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Abstract

Transforming growth factor beta (TGFb) induced differentiation of human lung fibroblasts to myofibroblasts is a key event
in the pathogenesis of pulmonary fibrosis. Although the typical TGFb signaling pathway involves the Smad family of
transcription factors, we have previously reported that peroxisome proliferator-activated receptor-c (PPAR-c) ligands inhibit
TGFb-mediated differentiation of human lung fibroblasts to myofibroblasts via a Smad-independent pathway. TGFb also
activates the phosphatidylinositol 3 kinase/protein kinase B (PI3K/Akt) pathway leading to phosphorylation of AktS473. Here,
we report that PPAR-c ligands, 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and 15-deoxy-(12,14)-15d-
prostaglandin J2 (15d-PGJ2), inhibit human myofibroblast differentiation of normal and idiopathic pulmonary fibrotic
(IPF) fibroblasts, by blocking Akt phosphorylation at Ser473 by a PPAR-c-independent mechanism. The PI3K inhibitor
LY294002 and a dominant-negative inactive kinase-domain mutant of Akt both inhibited TGFb-stimulated myofibroblast
differentiation, as determined by Western blotting for a-smooth muscle actin and calponin. Prostaglandin A1 (PGA1), a
structural analogue of 15d-PGJ2 with an electrophilic center, also reduced TGFb-driven phosphorylation of Akt, while
CAY10410, another analogue that lacks an electrophilic center, did not; implying that the activity of 15d-PGJ2 and CDDO is
dependent on their electrophilic properties. PPAR-c ligands inhibited TGFb-induced Akt phosphorylation via both post-
translational and post-transcriptional mechanisms. This inhibition is independent of MAPK-p38 and PTEN but is dependent
on TGFb-induced phosphorylation of FAK, a kinase that acts upstream of Akt. Thus, PPAR-c ligands inhibit TGFb signaling by
affecting two pro-survival pathways that culminate in myofibroblast differentiation. Further studies of PPAR-c ligands and
small electrophilic molecules may lead to a new generation of anti-fibrotic therapeutics.
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Introduction

Idiopathic Pulmonary Fibrosis (IPF) is a progressive disease of

unknown etiology that can result in respiratory failure [1,2]. IPF

is anatomically characterized by scarring of lung tissues owing to

excessive deposition of extracellular matrix proteins (ECM).

This excessive and uncontrolled deposition of ECM compro-

mises normal lung function and structure [1,3]. Fibroblasts are

structural cells that show plasticity and ability to differentiate

into myofibroblasts upon tissue injury or inflammation [4,5].

Myofibroblasts are characterized by expression of alpha smooth

muscle actin (aSMA), calponin and extracellular matrix (ECM)

proteins including Type I and III collagen (Col1A1 and

Col3A1), fibronectin and proteoglycan [4]. Deposition of

ECM and other proteins produced by myofibroblasts plays an

important role in normal physiologic processes such as wound

healing. However, in pathologic conditions such as IPF,

myofibroblasts accumulation and matrix deposition is excessive

leading to scarring [1,2].

Transforming Growth Factor b (TGFb) is a pleiotropic cytokine

that promotes myofibroblast differentiation and plays a major role

in both wound healing and fibrosis [4,6,7]. Binding of active

TGFb to its receptor triggers several signaling pathways [8,9],

including the well-characterized Smad pathway and the PI3K/Akt

(phosphotidylinositol-3-kinase/Protein Kinase B/PKB) pathway

[7,10,11]. PI3K activates Akt by phosphorylation at two sites,

Thr308 and Ser473 [10]. Once active, Akt functions as a serine/

threonine kinase, which is involved in multiple cellular processes

including cell proliferation, inflammation, survival and glucose

metabolism. Akt is inactivated by a specific phosphatase enzyme,

PTEN (the phosphatase and tensin homologue deleted on

chromosome 10) [12]. Multiple upstream signaling events can

activate Akt via PI3K. In fetal lung fibroblasts [13], and other

organs [14,15], TGFb activates Akt signaling via p38 Mitogen

PLoS ONE | www.plosone.org 1 January 2011 | Volume 6 | Issue 1 | e15909



Activated Protein Kinase (MAPK) and Focal Adhesion Kinase

(FAK) [16,17]. FAK is a non-receptor protein tyrosine kinase that

is phosphorylated in response to integrin clustering and growth

factor-mediated migration [18]. FAK is rapidly recruited to the

focal adhesion upon integrin clustering [19], and is subsequently

activated by phosphorylation at Tyr397. Increase in phosphory-

lation of FAKY397 correlates with its increased catalytic activity

[20,21] and is required for the recruitment of p85, a regulatory

subunit of PI3K [22]. In fetal lung fibroblasts, FAK is involved in

myofibroblast differentiation via TGFb, adhesion and b1-integrin

mediated pathways [17,23]. Moreover, it has been implicated as

an upstream activator of Akt and may thus contribute to

fibrogenesis [24,25,26].

Designing any effective therapy for pulmonary fibrosis requires

precise understanding of the signaling events that are responsible

for myofibroblast differentiation. We have previously reported that

ligands of peroxisome proliferator-activated receptor-c (PPAR-c)

suppress TGFb-induced myofibroblast differentiation [27,28] in a

Smad-independent manner. PPAR-c is a ligand-activated nuclear

receptor which has been extensively studied for its involvement in

adipogenesis, insulin sensitization, differentiation, proliferation

[29], and more recently, for its anti-inflammatory and anti-fibrotic

activities [29,30,31,32,33]. Typically upon ligand binding, PPAR-

c heterodimerizes with Retinoid Acid Receptor (RXR) and binds

to PPAR-Response-Elements (PPRE) on target genes resulting in a

transcriptional response [29]. Three of the main classes of PPAR-c
ligands include; Thiazolidinediones or TZDs (e.g. Rosiglitazone),

Prostaglandins (e.g. 15d-PGJ2: 15-deoxy-D12, 14 -Prostaglandin

J2) and, Triterpenoids (e.g. CDDO: 2-cyano-3,12-dioxoolean-1,9-

dien-28-oic-acid). We and others have shown that PPAR-c ligands

inhibit TGFb-mediated trans-differentiation of human lung

fibroblasts to myofibroblasts, and this mechanism is largely

PPAR-c independent [32,33]. The exact molecular mechanism

of action of PPAR-c ligands remains poorly understood.

