic parameters and inhibitor parameters separately.

When determining ATP parameters, the inhibitor concentration

was kept the constant. When determining inhibition parameters,

the ATP concentration was fixed at 20 mM. Steady-state initial

velocity data were drawn from the slopes of the A340 curves and

fit to the Michaelis-Menten equation to determine Vmax and Km

values. Data were fitted globally using GraphPad Prism (Graph-

Pad Software) and Excel XLfit 4.0 to fit velocity equations for

competitive and mixed inhibition. At a concentration of 3 uM,

GNF-5 does not achieve 100% inhibition of Abl. A concentration

range of 0–3 mM was the range where positive additive effects of

GNF-5 and dasatinib were apparent. Full inhibition of WT Abl

could be achieved at concentrations of in excess of 3 uM.

Cell proliferation assay and measurement of resistant
colony formation

46103 wildtype or Bcr-Abl transformed Ba/F3 cells per well

were plated in duplicate in 384-well plates, in RPMI 1640 media

supplemented with 10% FBS, (addition of 10 ng/ml of IL-3 for

wide type Ba/F3 cells). Test compounds in DMSO stocks were

serially diluted in DMSO and added using a 384 pin tool. After

48 h of growth, Bright-Glo reagent (Promega, WI) was added to

each well to determine cell viability as a percentage of growth in

the absence of the compound. Luminescence was read as counts/

sec. XL-fit (IDBS) was used for IC50 analysis. For the resistant

colony formation experiment, cultures containing 16104 Ba/F3

cells in 96-well plates were incubated with various concentrations

of GNF-5, dasatinib or both. The cells were continuously exposed

to compound in RPMI 1640 with 10% FBS medium and medium

was changed every three days with fresh inhibitor added each

time. The number of resistant colonies was counted at day 12.

Hydrogen exchange experiments
Hydrogen exchange experiments were performed essentially as

described in Iacob et al [27]. Prior to the addition of deuterium,

Abl was allowed to equilibrate with each drug. GNF-5 and

dasatinib were in 100% DMSO at a concentration of 10 mM. 38

pmol of each protein was incubated with 85 mM dasatinib and

GNF-5 for a protein:inhibitor ratio of 1:7. For a Kd of 0.1 mM,

98% of the proteins were bound to the inhibitor. All mixtures were

incubated for 30 min at room temperature before deuterium

labeling. As a control, proteins were incubated in 20 mM Tris,

100 mM NaCl (pH 8.3) buffer and treated exactly as the inhibitor-

bound proteins.

Deuterium exchange was initiated by dilution of the free or

bound protein with 15-fold 20 mM Tris, 100 mM NaCl (pD 8.3),

D2O buffer at room temperature. At each deuterium exchange

time point (from 10 s to 4 hours) an aliquot from the exchange

reaction was removed and labeling was quenched by adjusting the

pH to 2.6 with an equal volume of quench buffer (50 mM

potassium phosphate, pH 2.6, H2O). Quenched samples were

immediately frozen on dry ice and stored at 280uC until analysis.

The same procedure was used for the labeling of all proteins used

in this study.

Each frozen sample was thawed rapidly to 0uC and injected into

a custom Waters nanoACQUITY UPLC system and analyzed as

described previously [30]. The protein sample was digested using a

Poroszyme immobilized pepsin cartridge (Applied Biosystems)

which was accommodated within the UPLC system. The cooling

chamber of the UPLC system, which housed all the chromato-

graphic elements was held at 1uC for the entire time of the

measurements. The injected peptides were trapped and desalted

for 3 min at 100 mL/min and then separated in 6 min by an 8%–

40% acetonitrile:water gradient at 40 mL/min. The separation

column was a 1.06100.0 mm ACQUITY UPLC C18 BEH

(Waters) containing 1.7 mm particles and the back pressure

averaged 8800 psi at 1uC. The average amount of back-exchange

using this experimental setup was 18%–25%, based on analysis of

highly deuterated peptide standards. Deuterium levels were not

corrected for back-exchange and are therefore reported as relative

[31]; however, all comparison experiments were done under

identical experimental conditions thus negating the need for back-

exchange correction [31]. The UPLC step was performed with

protonated solvents, thereby allowing deuterium to be replaced

with hydrogen from side chains and the amino/carboxy terminus

that exchange much faster than amide linkages [32]. All

experiments were performed in triplicate. The error of determin-

ing the deuterium levels was +/20.20 Da in this experimental

setup.

