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Abstract

The white-tailed deer (Odocoileus virginianus) represents one of the most successful and widely distributed large mammal
species within North America, yet very little nucleotide sequence information is available. We utilized massively parallel
pyrosequencing of a reduced representation library (RRL) and a random shotgun library (RSL) to generate a complete
mitochondrial genome sequence and identify a large number of putative single nucleotide polymorphisms (SNPs)
distributed throughout the white-tailed deer nuclear and mitochondrial genomes. A SNP validation study designed to test
specific classes of putative SNPs provides evidence for as many as 10,476 genome-wide SNPs in the current dataset. Based
on cytogenetic evidence for homology between cow (Bos taurus) and white-tailed deer chromosomes, we demonstrate that
a divergent genome may be used for estimating the relative distribution and density of de novo sequence contigs as well as
putative SNPs for species without draft genome assemblies. Our approach demonstrates that bioinformatic tools developed
for model or agriculturally important species may be leveraged to support next-generation research programs for species of
biological, ecological and evolutionary importance. We also provide a functional annotation analysis for the de novo
sequence contigs assembled from white-tailed deer pyrosequencing reads, a mitochondrial phylogeny involving 13,722
nucleotide positions for 10 unique species of Cervidae, and a median joining haplotype network as a putative
representation of mitochondrial evolution in O. virginianus. The results of this study are expected to provide a detailed
template enabling genome-wide sequence-based studies of threatened, endangered or conservationally important non-
model organisms.
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Introduction

Organisms traditionally considered of “minor” importance by
national and international funding agencies generally suffer from a
paucity of genome-wide sequence and polymorphism data which
severely limits the implementation of genomic approaches for
addressing biological questions in these species. One such
underserved species is the white-tailed deer (Odocoileus virginianus), a
highly successful and widely distributed ruminant mammal species
of the order Artiodactyla and family Cervidae [1-3]. Within the
genus Odocotleus, the primary species are the white-tailed deer (O.
virginianus) and mule deer (O. hemionus; for review see [2,3]), with
these species possessing equivalent karyotypes (2n = 70) [4].
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Based primarily on geographic variation in body size, differences
in antler growth, and other relatively minor morphological
characteristics, as many as 38 subspecies of O. viginianus have been
suggested, including the endangered Florida key deer (O. virginianus
clavium), and Columbian white-tailed deer (0. virgimanus leucurus)
[1,3]. Currently, free ranging white-tailed deer are ubiquitously
distributed throughout most of the United States, with representa-
tive populations extending from Canada to Mexico, Central
America, and South America [2,3,5]. Moreover, white-tailed deer
have adapted to a variety of landscapes and environmental
conditions while also exhibiting exceptional potential for recruit-
ment [6-8], and despite historic overexploitation, appear to possess
relatively high levels of genetic diversity [7,9,10].
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Unlike most traditional model organisms, and many free
ranging wildlife species, white-tailed deer are distributed across a
large range that includes both free ranging and captive
populations, with a recent trend in North America toward
establishing captively-propagated livestock lines from founders
originating from a variety of wild populations. The farming of
deer, and particularly white-tailed deer, has become a significant
alternative livestock industry within the U.S. and Canada
[11,12]. Consequently, U.S. captive and free-ranging populations
of white-tailed deer have been subjected to intense surveillance
for a variety of infectious diseases, with considerable efforts
expended towards disease prevention and control [11-18].
Despite the growing numbers of captive and free ranging
white-tailed deer under active management or surveillance in
the U.S., little information exists concerning genomic diversity
and divergence among populations. Previous genetic studies have
primarily focused on genetic diversity, parentage, or the
evaluation of population structure using relatively few microsat-
ellite loci, with many of these markers derived from the domestic
cow or sheep [7,9,10,19,20]. Recent research has targeted
associations between naturally occurring polymorphisms within
candidate genes and susceptibility to chronic wasting disease, a
fatal transmissible spongiform encephalopathy (T'SE) known to
affect several species of Cervidae [21-24]. However, the inability
to apply genome-wide approaches to address questions related to
deer biology and evolution has severely limited progress. Thus, a
substantial need exists to develop cost-effective de novo approaches
which will rapidly enable sophisticated research programs for
biologically important species for which research funds are
limited.