Here, we report that the PI3K/Akt and FAK pathways are

crucial for fibroblast to myofibroblast differentiation of normal and

diseased primary human lung fibroblasts. Our data identify a

novel mechanism by which PPAR-c ligands inhibit TGFb-induced

fibroblast to myofibroblast differentiation and suggest that it may

be possible to develop small molecule Akt and FAK inhibitors for

use as novel anti-fibrotic therapeutics.

Results

TGFb-Stimulated Myofibroblast Differentiation of Primary
Human Lung Fibroblasts Requires the
Phosphatidylinositol 3-Kinase Pathway

TGFb is known to induce cell-type specific actions that are

context-specific and microenvironment-dependent [9]. We previ-

ously reported that inhibition of TGFb-stimulated myofibroblast

differentiation of primary human lung fibroblast (HLF) by PPAR-c
ligands was largely Smad-independent [33]. To investigate

potential non-Smad signaling pathways, we examined whether

TGFb drives myofibroblast differentiation via the PI3K/Akt

pathway. Primary HLF cells were treated with TGFb in presence

or absence of LY294002, a highly selective and potent inhibitor of

PI3K. Following treatment, whole-cell lysates were subjected to

specific Western blot analyses. As evident in Fig 1A, TGFb
potently induced phosphorylation of Akt. TGFb was also able to

induce myofibroblast differentiation as determined either by

Western blot analysis (Fig 1A) or indirect immunofluorescence

(Fig 1B) for aSMA and calponin. Pretreatment of cells with

LY294002 markedly reduced TGFb-induced phosphorylation of

Akt (Fig 1A) and almost completely inhibited myofibroblast

differentiation (Fig 1A and 1B). LY294002 treatment alone

significantly reduced basal level of Akt phosphorylation and

expression of calponin (Fig 1A). These results indicate that TGFb
induces phosphorylation of Akt and myofibroblast differentiation

via the PI3K pathway in primary HLF.

To investigate if functional Akt kinase is required for TGFb-

induced myofibroblast differentiation, primary HLF cells trans-

fected with either an empty vector or a dominant negative kinase-

dead Akt (KD-AktK179A) plasmid that encodes a mutant form of

Akt [34] and lacks kinase activity [35]. Overexpression of the KD-

AktK179A markedly inhibited TGFb-induced expression of aSMA

and calponin (Fig 1C) indicating that the intact kinase domain of

Figure 1. Inhibition of PI3K-Akt pathway by LY294002 inhibits
myofibroblast differentiation. Primary HLFs were treated with the
PI3K inhibitor LY294002 (50mM) followed by TGFb (5ng/ml) for 48 hours
and A, immunoblots were performed to detect expression of the
indicated proteins, and B, immunofluorescence for aSMA (green) was
performed to assess the effects of PI3K inhibition on TGFb-induced
myofibroblast differentiation. DAPI (blue) was used to visualize nuclei. C,
HLF cells were transfected with an empty vector or a dominant negative
kinase-dead (KD) Akt construct, treated with TGFb, and assayed for
myofibroblast differentiation by Western blot. Protein lysates from all
the indicated samples were electrophoretically separated on the same
gel, and representative lanes from a single experiment are shown here.
These data indicate that a functional PI3K-Akt pathway is essential for
the TGFb-induced myofibroblast differentiation in primary human lung
fibroblast.
doi:10.1371/journal.pone.0015909.g001

PPARc Ligands Target TGFb-Induced PI3K-Akt Pathway
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Akt is essential for TGFb-induced myofibroblast differentiation.

These results firmly establish that TGFb induces myofibroblast

differentiation of primary human lung fibroblasts via a PI3K-Akt-

dependent mechanism.

PPAR-c Ligands Block TGFb-induced Phosphorylation of
Akt in a Dose-Dependent Manner

After establishing that Akt activity is essential for TGFb-induced

myofibroblast differentiation, we examined whether PPAR-c
ligands CDDO and 15d-PGJ2 inhibit Akt phosphorylation.

Primary HLF cells were treated with TGFb alone or in

combination with varying pharmacological concentrations of

PPAR-c ligands. The efficacy of PPAR-c ligands to repress

TGFb-induced Akt phosphorylation at various concentrations was

assessed by Western blot analysis.

Both CDDO and 15d-PGJ2 inhibited Akt phosphorylation as

well as myofibroblast differentiation (Fig 2), but CDDO was about

five times more potent than 15d-PGJ2 (IC50 of 0.5 mM and

2.5 mM, respectively). The potency of PPAR-c ligands to inhibit

TGFb-induced myofibroblast differentiation correlates extremely

well with their relative efficacy in inhibiting Akt phosphorylation

under the same physiological conditions (Fig 2 and [33]).Taken

together, our results obtained thus far demonstrate that a

functional PI3K-Akt pathway is essential for TGFb-driven

myofibroblast differentiation, and PPAR-c ligands target this

pathway through inhibition of AktS473 phosphorylation.

