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Abstract

Major Histocompatibility class II (MHC-II) molecules sample peptides from the extracellular space allowing the immune
system to detect the presence of foreign microbes from this compartment. Prediction of MHC class II ligands is complicated
by the open binding cleft of the MHC class II molecule, allowing binding of peptides extending out of the binding groove.
Furthermore, only a few HLA-DR alleles have been characterized with a sufficient number of peptides (100–200 peptides per
allele) to derive accurate description of their binding motif. Little work has been performed characterizing structural
properties of MHC class II ligands. Here, we perform one such large-scale analysis. A large set of SYFPEITHI MHC class II
ligands covering more than 20 different HLA-DR molecules was analyzed in terms of their secondary structure and surface
exposure characteristics in the context of the native structure of the corresponding source protein. We demonstrated that
MHC class II ligands are significantly more exposed and have significantly more coil content than other peptides in the same
protein with similar predicted binding affinity. We next exploited this observation to derive an improved prediction method
for MHC class II ligands by integrating prediction of MHC- peptide binding with prediction of surface exposure and protein
secondary structure. This combined prediction method was shown to significantly outperform the state-of-the-art MHC
class II peptide binding prediction method when used to identify MHC class II ligands. We also tried to integrate N- and O-
glycosylation in our prediction methods but this additional information was found not to improve prediction performance.
In summary, these findings strongly suggest that local structural properties influence antigen processing and/or the
accessibility of peptides to the MHC class II molecule.
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Introduction

Major histocompatibility complex (MHC) class II molecules

orchestra essential parts of the immune system defining the onset

of for instance cytotoxic T cell induced apoptosis and B cell

proliferation. Identification of which peptides will bind a given

MHC class II molecule is hence of pivotal interest for the

understanding of a host immune response to any given pathogen.

To guide this identification, several prediction methods have been

developed over the last decade (see [1] and references herein).

Prediction of naturally processed MHC class II binding peptides

(MHC class II ligands) is not an easy task. The open binding cleft

for MHC class II molecules allows peptides to extend the nona-

mer binding core. This makes prediction of peptide binding more

challenging for MHC class II compared to MHC class I due to the

need to simultaneous predict the binding register and binding

motif.

Antibodies have been demonstrated to be able to affect antigen

processing either positively or negatively depending upon the

specificity of the antibody and the CD4+T cell [2,3], and the

three-dimensional structure of antigens has been suggested to

influence the processing and presentation of helper T-cell epitopes

[4]. It therefore seems plausible that local structural properties of

the source protein, even though not directly impacting the MHC

class II binding, could impose a differential bias in the likelihood of

a given peptide being processed and presented on the MHC class

II molecule.

In this work, we seek to investigate this assumption and analyze

if properties of peptides defined by the native local structure of the

source protein influence their likelihood of being made available

for binding to MHC class II molecules. The aspect of glycosylation

is also included in the analysis. The vast majority of studies

investigating the effect of glycosylation on T cell recognition is

based on very limited amount of data and is hence highly

anecdotal. Glycosylation of ligands in the MHC-II binding core

region has been found to disfavour MHC class II binding [5].

When present in the binding core, some evidence indicates that

these carbohydrate moieties play an important role in T-cell

recognition [6]. Glycosylations of the flanking amino acids are

found more frequently since these often will allow the T-cell

receptor to get in contact with the MHC:peptide complex [7].

Here, we investigate using a large benchmark data set, whether

ligands are glycosylated or not and if the glycosylation is

overrepresented in MHC class II ligands compared to the

background.

Two large-scale benchmark data sets were used for the analysis

consisting of MHC class II ligands obtained from the SYFPEITHI

database [8]. Native local protein structure properties were
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predicted using NetSurfP [9]. Binding affinities to the MHC class II

molecules were predicted using NetMHCIIpan version 1.0 [10], and

N- and O-glycosylation sites were predicted using NetNglyc [11]

and NetOglyc [12]. Using these predicted features, we seek to

analyze if structural properties for MHC class II ligands differ

from other non-ligand peptides with equal binding affinity to the

relevant MHC-II molecule. Demonstrating such a structural

differential bias, we next attempt to combine the local structural

information with the binding strength to the MHC-II molecule in

a model with improved accuracy of prediction for MHC class II

ligands.