We generated a reduced representation library (RRL) [25] to
reduce the complexity of the white-tailed deer genome and a
random shotgun library (RSL) to enable massively parallel
pyrosequencing via the Roche 454 platform. The resulting
sequences were assembled using a de novo approach, and contig
alignments were used to identify a large number of putative single
nucleotide polymorphisms (SNPs) distributed throughout the
nuclear and mitochondrial genomes. Herein we also produced a
complete mitochondrial genome sequence assembly for the white-
tailed deer, with annotations supported by comparative sequence
analysis, and a Bayesian mitochondrial phylogeny involving 10
unique species of Cervidae. Validated mitochondrial SNP
variation and a median joining haplotype network analysis were
utilized to investigate mitochondrial evolution in O. wirginianus.
Based upon established homology between domestic cow (Bos
taurus) and white-tailed deer chromosomes [4], we utilized a
method of comparative contig overlay with the B. taurus genome
assembly to estimate the genomic distribution and relative density
of white-tailed deer contigs and putative SNPs. Finally, we
conducted a functional annotation analysis to characterize and
classify the genomic information content of contigs produced
from the de novo assembly of the pyrosequencing data. Our results
clearly demonstrate that species-specific de novo assemblies in
conjunction with comparative contig overlay can be used to
enable whole-genome analyses for species with little or no
genome sequence data. Moreover, we also utilize novel genome-
wide sequence data and reagents to produce the first large-scale
genome-wide polymorphism and comparative analyses for O.
virgintanus. 'The results of this study will enable genomics research
for all species of Odocotleus, including the endangered Florida key
deer, and will facilitate efforts to identify genetic variation
associated with health-related trait information, genome-wide
signatures of selection, and genomic variation underlying
mechanisms of adaptation.
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Results and Discussion

White-tailed Deer RRL Analysis

A white-tailed deer RRL was constructed using 16 unrelated
individuals representing northern and southern U.S. nuclear
germplasm via Alul restriction enzyme digestion of a pooled DNA
sample followed by a manual reduction in genome complexity via
gel excision and purification of size-selected (=350-400 bp) DNA
fragments [26]. Collectively, 1,206,716 high quality reads
comprising 285,269,784 bp of sequence were produced from this
RRL on a Roche GS FLX instrument. A three stage assembly
procedure employing strict requirements for read matching
(sequence read length fraction = 0.90; similarity = 0.90) was used
to create a reference assembly while also discouraging the creation
of false contigs. The analytical workflow included an initial de novo
assembly of RRL sequence reads, repeat masking of the resulting
contigs, and utilization of the masked contig sequences to perform
a reference assembly using the RRL sequencing reads (CLC
Genomics Workbench 3.7.1). The resulting assembly contained
55,526 contigs comprising 19,207,189 bp of nucleotide sequence,
with an average contig length of 346 bp. The minimum estimated
repetitive DNA content for the 55,526 contigs was approximately
17%, as predicted by RepeatMasker (Human and/or Bovine
Repeat Libraries). This relatively low estimate reflects our inability
to mask all white-tailed deer repeats given the absence of a
complete species-specific repeat library. Utilization of the masked
contigs to perform a RRL reference assembly produced 44,385
final contigs averaging 338 bp, with approximately 6.2 sequence
reads/contig, and a mean depth of 4.2X (Table SI). However,
more than 95% of all contigs possessed <4X coverage (see Table
S1 for coverage distribution), and when contigs possessing =20X
coverage were excluded, the mean depth was approximately 2.1X
(SD=1.31). Unmasked repeats and/or potential copy number
variants were apparent based on the observed depth of coverage
achieved for the final contigs (see Table S1), with 392 contigs that
possessed =20X coverage. However it is also likely that some
repeats and/or copy number variants are present in contigs
possessing lower coverage. Therefore, genomic sequence informa-
tion derived from our RRL contigs will contribute to establishing
an annotated white-tailed deer repeat library, and may also help
elucidate potential copy number variants.

Alignment of the final white-tailed deer RRL contigs to the
bovine genome sequence assembly (Btau4.0) via blastn resulted in
18,301 contigs producing 19,667 E-value informative hits (E-
value=1e-50) to either a single chromosome (BTA1-BTAX; MT;
discrete unknown, chrUN; (=3 chromosomal positions) or a single
chromosome plus one unknown chromosome (=3 chromosomal
positions). These alignment criteria were chosen to maximize the
likelihood of achieving unambiguous alignments while also
allowing for potential gene family members, duplications, and
limitations of the bovine genome assembly (i.e., assembly errors,
chrUn unassigned sequence contigs). Overall, the average percent
identity was approximately 92%, with an average alignment
length of 306 bp, and 17,084 contigs (93%) produced one unique
alignment to a bovine chromosome (Table S2).