Since Akt is involved in the cell survival pathway next, we

examined if 15d-PGJ2 and CDDO are cytotoxic at the

concentrations used in these experiments. Neither 15d-PGJ2

([27] and Fig 2B) nor CDDO (Fig 2B) were found to be cytotoxic

as measured by LDH release assay. Additionally, we confirmed

that 15d-PGJ2 and CDDO both were able to induce PPAR-c-

dependent transcription as measured by their ability to induce

PPRE-luciferase (PPAR-c Response Elements-luciferase) (Fig 2C

and [27]).

Inhibition of TGFb-Stimulated Activation of Akt by PPAR-
c Ligands is Independent of PPAR-c Activity

Typically, PPAR-c agonists bind to the ligand binding site of

PPAR-c, causing its nuclear translocation and resulting in a

Figure 2. PPAR-c ligands inhibit TGFb-induced phosphorylation of Akt and myofibroblast differentiation in a dose-dependent
manner. A, Primary HLFs were grown until 70–80% confluent, serum starved for 24 hours and treated with the indicated concentrations of PPAR-c
ligands for 48 hours. Total cell lysates were prepared, and subjected to SDS-PAGE followed by immunoblotting. The blot was probed with antibodies
against phospho-AktS473, stripped and probed to detect total Akt, aSMA and loading control GAPDH. The relative changes in the ratio of phospho-
AktS473/total Akt (R.P.) and relative changes in the expression of aSMA/GAPDH (R.E.) are as indicated in the figure. The experiment was performed in
triplicate and a representative blot is shown here. B, LDH release does not increase in response to 15d-PGJ2 or CDDO. Primary human lung fibroblasts
were treated with either 5 mM 15d-PGJ2 or 1mM CDDO for 72 hours and LDH release was measured (nmol/min/mL). C, Primary human lung fibroblasts
were transfected with a PPRE luciferase reporter and a CMV b-galactosidase construct. Cells were treated with either 5mM 15d-PGJ2 or 1 mM CDDO for
48 hrs and luciferase activity was measured. Background was subtracted and data normalized to b-galactosidase transfection efficiency and reported
as fold induction of luciferase units over the untreated samples. These data represent three independent experiments (mean 6 S.E. shown, **p#0.01,
*** p#0.001, compared to untreated).
doi:10.1371/journal.pone.0015909.g002

PPARc Ligands Target TGFb-Induced PI3K-Akt Pathway
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transcriptional response at target genes [10]. However, we

[27,28,33] and others [32], have shown that PPAR-c ligands also

have effects that are independent of PPAR-c activity. To examine

if inhibition of Akt phosphorylation by PPAR-c ligands was

dependent on the functional activity of PPAR-c, we used a

pharmacological approach involving a PPAR-c antagonist

GW9662, an irreversible PPAR-c antagonist that covalently binds

to the active site of PPAR-c [36].

Primary HLF were pretreated with GW9662 followed by treatment

with PPAR-c ligands and TGFb. After 48 hours, total protein lysate

was subjected to Western blot analysis to assess the level of changes in

Akt phosphorylation. TGFb alone increased phosphorylation of Akt

while addition of CDDO or 15d-PGJ2 blocked TGFb-induced Akt

phosphorylation (Fig 3A). However, treatment with GW9662 did not

restore either TGFb-induced phospho-Akt levels in PPAR-c-ligand-

treated cultures or myofibroblast differentiation (Fig 3A) suggesting

that CDDO and 15d-PGJ2 block TGFb-induced Akt phosphorylation

in a PPAR-c-independent mechanism.

The Electrophilic Center Present in PPAR-c Ligands is
Critical to Their Ability to Block TGFb-induced
Phosphorylation of Akt

CDDO and 15d-PGJ2 contain electrophilic carbons (Fig 3B) that

can modify sulfhydryl groups in proteins via the ‘Michael addition

reaction’ [37,38]. To determine whether the ability of PPAR-c
ligands to inhibit TGFb-induced Akt phosphorylation is dependent

on the presence of an electrophilic carbon, we used two different

structural analogues of 15d-PGJ2, prostaglandin A1 (PGA1), which

has an electrophilic center, and CAY10410, which does not have an

electrophilic carbon but binds to PPAR-c and activates ligand-

dependent transcription. Additionally, we used another potent

electrophilic compound, diphenyl diselenide (DSPS), which, like

CDDO, is structurally different from 15d-PGJ2 and has two

electrophilic carbons (Fig 3B). Interestingly, only the compounds

with electrophilic centers, PGA1 and DSPS, reduced TGFb-driven

phosphorylation of Akt, while CAY10410, did not (Fig 3C). Based

on these results, we concluded that the electrophilic carbons present

in the structures of CDDO and 15d-PGJ2 have an essential role in

blocking TGFb-mediated activation of Akt.

PPAR-c Ligands Inhibit TGFb-induced Phosphorylation of
Akt in a Transcription-Independent Manner

Because the effects of CDDO and 15d-PGJ2 are PPAR-c
independent, we hypothesized that their effect would be indepen-

dent of transcription as well. To investigate if PPAR-c ligands

require de novo transcription for their inhibition of Akt phosphor-

ylation we treated primary HLF cells with a transcription inhibitor

Actinomycin D (ActD), followed by the PPAR-c ligands and TGFb.

Western blot analysis was performed to detect phospho-AktS473 and

total Akt and the ratio of phospho-AktS473/Akt was calculated.

ActD partly inhibited TGFb-induced phosphorylation of Akt (Fig 4).

This suggests that TGFb activates Akt kinase in a transcriptionally-

dependent mechanism. However, inhibition by CDDO and 15d-

PGJ2 remained unaltered even in the presence of ActD (Fig 4A, and

Fig 4B, black bars) suggesting that these compounds directly inhibit

Akt kinase activity or upregulate a phosphatase in a post-

translational mechanism that is independent of de novo transcription.