Results

Ligands versus non-ligand binders
We first compared the local structural properties of the MHC-II

ligands to that of the corresponding non-ligand peptides. We

define a non-ligand binder as an affinity matched peptide within

the ligand source protein not overlapping with the ligand peptide,

where affinity matched is a predicted binding affinity (in log-

transformed units) in the range 65% of the binding affinity of the

MHC-II ligand. For 87 out of 644 ligands, the criterion (65%) did

not result in any selected peptides because these ligands were

predicted by NetMHCIIpan to be very strong binders, and no other

peptides were found within the source protein with a binding

affinity within the range of -5% of the reference ligand binding

affinity. Requiring that peptides in the non-ligand data set were

found both with stronger and weaker binding affinities compared

to the reference ligand further reduced the set of ligand:non-ligand

binder pairs to 459. When multiple peptides in the source protein

fulfilled the above criteria for non-ligand binder, a random peptide

from the non-ligand pool was selected.

Performing a pairwise comparison of local structural properties

between these 459 ligands and their non-ligand affinity matched

counter-part revealed that MHC class II ligands were significantly

more exposed and had significantly less secondary structure

element (a-helix and b-strand) compared to the non-ligands (see

Table 1). The difference in binding affinity for ligands and non-

ligands was found not significant (p,0.895, paired t-test).

To investigate if this difference in local structural properties

could be contributed to a bias in the NetsurfP method used to

predict the local structural properties, a comparative analysis was

performed using the Real-SPINE 3.0 method for prediction of

residue solvent accessibility [13]. Real-SPINE 3.0 was able to

return residue solvent accessibility predictions for the source-

proteins of 457 of the 459 ligand included in table 1. Using these

predicted exposure values, the mean RSA for the ligand and non-

ligands peptides was found to be 0.214+/2 0.048, and 0.205+/2

0.058, respectively. These values are different from the values

obtained using the NetSurfP method (see table 1). However, the

difference between the two peptides sets is statistically significant

(p,0.05, paired T test). This result thus strongly suggests that the

results obtained in this work are robust and not influenced by the

method applied to obtain local structure predictions, as long as the

method is indeed state-of-the art. Through out the remaining part

of the manuscript only NetSurfP predictions were used.

Training set
To investigate if these findings could be applied to improve the

in silico identification of MHC class II ligands, a simple model was

created which integrated the MHC-II binding affinity with a

structural feature or surface exposure as described by Eq.(1).

x~(1{a):MHCpepza:strucpep, ð1Þ

where x is an MHC class II ligand likelihood score, MHCpep

represents the MHC binding affinity and strucpep is the mean

value of a structural class (i.e. a-helix, b-strand, coil or RSA) for

the peptide. Brute force grid search was used to identify the value

of a that gave the optimal AUC0.1 (see material and methods)

performance measured on the balanced training set.

The average predicted binding affinity for ligands restricted to

different HLA alleles is often very different. For instance is the

average 1-log50k predicted binding value for the ligands in the

training data set restricted to the alleles HLA-DRB1*0101 and

HLA-DRB1*0301 0.4960.19 and 0.1960.14, respectively. This

difference is highly statistically significant (p,0.005, t-test). Even

though these differences are based purely on predicted binding

affinities, the findings correspond to what has been observed for

MHC class I binding, where evidence is merging suggesting that

MHC class I molecules present peptide on the cell surface at

different binding thresholds [14,15]. Thus, to identify an optimal

and HLA universal a-value across all the different HLA-DR

alleles, a re-scaling was made for all predicted binding affinities.

For every allele, the 1-log50k(IC50 nM) binding affinities were

rescaled with a given percentile score. This percentile score was

calculated for each specific allele using a set of 200.000 random

natural 15-mer peptides. The binding affinities were hereby

rescaled according to the percentile chosen. Rescaling at per-

centiles from 1-5 gave very similar results (data not shown). Rescal-

ing was decided to be based on the 1-percentile (Rescaled01) since

this gave a slightly improved performance compared to other

percentile values when evaluated on the balanced training data.

We now use the balanced training data set to define the optimal

value of a for the model defined using Eq. (1). All details of this

calculation are found in Table 2. The AUC0.1 for the raw

NetMHCIIpan method was found to be 0.293. When combined with

relative surface exposure an optimal value of aRSA was found to be

0.30 with an AUC0.1 performance of 0.312. This difference

between the model and the NetMHCIIpan method is highly

statistically significant (p,3.9?1024). When combining the rescaled

NetMHCIIpan predicted binding affinity with coil predictions an

optimal acoil value was found to be 0.20 with an AUC0.1 value of

0.317. Also, this increase in performance between the model and the

raw NetMHCIIpan method is statistically significant (p,6.3?1024).