Collectively, 6,877 putative SNPs (6,724 diallelic; 153 with >2
alleles) were detected within 18,301 blastn-aligned contigs using a
3X minimum depth of coverage for all potential variable sites
(Table S3), with 5,710 (83%) putative SNPs derived from 17,084
contigs that produced one unique blastn hit. The average
estimated minor allele frequency (MAF) for the 6,724 diallelic
SNPs was 0.282. The distribution of blastn hits (n=19,667) for all
aligned contigs (n = 18,301) and putative SNPs (n =6,877) against
the bovine genome is shown in Figure S1, with similar results for
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the 17,084 uniquely aligned contigs and 5,710 putative SNPs
depicted in Figure S2. The average deer-to-bovine hit density was
one deer contig every 142.7+27.7 kb. Absence of BTAY
annotation precluded Y-specific comparative contig overlays
between B. taurus and white-tailed deer.

Interestingly, we observed a disproportionately large number of
SNPs for deer contigs that aligned with BTA28. Further
investigation revealed two clusters comprising 14 total contigs
that aligned to BTA28 as follows: 1) Between CHRMS3 and
ZNF33B (11.35-11.39 Mb; n=12 contigs); and 2) Within a
putative  intronic  region of  LOC532077  (11.620918—
11.620982 Mb; n=2 contigs). Both bovine regions are near a
small break in the cattle-human comparative map [27] that is also
proximal to the HSA10 centromere. Furthermore, this region of
BTAZ28 is near the break between previously described HSA1 and
HSA10 homologous synteny blocks [27]. Collectively, these 14
deer contigs contained 424 putative SNPs (Table S2), and may
represent a duplicated and/or expanded region of the white-tailed
deer genome that also serves as a break point between cattle and
white-tailed deer chromosomes. Interestingly, the homologue of
BTA28 has not yet been identified in Odocoileus species, with both
white-tailed and mule deer possessing five more autosomes than
cattle [4].

To functionally characterize the sequence content of 18,301
blastn-aligned contigs, we performed functional annotation,
pathway mapping, and putative ortholog matching by mapping
the assembled sequences onto relevant classification schemes such
as Gene Ontology (GO) terms [28], KEGG pathways [29], and
Swiss Prot Protein keywords [30] using both Krakenblast [31] and
the Database for Annotation, Visualization, and Integrated
Discovery (DAVID) [32]. Despite the relatively low genomic
sequence coverage, 1,801 contigs (9.8%) produced functional hits
and detailed annotation data, with 322 functional ontology terms,
categories, and keywords cumulatively identified (Table S4).

Pooled White-tailed Deer RRL and RSL Analysis

In addition to the RRL, we constructed a random shotgun
library (RSL) from a single male deer included in the RRL and
produced 778,792 sequence reads comprising 286,843,168 bp on
a Roche GS FLX instrument. The pooled RRL and RSL reads
(n=1,985,508) were assembled via CLC Genomics Workbench
3.7.1 using the previously described three stage de novo assembly
process, which resulted in 126,980 contigs (average contig length
of 433 bp) representing 55,020,760 bp of sequence. The minimum
estimated repetitive content predicted by RepeatMasker was
approximately 21% (Human and/or Bovine Repeat Libraries).
After masking the de novo contigs and performing a reference
assembly, 94,070 final contigs averaging 400 bp, with approxi-
mately 5.0 reads/contig, and a mean depth of 3.4X remained
(Table S5). Nevertheless, more than 95% of all contigs possessed
<5X coverage (See Table S5 for coverage distribution), and when
contigs possessing =20X coverage were excluded, the mean depth
was approximately 2.1X (SD =1.45). Examination of the distri-
bution of coverage across all final contigs provided evidence for
unmasked repeats as well as potential copy number variants, with
536 contigs that possessed =20X coverage. However, some
unmasked repeats and/or copy number variants are also likely to
be present at lower depths of coverage, with outliers visualized by
plotting coverage across all contigs (plot not shown; see Table S5).
Final contig alignment to the bovine genome (Btau4.0) via blastn
resulted in 56,084 contigs producing 61,553 hits (E<1e-50) to
either a single bovine chromosome (=3 chromosomal positions),
or a single chromosome plus one chrUN (=3 chromosomal
positions). Average percent identity was approximately 92%, with
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an average alignment length of 384 bp, and 51,087 contigs (91%)
produced a unique alignment to a single chromosome (Table S6).