Mass spectra were obtained with a Waters QTOF Premier

equipped with standard ESI source (Waters Corp., Milford, MA,

USA). The instrument configuration was the following: capillary

was 3.5 kV, trap collision energy at 6 V, sampling cone at 37 V,

source temperature of 100uC and desolvation temperature of

250uC. Mass spectra were acquired over an m/z range of 100 to

2000. Mass accuracy was ensured by calibration with 100 fmol/mL

GFP, and was less than 10 ppm throughout all experiments. The

mass spectra were processed with the software HX-Express [33]

by centroiding an isotopic distribution corresponding to the +2,

+3, or +4 charge state of each peptide. In HX-Express, deuteration

levels were calculated by subtracting the centroid of the isotopic

distribution for peptide ions of undeuterated protein from the

centroid of the isotopic distribution for peptide ions from the

deuterium labeled sample. The resulting relative deuterium levels

were plotted versus the exchange-in time. Identification of the

peptic fragments was accomplished through a combination of

exact mass analysis and MSE [34] using custom Identity Software

from the Waters Corporation. MSE was performed by a series of

low-high collision energies ramping from 5–25 V, therefore

ensuring proper fragmentation of all the peptic peptides eluting

from the LC system.

Results and Discussion

Resistance to ATP-competitive kinase inhibitors limits the

duration of response that can be achieved with this class of

therapeutics. The most common resistance mechanism involves

the acquisition of mutations in the ATP-binding site that prevent

drug binding or that increase the affinity for ATP. The most

frequent site of mutation occurs to the so-called gatekeeper residue

which is located towards the rear of the ATP-binding cleft. Many

clinically relevant kinases such as Bcr-Abl, c-Kit, EGFR and

PDGFR possess a threonine residue at the gatekeeper position that

is involved in critical interactions with ATP competitive drugs.

Mutation of this residue to a large hydrophobic amino acid such as

isoleucine or methionine disrupts inhibitor binding without

disrupting the kinase activity of the enzyme. The T315I

gatekeeper mutation is resistant to the three Bcr-Abl inhibitors

that are currently approved for the treatment of Chronic

Myelogenous Leukemia: imatinib, nilotinib and dasatinib. There

are two approaches for developing new drugs that can overcome

ATP-site mutations such as the gatekeeper mutation. The first is to

make new ATP-competitive inhibitors that exploit binding modes

that can circumvent the existing mutations. This approach has

been successfully exploited and several ATP-competitive T315I

Bcr-Abl inhibitors are currently in preclinical development [23].

Allostery in Abl Kinase
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The weakness of this approach is that there is always likely to be a

particular mutation that will be disruptive to a given inhibitor. The

second approach is to find allosteric inhibitors that are able to

inhibit kinase activity by binding to sites remote from the ATP-site.

Allosteric inhibitors have been discovered for a number of kinases

[2,35–36]. For example, Bcr-Abl can be effectively inhibited by

compounds that bind to the myristate-binding site such as GNF-2

and GNF-5. Allosteric inhibitors have the potential advantage that

they can potentially be used in combination with ATP-competitive

inhibitors to achieve greater inhibition of the target and make it

more difficult to develop a single mutation that reverses drug

efficacy. Indeed, GNF-5 was recently demonstrated to act addi-

tively with nilotinib to suppress the emergence of resistant Bcr-Abl

alleles and to inhibit T315I Bcr-Abl.