PPAR-c Ligands Block TGFb-Stimulated Phosphorylation
of Akt by Inhibiting FAK but not PTEN and MAPK-p38
Phosphorylation

To investigate proteins that could potentially phosphorylate or

dephosphorylate Akt, we performed a time-course of action of

PPAR-c ligands and TGFb on the phosphorylation of PTEN,

p38-MAPK and FAK.

First, we investigated the time-course of TGFb-mediated

phosphorylation of Akt and its repression by CDDO and 15d-

PGJ2 (Fig 5A). Next, we examined changes in phosphorylation of

PTEN, which is a negative regulator of Akt phosphorylation.

PTEN is more stable but less active when it is phosphorylated at

T308, and less stable but more active when is dephosphorylated at

the same site [39]. If PPAR-c ligands inhibit Akt phosphorylation

via upregulation of phosphatase activity of PTEN, we would

expect to see a decrease in the ratio of phospho-PTENT308 to total

PTEN. We found that although TGFb slightly increased levels of

phospho-PTEN after two hours (Fig 5B, filled squares), treatment

with PPAR-c ligands was unable to cause any significant deviation

in the ratio of phospho-PTEN to total PTEN as compared to the

TGFb alone-treated samples (Fig 5B, open squares and circles).

It has been reported that TGFb induces p38-MAPK in some

cell types [17]. We also observed an increase in the phospho-

p38T180/Y182 to total p38 ratio in response to TGFb but,

phosphorylation of TGFb-induced p38 was not reduced upon

treatment with either CDDO or 15d-PGJ2 (Fig 5C), indicating

that the mode of action of PPAR-c ligands is likely independent of

p38-MAPK activity. Finally, we examined the effect of PPAR-c
ligands on FAKY397 phosphorylation, which is required for FAK

kinase activity. We observed TGFb-induced phosphorylation of

FAK repressed by both the PPAR-c ligands 24 hours after the

treatment (Fig 5D). CDDO inhibited FAKY397 phosphorylation

more potently than 15d-PGJ2 (Fig 5D). Since PPAR-c ligands

inhibit FAK phosphorylation but do not change either p38-

MAPK or PTEN phosphorylation, we suggest that PPAR-c
ligands inhibit Akt pathway by inhibiting the upstream FAK

kinase.

Pharmacological Inhibition of FAK Activity Inhibits the
PI3K-Akt Pathway and Myofibroblast Differentiation

To determine whether TGFb-mediated myofibroblast differen-

tiation mediated through PI3K-Akt signaling also requires FAK

activity in our cell strain, we treated primary HLF cells with a

FAK-kinase inhibitor (AG1879) and its inactive analogue, PP3.

Western blot analysis was used to measure phospho-FAKY397,

total FAK, phospho-AktS473, total Akt, aSMA, calponin and

GAPDH. We observed that inhibition of FAK inhibited not only

Akt phosphorylation but also myofibroblast differentiation (Fig 6).

Although, inhibition of FAK inhibited aSMA expression, we did

not observe complete inhibition of expression of aSMA under the

conditions tested. These results indicate that FAK activity is

important for TGFb-mediated Akt activation and myofibroblast

differentiation of primary HLF.

Next, we used a complimentary genetic approach to ascertain

involvement of FAK in myofibroblast differentiation of primary

HLFs. We found that over-expression of FAK resulted in marked

up-regulation of Akt phosphorylation and myofibroblast differen-

tiation (Fig 6B).

PPAR-c Ligands Inhibit Myofibroblast Differentiation of
Primary IPF Fibroblasts by Inhibiting FAK and PI3K-Akt
Pathways

To ascertain the therapeutic potential of PPAR-c ligands we

examined their ability to suppress Akt and FAK in bona fide

diseased primary lung fibroblasts obtained from patients with IPF.

First, we investigated whether TGFb induced myofibroblast

differentiation of IPF fibroblasts via activation of Akt and FAK

pathways. IPF fibroblasts were treated with two highly potent and

PPARc Ligands Target TGFb-Induced PI3K-Akt Pathway
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Figure 3. PPAR-c ligands inhibit TGFb-induced Akt phosphorylation and myofibroblast differentiation in a PPAR-c-independent but
electrophilic carbon-dependent manner. HLF cells were treated with indicated compounds and/or TGFb (5ng/ml) for 48 hours. Immunoblots
were performed to assess the expression of indicated proteins. Protein lysates from all the indicated samples were electrophoretically separated on
the same gel, and representative lanes from a single experiment are shown here. A, the ability of PPAR-c ligands (CDDO (1mM) and 15d-PGJ2 (5mM)) to
reduce p-Akt was not altered upon GW9662-mediated inhibition of PPAR-c. GW9662 (5mM) inhibits PPAR-c activity by a covalent bond formation with
PPAR-c protein [36]. R.P. indicates relative changes in Akt phosphorylation compared to control sample, and R.E., relative changes in expression
compared to control sample. B, PPAR-c ligands contain electrophilic carbons. Here, positions of the electrophilic carbons in the structures of the
compounds are marked. CAY10410 and PGA1 are structural analogues of 15-d-PGJ2. PGA1 has an electrophilic center but CAY10410 does not. DSPS,
like CDDO, has two electrophilic centers. Cells were pre-treated with CAY10410 (5mM), PGA1 (10mM) and DSPS (10mM) for 30 minutes C, only
compounds with an electrophilic carbon are able to reduce Akt phosphorylation, indicating that presence of an electrophilic carbon is essential for
the observed reduction in the phosphorylation of Akt. All the experiments were performed in triplicate and representative images are shown here.
doi:10.1371/journal.pone.0015909.g003
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selective inhibitors of PI3K pathway, LY294002 and wortmannin

(Fig 7A) or increasing concentrations of AG1879 (PP2), a FAK

inhibitor (Fig 7B) followed by TGFb. Inhibition of both the

pathways potently blocked Akt phosphorylation and myofibroblast

differentiation (Fig 7A and B). Finally, we treated IPF fibroblasts

with CDDO and 15d-PGJ2 followed by TGFb. These data firmly

establish that CDDO and 15d-PGJ2 are both capable of blocking

myofibroblast differentiation via Akt and FAK pathways (Fig 7C)

as measured by the expression of aSMA and calponin.