From the pooled analysis we detected 17,813 putative SNPs
(17,266 diallelic; 547 with >2 alleles) within 56,084 blastn-aligned
contigs using a 3X minimum depth of coverage requirement for
potential variable sites (Tables S7, S8). Notably, 13,962 (78%)
putative SNPs were located within contigs which aligned uniquely
to the bovine genome. Nevertheless, some caution is necessary
when interpreting this result given the possibility for at least some
closely linked multicopy loci for which only a single representative
was incorporated into a relevant bovine chromosomal assembly.
Average estimated MAF for the 17,266 diallelic SNPs predicted
was 0.274. The distribution of blastn hits (n=61,553) for all
aligned contigs (n=56,084) and putative SNPs (n=17,813) with
respect to the bovine genome are shown in Figure S3. A plot for
the 51,087 uniquely aligned contigs and corresponding 13,962
putative SNPs is displayed in Figure 1. For the pooled analysis
(RRLA+RSL), the average deer-to-bovine hit density was one deer
contig every 45.9%£9.9 kb. Similar to the RRL only analysis, we
again observed a disproportionately large number of putative
SNPs predicted for 27 white-tailed deer contigs that aligned to the
same two regions of BTA28. In total, those 27 contigs contained
900 putative SNPs (Table S7).

In the RRL analysis, only six contigs provided evidence for a
putative mitochondrial origin (Figure S1). However, our pooled
RRL and RSL analysis effectively captured the complete white-
tailed deer mitochondrial genome (GenBank Accession HQ332445)
at an average coverage of 70.4X, with 2,965 reads included in the
final assembly. Using the B. tawrus and caribou (Rangifer tarandus)
mitochondrial genome refseqs (GenBank accessions NC_006853.1;
NC_007703) in conjunction with BLAST (blastn, bl2seq, blastp;
http://blast.ncbi.nlm.nih.gov/), we successfully annotated 13
white-tailed deer mitochondrial protein coding genes (ND1, ND2,
COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4, ND5, NDG,
CYTB) and two ribosomal RNA genes (125, 165, GenBank
Accession H(Q)332445). Using tRNAscan-SE (http://lowelab.ucsc.
edu/tRNAscan-SE/) [33], we also predicted 21 tRNA genes
(GenBank Accession HQ332445). The consensus mitochondrial
genome spanned 16,477 contiguous bp and possessed an average
GC content of 36.9%. In total, 38 putative diallelic SNPs were
detected with =3X coverage (average coverage 78X) and an overall
average estimated MAF of 0.07 (Table S8). A blastn query of the
white-tailed deer mitochondrial genome sequence against the
nucleotide collection (nr/nt) using BLAST (http://blast.nchi.nlm.
nih.gov/Blast.cgi;blastn) produced a top hit (based on 100%
coverage; 93% Max Identity) to the complete mitochondrial
genome of R. tarandus (GenBank Accession NC_007703).

To functionally characterize the sequence content of the 56,084
blastn-aligned contigs, the assembled sequences were again
mapped onto the relevant classification schemes, with 5,057
contigs (9%) producing putative functional hits and detailed
annotation data, including 606 identified functional ontology
terms, categories, and keywords (Table S9). Pooling sequences
obtained from the RRL and RSL resulted in a >2.8 fold increase
in the total number of contigs predicted to possess at least partial
gene sequences, thereby elucidating nucleotide sequence data for
as many as 3,097 putative genes (see unique hits Table S9).

SNP Validation and Mitochondrial Evolution

Using a DNA panel of 96 white-tailed deer that included the 16
deer used to create the RRL and RSL, we estimated the
proportion of total putative SNPs that were likely to be valid by
fluorescent allele-specific PCR [34]. Putative nuclear SNPs were
sampled from a range of discovery classes defined by differences in
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depth of coverage and observed minor allele count (Table 1), with
efforts to avoid clustered SNPs and those predicted within or
proximal to homopolymers. Every putative SNP detected within
the white-tailed deer mitochondrial genome was also tested
(n=38). SNP validation provided evidence for as many as
10,448 nuclear SNPs (Table 1) and 28 mitochondrial SNPs (Table
S7, S8). Lower validation rates for mitochondrial SNPs are likely a
reflection of two primary issues: 1) Not all sequence compositions,
including but not limited to tightly clustered SNPs, are amenable
to genotyping by allele specific KASPar assays [34]; and 2) Some
of the putative mitochondrial SNPs queried were predicted in
regions that were rich in one or two specific nucleotides (including
homopolymers), which likely increased local read error. Median
joining haplotype networks constructed for both captive and free-
ranging white-tailed deer revealed extensive mitochondrial
haplotype variation and divergence (Figure 2). Using the white-
tailed deer mitochondrial genome consensus sequence, we
implemented a Bayesian approach [35] to estimate the evolution-
ary history for 10 species of Cervidae (Figure 3). Collectively,
13,722 nucleotide positions spanning the 725 rRNA, 165 rRNA,
NDI, ND2, COX1, COX2, ATPS, ATP6, COX3, ND3, ND4L, ND4,
ND35, ND6, and CYTB genes were used to produce the phylogeny.