Here we sought to determine whether cooperative inhibition of

wild-type and T315I Bcr-abl could be achieved between the

clinically approved inhibitor dasatinib and GNF-5. Dasatinib is an

ATP-competitive inhibitor but it binds to Bcr-Abl in the active

‘type I’ conformation in contrast to nilotinib which binds to the

inactive conformation. We first evaluated the ability of dasatinib

and GNF-5 (or combinations) to inhibit recombinant Abl using a

pyruvate kinase-lactate dehydrogenase detection system, that

couples the production of ADP to oxidation of NADH which

can be monitored spectrophotometrically [37]. Wild-type, T315I,

and E505K Abl kinases were expressed in bacteria. Inhibition of

wild-type Abl was observed for both inhibitors (Fig. 1A) with GNF-

5 exhibiting an IC50 = 0.22 mM, dasatinib IC50 = 0.12 mM using

an ATP concentration of 20 mM, which is close to the apparent

Km under our assay conditions. The myristate site mutant E505K

was inhibited by dasatinib with an IC50 = 0.02 mM, but not by

GNF-5 (IC50 .10 mM). The T315I mutant was partially inhibited

by dasatinib or GNF-5 in this assay. We next examined whether

combinations of GNF-5 and dasatinib resulted in additive inhibi-

tion of wild-type, T315I, or E505K recombinant Abl proteins.

Strong positive cooperativity was observed for combinations of

GNF-5 and dasatinib on T315I Bcr-Abl with a calculated com-

bination index of 0.34. As expected no additivity was observed

with the E505K myristate site mutant.

We next evaluated the ability of the compounds to inhibit the

proliferation of wild-type and T315I transformed Ba/F3 cells

(Fig. 1B). The proliferation assays demonstrated that greater than

50% inhibition of T315I Bcr-Abl dependent cell growth could be

achieved at a range of GNF-5 and dasatinib concentrations. For

example, at a fixed GNF-5 concentration of 10 mM, dasatinib

inhibits T315I Bcr-Abl-dependent proliferation with an IC50 =

20 nM (Supplemental Fig. S2A). The calculated combination

index (CI) for GNF-5 and dasatinib in this assay was 0.65,

indicating a synergistic interaction. We also tested the effect of the

drug combinations on Bcr-Abl and STAT5 phosphorylation by

Western blotting. While 10 mM dasatinib was not able to inhibit

Bcr-Abl autophosphorylation and STAT5 phosphorylation in

T315I Bcr-Abl expressing Ba/F3 cells, the combined treatment

with 10 mM dasatinib plus 0.5, 5, or 10 mM GNF-5 significantly

blocked T315I Bcr-Abl signaling (Supplemental Fig. S2B).

Figure 1. Inhibition of Abl proteins with compounds alone or in combination. A. Enzymatic inhibition (in vitro) of recombinant wild-type
and T315I Abl by dasatinib, GNF-5 and combination treatments. Percent inhibition of wt Abl or T315I Abl by dasatinib and GNF-5 or the combination.
The combination curve (red) contains twice the total drug concentration of the single agent curves due to both drugs being present. B. Synergistic
inhibition of Bcr-Abl T315I transformed Ba/F3 cells. Dose and effect curve of GNF-5, dasatinib and the combination of GNF-5 and dasatinib (1:1 ratio)
on Bcr-Abl T315I transformed cells. The combination curve (red) contains twice the total drug concentration of the single agent curves due to both
drugs being present. C. CI values for fractional growth inhibitions of 0.50, 0.75, and 0.90 in Bcr-Abl T315I cells. Antagonism CI .1.00; additivity
CI = 1.00; synergy CI ,1.00.
doi:10.1371/journal.pone.0015929.g001
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Moderate synergism was observed for combinations of GNF-5

and dasatinib on the wild-type Abl in vivo, with calculated

combination indices of 0.69 (data not shown). Much stronger

synergism was observed with the T315I form (CI = 0.32), Fig. 1C.

As expected no synergy was observed with the E505K myristate site

mutant (Supplemental Figure S2), confirming that GNF-5 binding

to the myristic acid pocket was responsible for the inhibition [25].

HX MS shows changes upon inhibitor binding
Confident that biologically there was strong evidence for

cooperativity between the two binding sites, we utilized hydrogen

exchange mass spectrometry to try to understand how this synergy

worked mechanistically. The conformational dynamics of each

protein were measured in the presence of various drug

combinations. We previously used this methodology to investigate

conformational changes in Abl upon removal of the myristic acid

group and upon mutation in a down-regulated form of Abl [27].