Discussion

Idiopathic pulmonary fibrosis (IPF) can lead to respiratory

failure and death due to deteriorating respiratory function [1,4].

There are currently few if any effective therapies. Therefore, novel

antifibrotic drugs are urgently needed for the treatment of IPF and

other scarring diseases.

PPAR-c ligands are emerging as exciting potential therapeutics

for inflammatory and fibrotic and other diseases [29,40,41].

PPAR-c activation induces adipogenesis and differentiation, and

represses inflammation [27,29,33]. PPAR-c ligands including

rosiglitazone and other members of TZD family are used for the

treatment of type II diabetes [29]. Clinical trials for CDDO are in

progress, and it has been found to be orally active for the

treatment of solid tumors and lymphoma [42]. However, the

mechanisms of anti-fibrotic actions of PPAR-c ligands remain

poorly understood. Therefore, we investigated the underlying

molecular pathways targeted by distinct PPAR-c ligands to

explore the potential of PPAR-c agonists as anti-fibrotic therapies.

Our previous work identified CDDO, a novel PPAR-c ligand,

as a potent anti-fibrotic agent of TGFb-driven pro-fibrotic activity

in vitro [27,33]. TGFb induces lung fibrosis in vivo [43] and also

stimulates phosphorylation of Akt in animal models [44] and other

human organs [10,45]. Studies in fetal lung fibroblasts demon-

strate the role of TGFb-induced Akt pathway in myofibroblast

differentiation [13]. Here, we report that in both normal and IPF

primary human lung fibroblasts, PPAR-c ligands potently block

myofibroblast differentiation via a PPAR-c-independent mecha-

nism by targeting the TGFb-induced PI3K-Akt pathway involving

FAK.

We investigated the role of PI3K-Akt pathway in TGFb-

stimulated myofibroblast differentiation using LY294004, a

specific PI3K activity inhibitor, and by using a kinase-dead

(KD-Akt) construct of Akt. Both LY294002 and the Akt mutant

strongly blocked TGFb-stimulated myofibroblast differentiation,

confirming the central role of PI3K-Akt pathway in TGFb-

mediated myofibroblast differentiation in adult human normal

and ‘‘diseased’’ IPF lung fibroblasts (Fig 1 and 7). Although,

CDDO [46,47] and 15d-PGJ2 [48] have been reported to reduce

Akt phosphorylation in some studies, their mechanism of

reduction of TGFb-induced myofibroblast differentiation

through Akt pathway is not yet reported. Here, we show that

the suppression of TGFb-induced phosphorylation of AktS473 is

the central mechanism of action of CDDO and 15d-PGJ2 that

leads to their anti-fibrotic activity. CDDO suppresses TGFb-

induced phospho-Akt more potently than 15d-PGJ2, which

correlates very well with the abilities of CDDO and 15d-PGJ2

to reduce TGFb-induced myofibroblast differentiation (Fig 2).

Compared to CDDO and 15d-PGJ2, rosiglitazone was relatively

poorly effective at inhibiting TGFb-induced Akt phosphorylation

(data not shown). Interestingly, Kilter et al. reported that

rosiglitazone facilitates rephosphorylation of Akt in rat myocar-

diocytes [49]. We and others have reported that rosiglitazone has

some anti-fibrotic effects in vitro [27,32,33,50], but is much less

potent than either CDDO or 15d-PGJ2. If rosiglitazone indeed

facilitates re-phosphorylation of Akt, then it would result in a pro-

fibrotic response that undercuts its anti-fibrotic effects, suggesting

that rosiglitazone is not an optimal choice for treating fibrotic

lung diseases. We did not investigate rosiglitazone further in this

study.

CDDO and 15d-PGJ2 have electrophilic properties that

rosiglitazone does not, and we have previously identified the

electrophilic centers as important in the antifibrotic activity of

these compounds. Building on these observations, here we

demonstrate that the PPAR-c-independent effects of CDDO and

15d-PGJ2 on Akt phosphorylation are dependent on the

electrophilic properties (Fig 3). These observations offer an

additional possibility that CDDO and 15d-PGJ2 could directly

bind to the active site of a signaling molecule involved in the Akt

Figure 4. Actinomycin D partially inhibits TGFb-induced
phosphorylation of Akt but not PPAR-c ligand-mediated
inhibition of Akt phosphorylation. Primary HLFs were pre-treated
with transcription inhibitor ActD (1mg/ml), followed by PPAR-c ligands
(CDDO (1mM) and 15d-PGJ2 (5mM)) and TGFb (5ng/ml). A, Immunoblots
were performed to detect levels of indicated proteins upon inhibition of
transcription. The experiment was performed with triplicate samples.
Protein lysates from all the indicated samples were electrophoretically
separated on the same gel, and representative lanes from a single
experiment are shown here. B, The triplicate samples were measured by
densitometry and the ratio of phospho to total Akt was determined and
normalized to untreated and bar graphs were plotted. The significance
was calculated by one way ANOVA. For samples without ActD
treatment (open bars), * indicates difference (P#0.05) over untreated
and ** indicates difference (P#0.05) over TGFb-treated samples. For
ActD-treated samples (black bars), # indicates difference (P#0.05) over
untreated and ## indicates difference (P#0.05) over TGFb-treated
samples.
doi:10.1371/journal.pone.0015909.g004