@ PLoS ONE | www.plosone.org

Distance, maximum composite likelihood, and maximum parsi-
mony approaches (transitions+transversions) employing bootstrap
resampling produced similar overall tree topologies, with the
exception that Elaphodus cephalophus and Hydropotes inermis could not
be unambiguously placed within the tree due to inadequate
bootstrap support (bootstrap=70; trees not shown). Our Bayesian
mitochondrial phylogeny (Figure 3) provides strong support for
monophyly in Cervinae, Muntiacinae, and Odocoileinae for the
surveyed taxa while also providing evidence that the single species
representing the subfamily Hydropotinae (H. inermus) is more
closely related to Odocoileinae (new world deer) than any other
subfamily represented in our analysis. These findings are generally
consistent with recent phylogenies produced from either partial
mitochondrial genome sequences [36-38] and/or the hybrid
combination of nuclear and mitochondrial sequence information
[39]. Additionally, the position of O. wviginianus within our tree is
consistent with a nuclear phylogenomics study involving 39,695
parsimony informative characters derived from 40,843 nuclear
SNPs [40]. Our ability to produce a robust mitochondrial
phylogeny indicates that similar sequencing approaches in other
non-model organisms are also likely to produce massive amounts
of phylogenetically informative data.
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Table 1. Summary data for a white-tailed deer RRL plus RSL SNP validation study.

Minor Allele  Total Putative Total SNPs  Assays Passing Total SNPs
SNP Coverage Class Count SNPs % SNPs' Tested Q.c.2 Total SNPs Validated (%)  Predicted®
3X 1 6791 51.9% 15 14 14 (100) 6791
4X 1 1951 14.9% 15 13 13 (100) 1951
4x 2 497 3.8% 12 12 12 (100) 497
5X 1 778 5.9% 12 12 10 (83.3) 648
5X 2 255 1.9% 12 9 7 (77.8) 198
6X 1 467 3.6% 12 9 7 (77.8) 363
Totals/Avg 10,739 82.0% 78 69 63 (89.8) 10,448"

position).

“Mitochondrial validation assays also confirmed 28 additional SNPs (28/38; 74%).
doi:10.1371/journal.pone.0015811.t001

In addition to our phylogenetic analyses, we also aligned the
annotated white-tailed deer mitochondrial sequence with known
bovine mitochondrial polymorphism data using blastn. The
results of our alignments revealed one validated SNP that was
conserved among highly divergent taxa. Specifically, nucleotide
633 of the predicted CY7TB gene for the white-tailed deer
(10481Y; (Codon 211; Ile—Ile); Table S8) was also variable (C/
T) in at least four lineages of Bos, including B. taurus, B. indicus, B.
Srontalis, and B. javanicus (Genbank Accessions HMO045018.1,
EU177870.1, EF685907.1, AY079130.2, AB542189.1, EJ556556,
AY689188.1, FJ997262.1). Importantly, amino acid 211 of the
CYTB gene falls within a domain of unknown function according
to the Simple Modular Architecture Research Tool online
(http://smart.embl-heidelberg.de/). The unusual nature of this
shared synonymous polymorphism provides some potential
evidence for either selective and/or functional constraint at
amino acid 211 across several highly divergent taxa and should
be further investigated.

Prospects for a complete white-tailed deer genome

sequence

Generation of a white-tailed deer genome sequence assembly
would provide a valuable resource for population geneticists and
physiologists studying the basis of adaptation and fecundity [5-8].
In addition to interesting biological characteristics, burgeoning
U.S. white-tailed deer populations may potentially become
reservoirs for infectious disease, and also increase the likelihood
for deer-human conflict [8,41-44]. Importantly, the majority of
emerging infectious diseases in humans are zoonotic, with most
originating from wildlife populations which also serve as vectors
for nonzoonotic diseases affecting livestock (for review see [44—
47]). The availability of a genome sequence would directly enable
population-based studies of host-disease relationships while also
providing a genomic basis for modern management strategies.