Both wild-type Abl and the T315I mutant were overexpressed

in E. coli and purified to homogeneity. The purity and mass of the

proteins were verified by electrospray mass spectrometry (Supple-

mental Fig. S1). Note that these proteins are prepared from

bacteria and are not myristoylated on the N-terminus, making

them enzymatically active (see also ref. [27]). Prior to analysis of

the HX of each protein in the presence of inhibitors, a control

experiment was performed in which we compared exchange into

wild-type versus the T315I mutant. This was done to provide the

baseline exchange for both forms so there would be a reference for

comparison when each form was bound to the inhibitors. Wild-

type and T315I were independently exposed to deuterium for

various periods of time ranging from 10 seconds to 4 hours. The

exchange was quenched, each deuterated protein was digested into

peptic fragments, and the location and quantity of deuterium was

determined by mass spectrometry [27,31]. Although a large

number of peptic peptides (,50) were followed, only a few

indicated changes in exchange (Supplemental Fig. S3) during the

time frame of the experiment (4 hours). Data is not shown for

regions in which no changes in HX were detected. Interestingly,

we observed few changes in T315I conformational dynamics

relative to the wild-type form. All changes were consistent with the

incorporation of more deuterium in the T315I form compared

with wild-type Abl and were primarily restricted to the small lobe

of the kinase domain (see Fig. S3).

With baseline exchange for both wild type and the T315I

proteins, inhibitor binding was probed by HX MS. Each inhibitor

was first incubated individually with wild-type Abl or T315I and

regions with differences in HX were observed. Again, most

peptides indicated no difference in deuterium uptake (data not

shown), including all regions of both SH3 and SH2. However a

few areas showed differences in deuterium uptake in the presence

of dasatinib or GNF-5. The deuterium incorporation data for

regions where changes were observed are summarized in Figure 2

(representative examples of the raw mass spectra are shown in Fig.

S4). The changes observed upon inhibitor binding cluster into

several distinct areas: residues 280–298, 318–343 and 516–524.

The three dimensional locations of the changes with dasatinib or

GNF-5 and the combination of both are summarized in Fig. 3A

and B and a key locating each peptide is provided in Supplemental

Fig. S5 (see Ref. [27] for amino acid sequence information).

Interpretation of these results is provided in the follow sections.

Dasatinib causes changes in the small lobe but has no
significant effect on T315I

Wild type Abl was incubated with dasatinib in a 1:7 molar ratio

(protein:inhibitor), so that .98% of the Abl molecules were

bound, based on a Kd of 0.1 mM. The control experiment in

which no dasatinib was present was performed at the same time,

under identical conditions so the exchange differences could be

compared without the need for back-exchange correction

(explained in detail in [31]). Changes in deuterium uptake in

wild-type Abl in the presence of dasatinib were observed in several

peptic peptides, mostly near the ATP binding pocket. For

example, the deuterium incorporation graph for the peptide

280–288 indicates that this peptide was less deuterated when

dasatinib was bound implying protection from solvent or increased

hydrogen bonding in this region. Other regions with changes in

the presence of dasatinib included 318–323, 332–336 and 336–

343. The cumulative error of measuring deuterium uptake in these

assays is approximately 60.20 Da. Any differences larger than that

were considered significant for the purposes of comparing the two

datasets. The changes were grouped according to obvious changes

(.1.0 Da separating the deuterium incorporation curves, after two

replicates were averaged) and subtle changes (0.4–1.0 Da

difference).

The location of the changes in wild type Abl when bound to

dasatinib are shown in Fig. 3A, top left. The bulk of the changes

are surrounding the ATP binding pocket, and are consistent with

stabilization of this region upon dasatinib binding. Dasatinib lies in

the ATP site with the aminothiazole group occupying the site

bound by the adenine group of ATP [38–39]. Previous studies

identified three notable hydrogen bonds between dasatinib and

Abl. One with Met337 (Met318) residue, one with Thr334 (T315)

and one with the carbonyl oxygen of Glu335 (Glu316) [38]. Other

contacts are mainly van der Waals interactions between the phenyl

ring of dasatinib and Leu267 (Leu248), Gly340 (Gly321), Met309

(Met290), Val318 (Val299), Ile332 (Ile313) [38]. The HX MS

results are consistent with protection/stabilization of these amino

acids, as all changes we detected were protection from deuteration

in peptic peptides including these amino acids.