For the remaining part of the training set, the two models with

aRSA = 0.30, and acoil = 0.20, respectively, significantly outper-

formed the NetMHCIIpan method (p,1027, and p,3.5?1023).

Table 1. Mean and standard deviation value for ligands and
non-ligands compared for the different groups.

Class Ligand Non-ligand P-value

a-helix 0.23160.276 0.28560.322 P,0.002

b-strand 0.28960.207 0.27960.232 P,0.396

a+b 0.52060.171 0.56460.192 P,0.0002

Coil 0.48060.076 0.43760.192 P,0.0002

RSA 0.29860.076 0.27360.099 P,0.0013

1-log50k 0.40460.173 0.40460.173 P,0.895

P-values are obtained from a paired t-test. Class indicates the different classes/
methods used in the analysis. The first groups are self-explanatory (i.e. a-helix,
b-strand, a+b, and coil). RSA is the relative surface accessibility. All these values
are obtained using NetSurfP. 1-log50k is the binding affinity in log-transformed
units obtained from NetMHCIIpan.
doi:10.1371/journal.pone.0015877.t001
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To estimate the robustness of the model parameter a, 5-fold

cross validation on the balanced training set was performed. In the

cross-validation 4/5 of the data were applied to estimate the

optimal model parameter a, and the remaining 1/5 of the data

was next used as test set and predicted using this optimal value of

a. This procedure was repeated five times ensuring that all data

points form part of the test set exactly one time. For RSA, the

AUC0.1 value obtained using five-fold cross-validation was 0.309,

and the average optimal a for the 5 cross-validations was

0.33060.045, and similarly was the AUC0.1 value 0.303 for the

model using coil with an average optimal a for the 5 cross-

validations 0.22060.027. These low values on the standard

deviation of the a values indicate that the model is robust and

that is does not suffer from noticeable overfitting.

Next, a model combining MHC binding, RSA and coil was

investigated. The model was defined as described by Eq. (2).

y~Rescale01pepza:coilzb:RSA, ð2Þ

where Rescale01pep is the rescaled binding affinity of the peptide

to the given HLA allele, coil is the average predicted coil score of

the peptide, RSA is the average predicted relative exposure score

of the peptide, and a and b are relative adjustable weights. Brute

force grid search was used again to define weights on RSA and coil

that optimized the AUC0.1 value on the balanced training data.

The best performing model (2) was achieved with a= 0.1 and

b= 0.5 given an AUC0.1 of 0.351. This value is significantly

higher than the AUC0.1 value of 0.315 obtained by the

NetMHCIIpan (p,2.0?1029). However, the improvement was not

significant for the model combining RSA and coil compared the

model with RSA alone (p,0.345). This more complex model was

therefore not investigated further.

Test set
Next, the model define by Eq. (1) was investigated using the 697

ligands in the test set. The optimal a-value of 0.30 for RSA was

chosen based on the previous results. The performance measured

by AUC0.1 was increased from 0.318 (NetMHCIIpan) to 0.329

(p,0.018) for MHC binding combined with RSA. For MHC

binding combined with coil, the a-value of 0.20 gave a slight

decrease in the performance from 0.318 to 0.318 (p,0.978). For

details see Table 2.

The model combining MHC affinity with RSA thus consistently

and significantly improved the predictive performance compared

to MHC binding alone on all benchmark data sets, thus

supporting the consistency of the model. In contrast to this, did

the model with coil combined with MHC affinity not improve the

predictive performance above what is obtained using MHC

binding alone when evaluated on the test set.

Glycosylation
The previous analysis demonstrated significant differences in

local structural properties between ligands and affinity matched

non-ligands. Here, we apply a similar approach to investigate if

differences existed between ligands and affinity matched non-

ligands with respect to glycosylation. The comparison between the

459 ligands and non-ligands was used again to identify trends

regarding glycosylation. For all the corresponding source proteins

N- and O-glycosylation were predicted, and the number of

predicted glycosylation within ligands/non-ligands was calculated.

Out of the 459 ligands:non-ligand pairs, 27 ligands were predicted

to be glycosylated. For the non-ligands this number was 50. The

ligands were thus predicted to be significantly (p,0.012, binomial

test) less glycosylated than the non-ligands (see Table 3).