At a cost of $10,000 per GS FLX instrument run, with each
fully optimized run producing approximately 400 Mb of sequence
data, a theoretical 1X coverage of the white-tailed deer genome
would cost approximately $70,000, assuming a genome size similar
to that of the domestic cow (B. taurus, 2.87 Gb genome; [48]).
Moreover, a hybrid combination of currently available long
(Roche GS FLX) and short read sequencing technologies (Illumina
or Applied Biosystems) would generate sufficient sequence data
from mate-pair and paired-end libraries to allow a de novo white-
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"Percent of all nuclear SNPs based on total putative SNPs with 3X-150X coverage predicted within 51,087 single-hit contigs (E<1e-50 to a unique bovine genomic

2Allele-specific SNP assays exhibiting acceptable and repeatable genotype clustering.
3Prediction based on the proportion of validated nuclear SNPs sampled from each class.

tailed deer assembly at a modest cost, with single molecule
sequencing [49] soon to further reduce the cost of de novo genome
assemblies. However, every genome sequence needs a good map
[50], and the SNPs identified in this study will enable linkage and/
or linkage disequilibrium approaches to producing a robust
physical and/or genetic map capable of guiding the white-tailed
deer sequence assembly.

Conclusions and Future Studies

This study demonstrates that small, highly targeted investments
in sequencing for “minor” species can rapidly enable genomic and
phylogenomic research programs via adaptation of bioinformatic
procedures developed for human or well-funded food animal
species [25,26,51,52]. We have generated a substantial number of
high quality white-tailed deer nuclear sequence contigs which were
unambiguously aligned to the bovine genome assembly despite
32.5 million years of species divergence, as predicted from a
mitochondrial CY7TB and 765 rRNA analysis [53]. Our relatively
small, targeted sequencing initiative lead to the generation of a
complete white-tailed deer mitochondrial genome sequence and
phylogeny while also providing a new resource for population-
based studies and genetic discrimination analyses for Odocoileus
species. The mitochondrial genome sequence, nuclear genome
sequence contigs, putative and validated SNPs, and functional
annotation will directly facilitate conservation, population, man-
agement, and genetic epidemiology research in O. virgianus and O.
hemionus while also enabling conservation genomics in the
endangered Florida Key deer.

Materials and Methods

Construction and Sequencing of the RRL and RSL

In the absence of a genome sequence against which to perform
an m silico whole genome digestion [51], a molecular prediction
based upon a domestic animal species was employed. Using
knowledge from the construction of a pig (Sus scrofa) RRL [26], two
restriction enzymes (Alul; Haelll; New England Biolabs) which
recognize four base sequences (AG|CT; GG|CC) and produce
blunt-ended fragments were tested via overnight digestion of
2.8 ug of white-tailed deer DNA (0. wviginianus; 37°C; 8 U
enzyme/pug DNA). Alul was selected for RRL preparation based
on modest repetitive content observed within size-selected swine
digestion fragments [26], its apparent ability to fully digest white-
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tailed deer DNA, presence of the restriction site in deer
mitochondrial sequences (Genbank accessions U12869.1;
M35874.1), and the paucity and distribution of visually apparent
bands following digestion (Figure S4).

Equal amounts of DNA were pooled from 16 (n=7 females;
n =9 males) unrelated white-tailed deer representing a sampling of
northern and southern U.S. nuclear germplasm derived from both
captive and free ranging populations. Ethical clearance is not
applicable to samples obtained from lawfully harvested white-
tailed deer. A total of 14 pg of DNA was digested overnight (37°C;
8 U enzyme/ug DNA) with Alul, as suggested by the manufacturer
(New England Biolabs). The resulting fragments were separated
via 2.5% ULTRA-SIEVE high resolution agarose (IBI Scientific)
gel electrophoresis according to instructions for enhanced
separation (IBI Scientific), with ethidium bromide staining for
visualization. Three regions of the gel were excised for
purification: A) Fragments =350-400 bp, with efforts to avoid a
faint band at =340 bp; B) Fragments =220-280 bp; and C)
Fragments =~160-180 bp. Restriction fragments were purified
using the Qiaquick Gel Extraction Kit (Qiagen), with an extended
elution incubation period (10~12 min) and reduced elution volume
(20 ul). Following gel purification, the smaller fragments were
archived and the largest fragment population (=350-400 bp) was
utilized for pyrosequencing (Figure S4). A sequencing library was
constructed via random ligation of sequencing adaptors provided
with the GS FLX titanium library kit (Roche Applied Science). All
library preparation, emulsion PCR, quantitation, and sequencing
steps followed manufacturer protocols (Roche Applied Science).