It was shown previously that the P-loop is very flexible even

when dasatinib is bound indicating that for the most part the P

loop does not form a critical interaction with dasatinib [38,40].

Based on molecular dynamics studies it has been hypothesized

that dasatinib can bind to both the active DFG- in and inactive

DFG- out conformations of Abl [38,41]. The HX MS data on

the peptide spanning the P-loop (residues 257–274) illustrated

that when dasatinib is bound to Abl, the amount of deuterium

uptake in this peptide is the same as in unbound protein,

indicating that there are no critical interactions between P-loop

and dasatinib (data not shown). This feature may be advanta-

geous because several imatinib resistant Abl mutations appear in

the P-loop.

In contrast to what was observed for dasatinib binding to wild

type Abl, when dasatinib was incubated at the same molar ratio

with the T315I mutant, no major changes in HX were detected.

For example, compared with wild-type Abl, residues 336–343

displayed no changes in deuterium incorporation when dasatinib

was incubated with T315I (Fig. 2). Subtle changes in the

deuterium uptake were detected in residues 287–298 and in two

overlapping peptides spanning the DFG motif (396–403 and 402–

406), but these changes were relatively minor in comparison with

the changes observed in wild-type Abl and dasatinib (see Fig. 3A,

Fig. S5). Previously it was indicated that dasatinib is involved in a

hydrogen bond with the side chain of T315, and the side chain

methyl group of the threonine is involved in van der Waals

contacts with the 2-chloro-6-methyl phenyl ring [38]. Upon

mutation, these contacts are lost and the bulkier isoleucine side

chain increases steric hindrance to dasatinib binding [15]. The

HX MS data nicely show (Fig. 3) that the loss of binding can be
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Figure 2. Deuterium incorporation curves for wild-type and T315I Abl in the presence of dasatinib, GNF-5 or both dasatinib and
GNF-5. Both dasatinib and GNF-5 were present at a molar ratio of 1:7, protein:inhibitor. Only data for the peptides that showed changes in
deuterium uptake in the presence of inhibitors are shown; all other regions indicated no changes in hydrogen exchange in the presence of the
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clearly observed and is consistent with the known inability of

dasatinib to inhibit the T315I mutant form of Abl.

GNF-5 binding to wild-type or T315I Abl induces a distant
conformational change

We previously showed that GNF-5, a compound representing a

novel class of allosteric Bcr-Abl inhibitors, specifically binds to the

myristic acid binding pocket [25]. Upon binding, hydrogen

exchange is not only reduced in the myristic acid pocket, but

also at a distance in the ATP site. This allosteric effect is specific to

GNF-5 binding. Mutation of a residue (E505K, see Supplemental

Fig. S6) known to be specific and required for GNF-5 interaction,

and the reduction in kinase activity (Fig. S2), abolishes the

reduction of HX in the ATP site. We now show that GNF-5 can

also elicit the same effects in the T315I mutant.

Figure 3. Summary of the hydrogen exchange results for all binding experiments in this study. In each panel, the ribbon diagram of Abl
(PDB 2F4J, [46]) is shown in the left and the space filling model is shown on the right. The differences in deuterium levels are colored on each peptide where
changes were observed, according to the color code shown. The location of each specific peptide is labeled in Supplemental Fig. S5. Obvious changes (colored
hot pink) were defined as a difference between deuterium exchange-in curves of 1.0 Da or more, subtle changes (colored light yellow) were defined as a
difference of 0.4–1.0 Da and no changes were defined as differences of 0.0–0.4 Da. The ATP binding site is shown by rendering the drug VX-6, already present in
the 2F4J crystal structure. A close-up of the myristic acid binding pocket is shown in Supplemental Fig. S6. Abl structure 2F4J was chosen to interpret the
hydrogen exchange data as it has an extended aI helix thought to be present in the active form of Abl. Although the NCap SH3 domain, SH2 domain and the
SH2-kinase linker are present in the constructs studied, no changes in hydrogen were detected in those regions in the presence of these inhibitors.
doi:10.1371/journal.pone.0015929.g003