The full training set and test set were also analyzed according to

the glycosylation sites for both N- and O-glycosylation. Out of the

644 ligands in the training set, 6.2% were predicted glycosylated (25

N- and 15 O-glycosylated). Out of the 697 ligands in the test set,

9.6% were predicted glycosylated (36, N- and 31 O-glycosylated).

Table 2. Predictive performance of the model compared to NetMHCIIpan as measured by AUC0.1 and AUC.

RSA NetMHCIIpan Model – Rescaled01

AUC AUC0.1 a AUC AUC0.1 P-value

Balanced training set 0.781 0.293 0.3 0.784 0.312 ,0.0004

Rest of training sset 0.823 0.334 0.3 0.834 0.371 ,1027

Test set 0.796 0.318 0.3 0.792 0.329 ,0.02

Coil NetMHCIIpan Model – Rescaled01

AUC AUC0.1 a AUC AUC0.1 P-value

Balanced training set 0.781 0.293 0.2 0.782 0.317 ,0.0005

Rest of training set 0.823 0.334 0.2 0.829 0.351 ,0.004

Test set 0.796 0.318 0.2 0.795 0.318 ,0.98

The balanced set was used to identify the optimal weights for RSA and coil combined with rescaled binding affinities (Rescaled01) as define by Eq. (1). The optimal a-
values for each model are given in the table. P-values are given by paired t-tests when comparing AUC0.1 of the model to the NetMHCIIpan method. Rest of training set
refers to the training set, and test to the 697 ligands in the test set.
doi:10.1371/journal.pone.0015877.t002

Table 3. Comparison of glycosylation between ligand and
non-ligands.

Class Ligand Non-ligand P-value

l-log50k 0.40460.173 0.40460.173 ,0.895

N-glyc 20 40 ,0.015

O-glyc 7 10 ,0.63

All the 459 ligands with corresponding non-ligands were analyzed in respect to
N- and O-glycosylation. Ligands and non-ligands were defined as described in
the text. P-values are based on binomial tests, with a hypothesized proportion
of 0.5.
doi:10.1371/journal.pone.0015877.t003
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No ligands from the training and the test set were predicted both N-

and O-glycosylated. Taking all peptides within the source proteins

as the background, it was found that the predicted background

frequency for glycosylation for the training set was 9.11% (29654

peptides out of 325276) and for the test set 10.7% (47958 peptides

out of 447453). For both data sets, the background frequency of

glycosylation was thus slightly higher than what was found to the

corresponding ligands, suggesting the MHC class II ligand

presentation could be interfered by glycosylations.

An attempt was made to improve the prediction of MHC class

II ligands combining NetMHCIIpan binding affinity and glycosyl-

ation. Several models were investigated. Even though we showed

above that the ligands are less glycosylated than affinity matched

non-ligands, no model was found that consistently improved the

predictive performance on all three data sets.

Discussion

Characterizing and identifying peptides that bind MHC class II

molecules and elicit an immunogenic response is critical for the

understanding of host-pathogen immune system interactions and

in the selection of candidate peptides in vaccine research. The

process of identifying such peptides is however a highly resource

intensive and difficult task.

During the recent decade several in silico prediction algorithms

have therefore been developed aiming at guiding and cost-

reducing the task of identifying T cell epitopes. While the accuracy

for prediction of MHC class I restricted epitopes/ligands has

reached a level where only few percent of the predictions turn out

to be false [13], the situation for MHC class II is different. Here

the algorithms, even though recently achieving improved predic-

tive performances, maintain a relative low accuracy when it comes

to MHC epitope/ligand discovery [1].

The majority of the methods developed for prediction of MHC

class I restricted ligands and to our knowledge all methods

developed for prediction of MHC class II restricted ligands focus

on prediction of the peptide:MHC binding event alone. The

classical pathway for MHC class II ligand presentation involves

uptake of protein or protein fragments through endocytosis or

phagocytosis by antigen presenting cells (APC). Antibodies can

enhance specific source antigen uptake and presentation to

CD4+T cells by orders of magnitude (reviewed in [16,17,18]).

Once the source antigen has been internalized and processed, one

would a priori expect that any peptide derived from this source

antigen would be offered to MHC class II and could be presented.