PPARc Ligands Target TGFb-Induced PI3K-Akt Pathway
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pathway. One study has shown that biotinylated CDDO is capable

of binding and thus inactivating the active site of PTEN [37], and

15d-PGJ2 is capable of inhibiting the activities of proteins through

direct covalent modification [51,52]. Further studies involving

biochemical approaches should help us understand the exact

nature of action of compounds involving electrophilic carbon. To

generate newer anti-fibrotic therapeutics, further investigation of

the electrophilic properties of PPAR-c ligands and similar

compounds is necessary.

Because CDDO and 15d-PGJ2 block Akt phosphorylation in

the absence of new transcription (Fig 4), this suggests that CDDO

and 15d-PGJ2 act to directly inhibit a kinase or activate a

phosphatase that acts on Akt. We examined the role of three

important upstream regulators of Akt phosphorylation: p38-

MAPK, PTEN and FAK (Fig 8). We chose to examine p38-

MAPK because it is previously known to be a part of the PI3K/

Akt pathway [13] while other MAP kinases are involved in

separate [53] or even antagonistic pathways [54]. TGFb activates

a number of signaling pathways including Smads, Akt and the

MAPK-ERK, and while our data does not completely rule out

that PPAR-c ligands may act via other pathways, the ability of

LY294002 and KD-Akt to almost completely block myofibroblast

differentiation shows that the PI3K/Akt pathway is the most

important pathway. Since TGFb stimulates phosphorylation of

p38-MAPK to activate myofibroblast differentiation by up-

regulating Akt phosphorylation we examined involvement of

p38-MAPK in primary HLF.

In agreement with a previous report [13], we determined that

p38-MAPK is phosphorylated following TGFb treatment of HLF

(Fig. 5C), and MAPK inhibitor SB203580 reduced phosphoryla-

tion of Akt (data not shown). However, neither CDDO nor 15d-

PGJ2 altered TGFb-induced p38-MAPK phosphorylation, indi-

cating that MAPK is likely not involved in inhibition of Akt by

CDDO and 15d-PGJ2. We were also able to exclude PTEN as a

major mediator of the effects of PPAR-c ligands in HLFs. PTEN

can inhibit the Akt pathway by dephosphorylating Akt, and PTEN

phosphatase is itself activated by dephosphorylation at Thr308.

Thus, if CDDO or 15d-PGJ2 blocked Akt phosphorylation via

PTEN, we would expect increased PTEN phosphatase activity

associated with increase in its dephosphorylation at T308. In fact,

CDDO or 15d-PGJ2 do not change PTEN phosphorylation

(Fig 5B). Interestingly, in human retinal epithelial cells, biotiny-

lated CDDO (CDDO-Bt) binds to Cys124 within the active site of

PTEN and inhibits the lipid phosphatase activity of PTEN in vitro

[37]. If PTEN activity inhibition was an important mechanism in

our system, we would expect levels of phospho-Akt to increase in

presence of CDDO; instead we observed the opposite.

Multiple reports show that TGFb stimulates autophosphoryla-

tion-dependent activation of focal adhesion kinase (FAK) [23,55].

For example in CCL20 lung fibroblasts, Xia et al demonstrated

that b1-integrin signaling upregulates FAK phosphorylation and

its physical interaction with PI3K-p85 resulting in phosphorylation

of Akt [24]. Although FAK is a widely accepted upstream

regulator of Akt phosphorylation, it has been reported that FAK

Figure 5. PPAR-c ligands inhibit TGFb-induced phosphorylation of Akt and FAK but not MAPK-p38 and PTEN. Primary HLFs were
pretreated with PPAR-c ligands; CDDO (1mM) and 15d-PGJ2 (5mM) followed by TGFb (5ng/ml). Cells were harvested and lysates analyzed by
immunoblots at the indicated time. The ratio of phospho-protein to total protein was measured by densitometric analysis and normalized to
untreated cells (untreated = 1.0). TGFb-induced phosphorylation of A, AktS473 and D, FAKY397 was inhibited significantly by the PPAR-c ligands but the
phosphorylation of B, PTENT308 and C, p38-MAPK T180/Y182 was not affected. The statistical significance over TGFb-treatment alone was calculated
either by one way ANOVA on triplicate samples (A, B and C) or using unpaired t-test on duplicate samples (D) and is indicated as * where P#0.05.
doi:10.1371/journal.pone.0015909.g005
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does not act upstream of Akt during TGFb signaling in IMR90

human fetal lung fibroblasts [17]. However, it is widely accepted

that integrins are able to activate TGFb [56] and FAK [57,58],

both of which are involved in myofibroblast differentiation. Our

results demonstrate that PPAR-c ligands are able to inhibit

phosphorylation of FAK and limit the TGFb-mediated fibrotic

response in adult primary HLFs (Fig 5D). We confirmed both in

our normal (Fig 6) and IPF (Fig 7) primary human cell strains that

blocking FAK activity inhibited not only phosphorylation of Akt,

but also expression of aSMA, confirming that FAK indeed

regulates myofibroblast differentiation under normal and diseased

conditions through activation of Akt pathway. To establish the

therapeutic potential of PPAR-c ligands we treated fibroblasts

obtained from IPF patients, in parallel, with PPAR-c ligands, two

PI3K inhibitors and a FAK inhibitor and confirmed that CDDO

and 15d-PGJ2 potently block myofibroblast differentiation of not

only normal HLF but also diseased IPF fibroblasts (Fig 7) via

PI3K-Akt and FAK pathways. Although by using a complimen-

tary genetic approach we confirmed that overexpression of FAK is

capable of upregulating Akt phosphorylation and myofibroblast

differentiation (Fig 6B), at this point, we cannot rule out an

additional mechanism of action of PPAR-c ligands that would

result in reduction of Akt phosphorylation (Fig 8).