inhibitors in the time frame the experiment was performed (4 hours). Data for free or bound forms were acquired under identical conditions, in
duplicate. The error of each data point is 60.20 Da. Note that we have used Abl 1b numbering [45] throughout this work; for example, Abl position
T315 is actually T334 in Abl 1b, but we are using the numbering designation of T315I according to the established clinical conventions [10].
doi:10.1371/journal.pone.0015929.g002
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Both wild-type Abl and the T315I mutant form were incubated

with GNF-5 and independently exposed to D2O for various

periods of time as described above. Changes in deuterium

incorporation in the presence of GNF-5 were observed in several

peptides (Fig. 2) and the results were highly similar for both wild-

type or T315I. The peptides 516–524 and 525–534 correspond to

the C-terminal aI-helix in the kinase domain. Both were affected

by GNF-5 binding (Figs. 2, 3, S4C) and the changes were the same

for both wild-type and T315I. After 10 seconds in deuterium,

exchange was reduced by approximately 1 deuterium atom,

implying that the effect was a result of steric occlusion rather than

long-term changes in protein stability or dynamics [42–43].

Furthermore, other peptides located in close proximity to the

myristic pocket showed slightly decreased deuterium uptake when

the GNF-5 was present (Fig. 3A). These results strongly support

previous data which indicate that the location of the GNF-5 is

indeed in the myristic pocket [25] and show that GNF-5 binding

occurs regardless of the T315I mutation.

Hydrogen exchange data in the region 325–343 indicate that

GNF-5 binding alters the protein dynamics in this region. The

change can be observed in the raw mass spectra (Fig. S4B), in the

deuterium uptake curves (Fig. 2) and in the summary shown in

Fig. 3. The change is a decrease in deuterium incorporation, seen

clearly for peptide 325–335 in the wild type Abl in the presence of

GNF-5 [25] but also for peptides 332–336 and 336–343 in the

T315I form. Residues 325–335 correspond to the b-strand that

descends down through the center of the b-sheet in the small lobe

and emerges on the SH3-side of the ATP binding pocket. This

stretch of residues includes the T315I mutation (in Abl 1b

numbering, T315I is at position 334, see note above). Many of the

amide hydrogens in this region are hydrogen bonded due to

participation in the b-sheet of the small lobe, reflected in the small

amount of deuterium that is incorporated at early exchange times

for peptides in this area. However, this region is dynamic because

it can incorporate deuterium over time due to ordinary protein

breathing and other motions. The presence of GNF-5 slows these

motions and prohibits the incorporation of deuterium in peptides

325–335, 332–336 and 336–343. Although the exact mechanistic

details of how distant binding is transmitted through the protein

are not revealed by these data, the ability of GNF-5 to inhibit

kinase activity on its own in both wild-type and T315I Abl (Fig. 1)

must be related to these changes in protein dynamics and point to

an allosteric mechanism by which GNF-5 binding is communi-

cated to the ATP site. This does suggest that upon binding of

GNF-5 there might be a structural reorganization, possibly

communicated via a conformational rearrangement of other parts

of Abl, which disrupts the catalytic machinery located in the ATP

site.

Choi Y. et al have recently demonstrated that GNF-2 requires

Abl SH2 and SH3 domain in order to inhibit kinase activity [44].

Perhaps the GNF class of ligands are able to restore autoinhibi-

tion by binding to the myristate pocket and reinducing the kinked

conformation of the a-helix to permit docking of the SH2, SH3

domain modules onto the back of the kinase domain. If this were

to occur, the autoinhibited conformation would be restored

and hydrogen exchange would resemble that of Abl in the

downregulated, N-terminally myristoylated state (as examined

in [27]). The differences between autoinhibited and active Abl

are clear and can be found in the SH2 domain, the linker and

parts of the small lobe of the kinase domain [27]. We see no

evidence in the current HX MS data for restoration of the

autoinhibited form of Abl upon GNF-5 binding, implying that the

SH2 and SH3 domains are still displaced form their regulatory

positions.