However, antibodies have been demonstrated to be able to affect

antigen processing either positively or negatively depending upon

the specificity of the antibody and the CD4+T cell. This T-B cell

reciprocity has been suggested to be the result of antibodies

affecting the outcome of antigen processing in ways that are not

easy to predict. The effect of an antibody that binds to and

protects the bound epitope itself could be to protect the

determinant (enhanced presentation), whereas the effect of an

antibody that binds to and protects a site that needs to be

processed in order to liberate the epitope could lead to inhibition

of processing (reduced presentation). Both effects have been

demonstrated in the literature [2,3].

Since the majority of B cell epitopes are characterized by a

structural signature in that they tend to protrude at the protein

surface and be highly exposed [19,20], we postulated that upon

uptake by the antigen presenting cell, the local structural

properties of an epitope, in the context of the native of the

structure source protein, could impose a differential bias in the

likelihood of a given peptide epitope being appropriately processed

and presented. Moreover has earlier work on antigen processing

and presentation suggested that antigen three-dimensional struc-

ture might influence the processing and presentation of helper T-

cell epitopes [2,3,4].

Here, we further investigated this hypothesis, and analyze to

what extent the local structural properties of an epitope, in the

context of the native structure of the source protein, can impose a

differential bias in the likelihood of a given peptide epitope being

appropriately processed and presented. We investigated this

hypothesis on a large set of MHC class II ligands from the

SYFPEITHI database. Using the state-of-the-art MHC class II

binding predictions, NetMHCIIpan, combined with prediction of

local protein structure by NetSurfP, our analysis revealed that HLA

class II ligands are significantly more exposed and have

significantly less local secondary structure elements compared to

affinity matched non-ligand peptides within the same source

protein. Since the source protein is internalized as a unit and then

processed, our comparison neutralizes the effect upon antigen

uptake, which otherwise would confound the issue of the effect

upon antigen processing. We suggest that our observation could be

the result of antibody-mediated determinant protection and that

this effect dominates over antibody-mediated inhibition of

processing. This interpretation of our results would agree with

recent finding by Sette et al. [21], that in a vaccinia model

demonstrated that CD4+T cells and neutralizing antibodies target

the same protein antigen. Alternatively, the observed structural

bias in MHC ligands could stem from the digestion of the antigen

in the endosomes, since it is possible that surface exposed peptide

fragments are more effectively be released from the antigen

protein structure compared to fragments in the more structurally

stable hydrophobic protein core.

Next, we proposed a method for prediction of MHC ligands

combining MHC class II binding predictions with local

structure prediction, and demonstrated that this method

consistently in three benchmark studies significantly improved

the prediction accuracy of a method based on MHC binding

alone.

It is important to stress that our observations should not be

taken as an indication for MHC class II ligands being absent form

the protein core. Our observations merely demonstrate that a

differential bias exists and that exposed peptide fragments are

more likely presented by MHC class II molecules compared to

affinity matched buried peptides.

We also investigated if glycosylations could have a potential

influence on the likelihood of peptides being presented on MHC

class II molecules, and demonstrated that the MHC class II ligands

are significantly less glycosylated compared to affinity matched

non-ligands. All the ligands used in this work were obtained from

the SYFPEITHI database. The ligand data in this database might

have a certain bias with respect to glycosylation due to the experi-

mental procedure in which they are defined (Stefan Stevanovic,

personal communication). Thus the conclusions regarding glyco-

sylation should be read with some caution.

In conclusion, this work has shown strong evidence that local

structural properties of proteins will significantly bias process-

ing and presentation of the corresponding peptides, and that

highly exposed peptides will have a higher likelihood of being

presented on the cell surface in complex with MHC class II

molecules compared to other affinity matches but less exposed

peptides. We further demonstrate how this finding in a simple

way can be applied to significantly improve the predictions of

MHC class II ligands by combining predicted surface exposure

with state-of-the-art prediction methods for MHC class II

binding.
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Materials and Methods

Data
The analysis was run on two data sets; a training set and a test

set. The training data set contained 644 unique ligands covering

22 HLA-DR molecules and the test set contained 697 unique

ligands covering 28 HLA-DR molecules. All ligands were obtained

from the SYFPEITHI database [8] and no ligands were common

to both data sets. The source protein for every ligand was searched

in the Uniprot database [22]. If more than one hit existed, the

longest protein was chosen. The two data sets are summarized in

Table 4.

The training set was analyzed thoroughly according to the

distribution of alleles. The allele HLA- DRB1*0401 constituted

more than half of the data set alone - 365 ligands out of 644

ligands. To reduce the allelic bias imposed by the uneven

distribution of ligands per allele in the training set, a balanced

subset of the training set consisting of no more than 30 ligands per

allele was created. This balanced training data set consisted of 290

ligands.