To construct a white-tailed deer RSL., one male white-tailed deer
(O. virginianus) utilized in the preparation of the RRL was selected

@ PLoS ONE | www.plosone.org

and a GS FLX Titanium Rapid Library was prepared via
nebulization, fragment end repair, random ligation of sequencing
adaptors, fragment size selection, and quantitation as directed by the
manufacturer (Roche Applied Science). All subsequent procedures
also followed manufacturer protocols (Roche Applied Science).

Sequence Assembly, SNP Detection, BLAST annotation,
and tRNA Prediction

Two assemblies, each with SNP detection and BLAST
annotation analyses were performed using identical workflows.
For the first assembly, only sequence reads generated from the RRL
were utilized (RRL only), whereas the second assembly included
sequence reads from both the RRL and the RSL (Pooled
RRIARSL). In both cases, a three step assembly procedure was
utilized in conjunction with CLC Genomics Workbench 3.7.1 (CLC
Bio) and RepeatMaster (http://www.repeatmasker.org/). Un-
masked sequence reads were imported into CLC Genomics
Workbench 3.7.1 and a strict de novo assembly was performed with
user defined parameters: add conflict annotations = yes, conflict
resolution = vote (A,T,C,G), create report=yes, create sequence
list=yes, non-specific matches=ignore, minimum contig
length =200 bp, mismatch cost=2, insertion cost=3, deletion
cost = 3, minimum read length fraction = 0.90, minimum fraction of
identity (similarity) = 0.90. Contigs produced were processed with
RepeatMasker  (http://www.repeatmasker.org/; RepBasel5.0.2),
and the masked contigs became the reference sequences used for
SNP discovery; an approach similar to that used for the rainbow
trout [52]. Masked contig reference sequences were exported for
subsequent filtering by local blastn searches against Btau4.0 (E=1e-
50) and scenario specific (RRL only; RRIA+RSL) SNP detection
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Figure 3. Mitochondrial Phylogeny. Majority rule consensus phylogenetic tree for 10 species of Cervidae inferred from concatenated 725 rRNA,
16S rRNA, ND1, ND2, COX1, COX2, ATP8, ATP6, COX3, ND3, ND4L, ND4, ND5, ND6, and CYTB gene sequences. Entries in parenthesis represent Genbank
Accession Numbers. The Odocoileus virginianus consensus sequence was derived from this study. Start codons, stop codons, and overlapping regions
of genes were excluded. Numbers beside branches indicate posterior probabilities estimated from a Bayesian analysis employing 2 x10° generations

[35].
doi:10.1371/journal.pone.0015811.g003

analyses. Custom scripts were engineered to parse contig assign-
ments to bovine chromosomes as follows: E-value informative hit to
BTAI1-BTAX; MT; discrete chrUN; (=3 chromosomal positions);
to a single chromosome plus one discrete chrUN (=3 chromosomal
positions), and to a unique chromosomal location. The distribution
and density of all contig alignments were examined relative to their
predicted locations within the bovine genome (Btau4.0).

SNP detection analyses employed the Neighborhood Quality
Standard algorithm [25,54] within CLC Genomics Workbench 3.7.1,
with the following user defined and default parameters: annotate
consensus =yes, annotate reference =yes, create table =yes, maxi-

@ PLoS ONE | www.plosone.org

mum coverage = 1000X, maximum gap and mismatch count=2,
minimum average quality =15, minimum central quality =20,
minimum coverage = 3X, minimum variant frequency=10% or
count 3, SNP analysis window =11 bp. Custom scripts were
developed to parse putative SNP locations from contigs aligned to
Btau4.0, and their genomic distribution was assessed against Btau4-0.

Functional Annotation Analyses
White-tailed deer consensus contig sequences were mapped to

functional classification schemes such as Gene Ontology (GO)
terms [28], KEGG pathways [29], and Swiss Prot Protein
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Keywords [30], via Kraken (www.krakenblast.com) which is a high
throughput distributed BLAST engine based upon WND-BLAST
[31] using the BLASTx algorithm and a database containing all
functionally annotated protein sequences contained within Uni-
prot (March 2010 version), with cross reference mapping

performed using DAVID [32].