Conformational changes were additive when both GNF-5
and dasatinib were present

Based on the biological data showing synergy between GNF-5

and ATP-competitive inhibitors (Fig. 1), we examined the effects of

binding both dasatinib and GNF-5 to T315I Abl. T315I Abl was

incubated with both drugs in a 1:7:7 ratio (protein:dasatinib:GNF-

5) and deuterium exchange measured. Changes in deuterium

uptake were observed in several regions near the ATP binding site

as well as by the myristic acid pocket (Fig. 3B). One of the most

interesting findings was that a number of peptides in T315I Abl

that showed no reduction in deuterium incorporation in the

presence of dasatinib alone (Fig. 3A, bottom left) showed nearly

the same reduction in deuterium incorporation in dasatinib+GNF-

5 (Fig. 3B) as was seen for dasatinib binding to wild-type Abl

(Fig. 3A, top left). Reduced deuterium incorporation in the

presence of dasatinib+GNF-5 was similar in peptides seen to

change in the presence of GNF-5 only (compare dotted curves in

Fig. 2), and the only additional peptides seen to be modified over

GNF-5 binding alone were 280–288 and 287–298 (Fig. 2). Both

280–288 and 287–298 underwent reduced exchange in wild-type

Abl in the presence of dasatinib. Based on these results, we

conclude that the effects of dasatinib on Abl conformation and

dynamics are restored in the T315I form when GNF-5 is present.

For the T315I mutant therefore, as was shown in the biological

data, two drugs are better than one and the effects on the

conformational dynamics are additive.

Conclusions
Abl can become resistant to inhibition as a result of ATP site

mutations. As shown in our biological assays, alternative inhibitors

that target regions of Abl other than the ATP site seem to be

effective strategies for overcoming resistance. Our results verified

that a double therapy consisting of dasatinib and GNF-5 bound to

T315I can synergistically function to inhibit T315I in biochemical

and cellular assays, as was also shown for nilotinib and GNF-5

[25]. The question was how? How does binding in distant regions

influence kinase activity? We answered the question with HX MS

by showing that GNF-5 binding alters the dynamics properties of

the ATP site in both wild type and T315I forms of Abl. GNF-5

restores the conformational changes that are seen when dasatinib

binds to wild-type Abl. Residues located at positions 325–343 in

the ATP site were most influenced by GNF-5 binding and the

T315I mutation did not alter the ability of GNF-5 to elicit such

changes. These biophysical data should contribute to more

rational application of combinations of inhibitors in the challenge

to overcome inhibitor resistance.

Supporting Information

Figure S1 Correct synthesis, purity and post-translational

modifications for each protein were determined with mass

spectrometry. The raw m/z data are shown on the left and the

transformed, mass only spectra shown on the right. The measured

and theoretical molecular weights are indicated. In the trans-

formed mass spectra, P indicates phosphorylation. To obtain these

data, approximately 150 pmols of each protein were injected onto

a POROS 20 R2 protein trap, desalted with 0.05% trifluroacetic

acid (TFA) at 100 mL/min for 2 minutes, and eluted at 50 mL/min

with a 4 minute linear 15%–75% (v/v) acetonitrile gradient

directly into an LCT-Premier mass spectrometer (Waters Corp.,

Milford, MA, USA) equipped with a standard electrospray source.