Current models of pulmonary fibrosis suggest that TGFb,

mechanical stress, or adhesion and integrin mediated activation of

myofibroblast differentiation all contribute to upregulation of a

fibrotic response. One very critical, central and shared event in all

of these pathways involves upregulation of FAK activity, defined

by its phosphorylation at Tyr397. It is conceivable that once

TGFb activates myofibroblast differentiation, the increased

deposition of extracellular matrix proteins would cause additional

mechanical stress on the cell surface leading to sustained and

continual activation of FAK. Since FAK itself upregulates

myofibroblast differentiation, once TGFb initiates this process,

sustained activation of FAK would be able to perpetuate the

fibrotic response even in the absence of active TGFb. Our work is

the first report in any biological system demonstrating that PPAR-

c ligands reduce FAK activity by reducing FAK phosphorylation

at Tyr397. Since FAK plays a cardinal role in myofibroblast

differentiation, drugs that target the catalytic activity of FAK could

be very valuable in the treatment of pulmonary fibrosis.

This study highlights a very important mechanism of action of

CDDO and 15d-PGJ2 that involves down-regulation of PI3K-Akt

pathway in both normal and IPF fibroblasts. Knowing that Akt is a

central regulator of multiple cellular pathways including cell

proliferation, cell cycle progression, inflammation and apoptosis

[7,10], interfering with the Akt pathway can have multiple cellular

and organ-wide effects. Although, we have noted sustained basal

activity of Akt in untreated cells, the nature of Akt activation is

largely inducible and dependent on upstream signaling molecules.

Therefore, the use of Akt-inhibition as a potential therapy for

pulmonary fibrosis is a very novel and exciting concept.

Overall, we propose that certain PPAR-c ligands have

tremendous translational potential as therapeutics for pulmonary

fibrosis by not only inhibiting Akt but also FAK activation. Future

in vivo studies involving PPAR-c ligands will be pivotal in exploring

the promising potential of PPAR-c ligands as therapeutics for

pulmonary fibrosis as well as other scarring diseases.

Materials and Methods

Cells and reagents
Normal primary human lung fibroblasts (HLFs) were derived as

previously described [33], grown in MEM supplemented with

10%FBS, L-Glutamine, antibiotic and antimycotic (Gibco,

Carlsbad, CA) and used between passages 7–10. They were

grown until 70–80% confluent and serum-starved for 24 hrs

before treatment, unless otherwise mentioned. Primary human

idiopathic pulmonary fibrotic (IPF) fibroblasts were derived from

lung tissues obtained from patients with IPF undergoing wedge

biopsy. A written informed consent was obtained from all the

subjects in accordance with the University of Rochester Medical

Center Institutional Review Board. Explant technique was used to

isolate primary fibroblasts as described previously [33] and

fibroblasts were used between passages 5–9 and maintained as

described above.

Treatments
PPAR-c agonists were used at the following concentrations;

1mM of CDDO (NIH-RAID Program and Reata Pharmaceuti-

cals, Dallas, TX), 5mM 15d-PGJ2 and 9,10-dihydro-15-deoxy-

D12,14-PGJ2 (CAY10410) (Cayman Pharmaceuticals, Ann Arbor,

MI). Ligands were dissolved in DMSO to make 10mM stock

solution and diluted in serum-free media before treatment.

Figure 6. Pharmacological inhibition of FAK activity inhibits
the PI3K-Akt pathway and myofibroblast differentiation. A,
Primary HLFs were treated in presence or absence of TGFb and 10mM
specific Src-FAK kinase inhibitor AG1879 (PP2) or its analogue, PP3, that
does not inhibit FAK activity and immunoblots were performed to
analyze expression of the indicated proteins. The FAK inhibitor AG1879,
but not its analogue PP3, inhibited TGFb-induced phosphorylation of
FAKY397 and AktS473 and reduced myofibroblast differentiation as
determined by expression of aSMA and calponin. B, HLF cells were
transfected with the empty vector (V) or FAK overexpressing construct
(HA-FAK) and assayed for myofibroblast differentiation by Western blot.
Protein lysates from all the indicated samples were electrophoretically
separated on the same gel, irrelevant lanes excluded and representative
lanes from a single experiment are shown here. These data indicate that
FAK overexpression induces myofibroblast differentiation of primary
human lung fibroblasts.
doi:10.1371/journal.pone.0015909.g006
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GW9662 (Sigma, St. Louis, MO), 15-deoxy-D12,14-Prostaglandin

A1 (PGA1) (Cayman Pharmaceuticals, Ann Arbor, MI) and

diphenyl diselenide (DSPS) (Sigma, St. Louis, MO) were prepared

in the same manner as described above. GW9662 (5mM) was added

two hours prior to any other treatment. Human recombinant

TGFb1 (R&D Systems, Minneapolis, MN) was used at a final

concentration of 5ng/ml. 50mM LY294002 (Cell Signaling

Technology, Danvers, MA), 10 or 20mM AG1879 (4-Amino-5-(4-

chlorophenyl)-7-(t-butyl)pyrazolo[3,4-d]pyrimidine, (PP2)) and its

analogue, 4-Amino-7-phenylpyrazol[3,4-d]pyrimidine (PP3) (EMD

Chemicals Inc. Gibbstown, NJ), 100nM wortmannin and, 1mg/ml

Actinomycin D (Sigma, St. Louis, MO) were used to pretreat cells

30 min prior to TGFb treatment.