SNP Validation, Mitochondrial Phylogenetics, and
Network Analysis

Nuclear SNPs were selected from white-tailed deer contigs that
produced a single blastn hit (E-value=1le-50) to one discrete
bovine chromosomal coordinate (Table S7). All SNPs were
selected based on the coverage and minor allele count criteria
contained in Table 1, with putative SNPs predicted within or near
homopolymers excluded. We also endeavored to select putative
SNPs from contigs that uniquely aligned to different bovine
autosomes and BTAX. Putative nuclear SNPs closely flanked by
another predicted polymorphism were avoided; however, all
putative mitochondrial SNPs were evaluated. Collectively, 116
putative SNPs were genotyped using the KASPar allele-specific
fluorescent genotyping system (Kbiosciences; TableS7, S8) [34].
Assays exhibiting poor genotype clustering after two rounds of
optimization were considered technical failures due to quality
control violations [34].

All mitochondrial sequences were aligned using the ClustalW2
webserver  (http://www.ebi.ac.uk/Tools/ clustalw2/index.html),
with manual adjustment (alignment available upon request). A
Bayesian approach implemented within the program MrBayes
3.1.2 [35] was used to estimate the evolutionary history of 10
species of Cervidae by evaluating random trees using 2x10°
generations, GTR model with gamma-distributed rate variation,
and four simultaneous Markov chains [38]. Start codons, stop
codons, and overlapping regions of genes were excluded. A
majority rule consensus tree rooted using the B. faurus outgroup
was constructed and visualized within TreeView 1.6.6. For
comparison, we also constructed phylogenetic trees using distance
(Kimura 2 parameter), maximum composite likelihood, and
maximum parsimony (transitions+transversions) with bootstrap
resampling (1000 replicates; trees not shown), as referenced and
implemented within the program MEGA4 [55]. All median
joining haplotype networks were constructed using Network
4.5.1.0 (Fluxus Technology L'TD) [34].

Supporting Information

Figure S1 Comparative Contig Overlay with Putative SNPs.
Histogram displaying the bovine chromosome locations (Btau4.0)
of 19,667 blastn hits (E=1le-50) for 18,301 white-tailed deer
(WTD) sequence contigs and 6,877 putative SNPs (=3X coverage)
derived from sequencing a WTD reduced representation library
(RRL).

(TIF)

Figure 82 Comparative Contig Overlay with Putative SNPs.
Histogram displaying the bovine chromosome locations (Btau4.0)
of 17,084 uniquely aligned (E=1le-50) white-tailed deer (WTD)
sequence contigs and 5,710 putative SNPs (=3X coverage) derived
from sequencing a WTD reduced representation library (RRL).
(TTF)

Figure S3 Comparative Contig Overlay with Putative SNPs.
Histogram displaying the bovine chromosome locations (Btau4.0)
of 61,553 blastn hits (E<=1le-50) for 56,084 white-tailed deer
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(WTD) sequence contigs and 17,813 putative SNPs (=3X
coverage) derived from sequencing a WTD reduced representa-
tion library (RRL) and random shotgun library (RSL).

(TIF)

Figure S4 Reduced representation library (RRL). White-tailed
deer (WTD) genomic DNA used in the preparation of a RRL via
overnight digestion of genomic DNA using Alul, a 2.5% Ultra
Sieve Gel (IBI Scientific) with ethidium bromide staining, and the
New England Biolabs 100 bp ladder.

(TTF)

Table S1 White-tailed Deer RRL Contig Table.
(XLSX)

Table S2
(E#1e-50).
(XLSX)

White-tailed Deer RRL Informative blastn Hits

Table S3 White-tailed Deer RRL Putative SNPs
coverage).

(XLSX)

(=3X

Table S4
(XLSX)

White-tailed Deer RRL Functional Annotation.

Table S5
Table.
(XLSX)

White-tailed Deer RRL plus RSL (Pooled) Contig

Table S6 White-tailed Deer RRL plus RSL (Pooled) Informa-
tive blastn Hits (E#1e-50).
(XLSX)

Table 87 White-tailed Deer RRL plus RSL (Pooled) Putative
and Validated SNPs ($3X coverage).

(XLSX)

Table 88 White-tailed Deer RRL plus RSL (Pooled) Mitochon-
drial SNP Table ($3X coverage).

(XLSX)

Table 89 White-tailed Deer RRL plus RSL (Pooled) Functional
Annotation.

(XLSX)
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