MHC-II ligands and non-ligand MHC-II binding peptides
In the data set of MHC-II ligands, we only have access to

information on which peptides in the given source-protein are

MHC-II ligands. To define a negative set of non-ligand peptide,

we take an approach described earlier in for validation of

prediction methods for both MHC class I and class II (see for

instance [15,23]), and construct the negative set from all other

peptides in the source-protein not equal to a known MHC ligand.

The rational behind this approach is that the MHC molecule is

very specific and will only bind and present a very small fraction of

the source protein peptides [24,25]. Assuming that only one

peptide is presented from each source-protein is clearly an over-

simplification, and it is very likely that some of the non-ligands

might be falsely classified. However, such erroneous classifications

will not invalidate the approach but merely introduce noise

lowering the overall predictive performance of the methods. If we

despite this potential noise observe a significant signal in our

analysis, then the signal would become even stronger in the ideal

(but impossible) situation where also the negative data set was

experimentally validated.

Methods
The source protein was cut into overlapping peptides of a length

equal to the corresponding MHC-II ligand, and the pan-specific

prediction server, NetMHCIIpan version 1.0, which computes the

binding affinity in nM units and reports both this value and a

log50k transformed (i.e. 1-log50k(IC50 nM)) binding value [10],

was applied to predict for each peptide the binding affinity to the

MHC-II molecule in question. Local protein structural features for

each of the source protein peptides were predicted using the

NetSurfP method [9]. This method predicts for each amino acid the

relative surface accessibility (RSA), as well as probabilities the

residue being in an a-helix, b-stand, or coil secondary structure

element. The output from NetSurfP was processed to generate

mean values for the secondary structure elements: a-helix, b-

strand, coil and RSA for each peptide in the source protein. Thus

every peptide was coupled to a predicted MHC class II binding

affinity as well as mean values for a-helix, b-strand, coil and RSA.

The glycosylation sites were predicted with NetNglyc and NetOglyc

with default parameter settings [11,12].

Performance measures
The predictive performance was measured in terms of the area

under the ROC curve (AUC). For each ligand the corresponding

source protein was split into overlapping peptide sequences of the

length of the ligand. All peptides except the annotated HLA ligand

were taken as negatives. This is a very stringent assumption since

for instance suboptimal peptides sharing the ligand binding-core

are counted as negatives even though they could be presented on

the HLA molecule. Thus, this setup is likely to underestimate

the predictive performance, but the effect should be equal for

all methods compared in the benchmark. AUC values were

calculated for each protein-HLA ligand pair and the overall

predictive performance was next measured as the average AUC

value per protein-HLA ligand pair over the data set. Since the

balance between positive and negative peptides in the data sets is

highly skewed with the majority of the peptide being negative, the

AUC measure might not be optimal if a prediction method is

required to have a high specificity in order to lower the false

positive rate for subsequent experimental validation. In such

situations, it is beneficial to use only the high specificity part of the

ROC curve to calculate a fractional AUC value [15]. Here, the

AUC0.1 (AUC integrated up to a specificity of 0.9) value was

used.

Statistical tests
Paired t-tests and binomial tests were used to access differences

between ligands and non-ligands as well as differences between

NetMHCIIpan and the new method. P-values less than 0.05 were

considered statistical significant.
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Table 4. The MHC class II ligands distribution across alleles
for the two data sets.

Allele
Training
set

Test
set Allele

Training
set

Test
set

DRB1*0101 13 47 DRB1*1104 7 2

DRB1*0102 5 1 DRB1*1201 8 6

DRB1*0301 20 89 DRB1*1301 14 12

DRB1*0401 365 154 DRB1*1302 14 9

DRB1*0402 33 4 DRB1*1401 3 7

DRB1*0403 - 1 DRB1*1501 2 21

DRB1*0404 43 4 DRB1*1502 - 3

DRB1*0405 26 10 DRB1*1601 - 2

DRB1*0701 23 27 DRB3*0101 - 3

DRB1*0801 33 7 DRB3*0202 3 -

DRB1*0802 - 1 DRB3*0301 3 2

DRB1*0803 - 1 DRB4*0101 1 5

DRB1*0901 4 2 DRB4*0103 - 2

DRB1*1001 1 241 DRB5*0101 7 14

DRB1*1101 16 20 Total 644 697

doi:10.1371/journal.pone.0015877.t004
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