Western blots
Primary human lung fibroblasts were plated (16105 cells/well)

in six-well plates (Falcon/Becton Dickson, Franklin Lakes, NJ) for

all experiments and allowed to grow for 48 hours prior to any

treatment. Crude cellular protein lysates were prepared using NP-

40 lysis buffer supplemented with protease inhibitor, phosphatase

inhibitor and 1mM PMSF (Sigma, St. Louis, MO). Total proteins

(5 to 10mg) were resolved by 10% SDS-PAGE, electrophoretically

transferred to nitrocellulose membranes, and specific proteins were

detected by standard Western blotting and chemiluminescence

(Western Lightning, Perkin-Elmer, Wellesley, MA). Kodak

Molecular Imaging Software (Rochester, NY) was used to perform

densitometry on Western blot films and the band intensities were

normalized to the loading control. The following primary

antibodies were used: phospho-AktS473, total Akt, phospho-

PTENS380, total PTEN, phospho-p38 MAPKT180/Y182, p38

MAPK, total FAK (Cell Signaling Technologies, Danvers, MA),

aSMA (Sigma, St. Louis MO), calponin (DAKO, Carpinteria,

CA), GAPDH (Abcam, Cambridge, MA) and phospho-FAKY397

(Invitrogen Corporation Camarillo, CA). The secondary antibod-

ies used were; goat anti-rabbit (sc-2004), goat anti-mouse (sc-2031,

Santa Cruz Biotechnology, Inc. Santa Cruz, CA. 95060 U.S.A)

and donkey anti-rabbit (NA 934, Amersham/GE Health Care Life

Sciences Piscataway, NJ 08855-1327).

Cell cytotoxicity assay
Cell cytotoxicity was measured by lactate dehydrogenase release

assay (LDH5 assay) using an optimized LDH assay kit (Sigma, Cat

# DG1340-K). Briefly, fibroblasts were plated in triplicate at a

density of 16105 cells per well in 6 well plates and treated with

either CDDO (1mM) or 15d-PGJ2 (5mM) or left untreated for

72 hrs. Release of LDH (nmol/min/mL) was measured at 340 nm

Figure 7. PPAR-c ligands block myofibroblast differentiation of primary human IPF fibroblasts. Primary IPF fibroblasts were treated with
either A, two PI3K inhibitors LY294002 (50mM) or wortmannin (100nM) or B, a Src-FAK inhibitor AG1879 (10 and 20mM) or C, CDDO (1mM) or 15d-PGJ2

(5mM) followed by TGFb (5ng/ml) for 48 hours. Protein lysates were prepared and immunoblots were performed to detect expression levels of the
indicated proteins. The experiment was performed in triplicate on three independent IPF fibroblast strains. Protein lysates from all the indicated
samples were electrophoretically separated on the same gel, and representative lanes from one representative set of data are shown here. These data
confirm that CDDO and 15d-PGJ2 inhibit both, FAK and PI3K-Akt pathways to inhibit TGFb-induced myofibroblast differentiation of primary IPF
fibroblasts.
doi:10.1371/journal.pone.0015909.g007
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using a spectrophotometer as per the manufacturer’s protocol.

The results were normalized to untreated control samples and

plotted as fold change over untreated samples.

PPRE luciferase reporter assay
Primary lung fibroblasts cultured in 6-well plates were co-

transfected using Fugene6 (Roche Applied Science, Indianapolis,

IN) with a PPAR-c-luciferase reporter construct containing three

PPREs (a gift from Dr. Brian Seed, Harvard University) [59]. A

CMV-b-galactosidase control construct was included as control.

After 24 h, the cells were washed and then treated with 15d-PGJ2

(5mM) or CDDO (1mM) in medium and harvested after a further

48-hr incubation. Luciferase activity was measured using a

luciferase assay system (Promega, Madison, WI) in a luminometer

(Packard Instruments, Meriden, CT) and normalized to b-

galactosidase activity, determined by a colorimetric assay (Pro-

mega). The experiments were carried out in triplicate wells.

Transfections
Primary HLF cells were plated (56104cells/well) in 12 well

plates (Falcon/Becton Dickson, Franklin Lakes, NJ) and Fugene 6

transfection kit was used as per the manufacturer’s protocol

(Roche Applied Science, Indianapolis, IN) for transfection.

Transfection reactions were carried out using either empty vector

pcDNA3.1 or a dominant negative kinase dead Akt (KD-Akt) (a

kind gift from Dr. Robert Freeman, University of Rochester, NY

USA [34]). Upon transfection, cells were allowed to grow for 16–

24 hours, and were then supplemented with 10% FBS for

24 hours followed by the treatment. Cells were lysed using NP-

40 lysis buffer and subjected to further analysis as described above.

Transfections with HA-FAK (a kind gift from Dr. William Cance,

Roswell Park Cancer Institute, Buffalo, NY USA) were performed

in a similar manner.

Indirect immunofluorescence assay
Cells were grown in four well chamber slides and treated as

outlined above. Cells were fixed in methanol and stained with an

antibody to a-SMA (St. Louis, MO, USA) and with anti-mouse

AlexaFluor 488 (Invitrogen Corporation Carlsbad, CA, USA).

Slides were mounted with Prolong Gold supplemented with DAPI

(Invitrogen Corporation Carlsbad, CA, USA) to visualize the

nuclei and analyzed by fluorescence-microscopy using a Zeiss Axio

Imager Z.1 Microscope.
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