The instrument was calibrated with 500 fmol/mL myoglobin and

the mass accuracy was less than 10 ppm. Phosphorylation (+80 or

+160 Da) was observed in the intact protein spectra. The location
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of each phosphorylation was determined by trypsin digestion

followed by LC-MS/MS (data not shown). Each recombinant

protein (50 pmol each) was incubated with trypsin (1:20,

trypsin:protein) for 16 hours at 37uC. The resulting peptides were

analyzed with a Waters nanoAcquity UPLC system (1.06100.0

mm ACQUITY C18 BEH column) coupled to a Waters QTof

Premier mass spectrometer. Peptide mass spectra were acquired

over an m/z range of 100 to 2000. Mass accuracy was ensured by

lock-mass calibration with 100 fmol/mL Glu-Fibrinogen peptide,

and was less than 10 ppm throughout all experiments. MSE was

performed on all parent ions, ramping collision energy from 5-

25V. For wild-type Abl, single phosphorylation corresponded to

modification at Tyr412 and double phosphorylation involved

Tyr412 and Tyr89. For Abl T315I, single phosphorylation was on

Tyr89 and only a small quantity of the molecules contained

phosphoryation at both Tyr89 and Tyr412.

(TIF)

Figure S2 GNF-5 binds to the myristic pocket and inhibits

activity in Bcr-Abl T315I. A. Dasatinib antiproliferative EC50 in

the presence of 0.4 to 10 mM GNF-5 on Ba/F3 cells expressing

T315I and E505K Bcr-Abl. B. Inhibition of Bcr-Abl autopho-

sphoryl-ation was determined by Bcr-Abl immunoprecipitation,

followed by a immunoblot for phospho-Tyr (Tyr412) [4],

phospho-STAT 5 (Tyr694) and total Bcr-Abl (antibody K-12)

from cell lystates obtained after treatment of T315I Bcr-Abl

expressing Ba/F3 with 10 mM of dasatinib and increasing

concentrations of GNF-5 (0, 0.5, 5 and 10 mM) for 90 min.

(TIF)

Figure S3 Comparison of deuterium exchange in wild-type Abl

and T315I. The deuterium uptake curves for six representative

peptides are shown in the left [solid lines: wild-type Abl; dotted

lines: T315I]. All other deuterium uptake curves for all other

regions showed no significance difference between wild-type and

T315I and are therefore not shown. The location of each peptide,

according to the labels A-H, is shown on the crystal structure at

the right (PDB 1OPL). Coloring is as in Figure 3: obvious changes

(colored hot pink) were defined as a difference between deuterium

exchange-in curves of 1.0 Da or more. Subtle changes (colored

light yellow) were 0.4-1.0 Da. No changes were differences of 0.0-

0.4 Da. Residues corresponding to the hydrophobic spine M309,

L320 and F401 are colored blue and rendered as sticks. The 1OPL

crystal structure was chosen to display these data because we

observed subtle changes in regions outside of the kinase domain,

namely in the SH2 domain residues 137-157. Abl kinase is

believed to adopt an extended top-hat conformation illustrated by

this crystal structure (see main text).

(TIF)

Figure S4 Example mass spectra for selected regions, intended

to illustrate the quality of data for all experiments. A. Residues

287-298 (peptide m/z = 682.3+2). B. Residues 325-335 (peptide

m/z = 683.4+2). C. Residues 525-534 (peptide m/z = 543.8+2). A

dotted line is provided at the same m/z in both free or bound data

to guide the eye.

(TIF)

Figure S5 Location key for Figures 2 and 3, on PDB 2F4J. Each

peptide is colored, according to the scale shown, and the residue

numbers indicated [we are numbering according to Abl 1a

numbering].

(TIF)

Figure S6 Expanded view of the myristic acid pocket. A. Ribbon

diagram, B. space filling model, in the same orientation as A. This

model was created with two crystal structures: PDB 2FO0 and

PDB 2F4J were overlaid and aligned. Then, only the aI helix is

shown for the 2F4J structure as the rest of the structure was

essentially identical to 2FO0. The aI helix for 2F4J is shown in

green/blue. In 2FO0, the aI helix is broken into two smaller

helices, aI and aI’ where an almost 90 degree bend is introduced

between aI and aI’. The peptide spanning residues 516-524 is

shown in red (2FO0) or blue (2F4J). Changes in HX are colored as

in Figure 3: obvious changes were defined as a difference between

deuterium exchange-in curves of 1.0 Da or more. Subtle changes

were 0.4-1.0 Da. No changes were differences of 0.0-0.4 Da.

(TIF)
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