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Abstract

Streptococcus pneumoniae (pneumococcus) is able to form biofilms in vivo and previous studies propose that pneumococcal
biofilms play a relevant role both in colonization and infection. Additionally, pneumococci recovered from human infections
are characterized by a high prevalence of lysogenic bacteriophages (phages) residing quiescently in their host chromosome.
We investigated a possible link between lysogeny and biofilm formation. Considering that extracellular DNA (eDNA) is a key
factor in the biofilm matrix, we reasoned that prophage spontaneous activation with the consequent bacterial host lysis
could provide a source of eDNA, enhancing pneumococcal biofilm development. Monitoring biofilm growth of lysogenic
and non-lysogenic pneumococcal strains indicated that phage-infected bacteria are more proficient at forming biofilms,
that is their biofilms are characterized by a higher biomass and cell viability. The presence of phage particles throughout the
lysogenic strains biofilm development implicated prophage spontaneous induction in this effect. Analysis of lysogens
deficient for phage lysin and the bacterial major autolysin revealed that the absence of either lytic activity impaired biofilm
development and the addition of DNA restored the ability of mutant strains to form robust biofilms. These findings establish
that limited phage-mediated host lysis of a fraction of the bacterial population, due to spontaneous phage induction,
constitutes an important source of eDNA for the S. pneumoniae biofilm matrix and that this localized release of eDNA favors
biofilm formation by the remaining bacterial population.
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Introduction

Biofilms, the most frequently encountered physiological form

adopted by microorganisms, are surface-adapted communities that

constitute a protected mode of bacterial growth allowing survival

in hostile environments [1–4]. Recent studies demonstrated the

potential of Streptococcus pneumoniae to produce biofilms in vivo [5,6].

Pneumococcal biofilms were indeed detected on affected tissues in

patients with chronic rhinosinusitis [5], children with otitis media

[6], as well as a chinchilla model of otitis [7]. The presence of these

communities at the site of infection implicates them in these

disorders, although their significance in the infection process is a

matter of debate. Two recent studies have failed to find an

association between the ability to form biofilms and whether the

isolates had been recovered from asymptomatic carriers or caused

invasive infections [8,9]. Moreover, a mouse model of invasive

infection failed to show any association between the capacity to

cause bacteremia and the ability of the strains to form robust

biofilms [8]. Although these two studies question the role of

biofilms in determining the invasive potential of pneumococci, the

transcriptional profile of several known virulence-related genes in

S. pneumoniae isolated from lungs and brains of infected mice is

similar to that in biofilms formed in vitro, suggesting a possible

biofilm-like state of S. pneumoniae associated with tissues [10]. In

addition, a link was established between pneumococcal biofilm

formation and the asymptomatic colonization of the nasopharynx

[11], the most frequent state of pneumococci. Overall, these

studies highlight the importance of studying S. pneumoniae biofilms,

particularly of identifying the factors that influence the formation

of these structures.

Bacterial biofilms are encased within an extracellular matrix

consisting of polysaccharides, proteins and nucleic acids [2].

Although polysaccharides and proteins are important components,

the role of extracellular DNA (eDNA) as a critical element of the

matrix is increasingly recognized, both in providing structural

stability as well as protection against antimicrobial agents [12–15].
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In Gram-positive bacteria, such as Enterococcus faecalis and

Staphylococcus epidermidis, autolysins (bacterial murein hydrolases)

were recently implicated in biofilm formation, apparently by

mediating bacterial lysis with the consequent release of eDNA

[15–18]. Pneumococcal cells are characterized by the presence of

a major autolysin LytA, an N-acetyl-muramyl-L-alanine amidase,

which is responsible for the unusual property of massive cellular

lysis displayed in the stationary phase of liquid cultures [19].

Furthermore, cell lysis dependent on LytA was also detected upon

competence development, which results in DNA release into the

medium [20,21]. The observation that S. pneumoniae biofilm

formation is influenced by the presence of eDNA [22,23] and

that LytA mutants have a decreased capacity to form biofilms [23],

hints that LytA-induced pneumococcal lysis could be related to

biofilm formation through the release of eDNA.

In addition to autolytic events, cell lysis in S. pneumoniae can also

be mediated by lysogenic phages, which have a high prevalence

(76%) in isolates associated with infection [24,25]. During

lysogeny, the prophage is integrated in the bacterial chromosome

being replicated as part of the hosts genome. Upon induction, the

repressed lysogenic state shifts to lytic growth with the production

of viral particles and subsequent phage mediated host lysis to

release the phage progeny [24,26]. It was recognized early that

free phages can be found in cultures of lysogenic bacteria in the

absence of a known inducing agent, indicating that some

prophages spontaneously enter the lytic cycle [27]. Spontaneous

phage induction seems to be a common feature of lysogeny, being

non-specific of the phage or the bacterial host, although the factors

that promote spontaneous induction, either in vitro or in vivo, are

poorly understood. Recent studies showed that this natural

phenomenon may contribute to pathogenicity in Salmonella [28],

increasing the awareness of the potential importance of lysogeny in

the context of infection. This spontaneous phage release occurs

obviously at low levels, and the phage titer observed is orders of

magnitude less than the one produced when the same bacteria are

treated with an inducing agent [26,29,30].

Whether agent-induced or spontaneous, it was believed that

phages of S. pneumoniae relied exclusively on their own lysins to

hydrolyze host cell wall peptidoglycan and release the phage

progeny [31]. Recently, it was shown that pneumococcal lysogenic

phages achieve an optimal exit strategy by orchestrating the

coordinated action of the phage-encoded lysin and the bacterial

major autolysin LytA [32].

Inevitably, prophage activation results, through bacterial lysis,

in the release of the cellular components to the extracellular

medium. Since eDNA is increasingly recognized as a critical

element for biofilm formation, we hypothesized that spontaneous

induction of lysogenic phages could have a positive effect on

pneumococcal biofilms. To test this, we have evaluated biofilm

formation and eDNA release of isogenic strains differing in

carriage of a prophage and having functional or being deleted in

the major phage and bacterial lysins.

Results

Lysogenic phages enhance biofilm development
In order to evaluate the impact of lysogeny in biofilm formation

a well established in vitro system, based on an abiotic surface as the

growth substrate, was used allowing proper investigation of the

initial stages of biofilm formation [8–10,22,23]. We started by

monitoring biofilm development of the isogenic pair of

S. pneumoniae strains R36A and R36AP, which differ only in the

presence of a prophage (R36AP is a lysogen of phage SV1).

Biofilm growth was followed at specific time points between 6 h

and 30 h of incubation by biomass quantification and viable cell

counts (Fig. 1A and 1B). The evaluation of cell viability by CFUs

was consistent with biomass quantification obtained by crystal-

violet staining. The biofilm of the lysogenic strain R36AP reaches

its maximal development at 24 h and from that time onwards a

decrease in biomass occurs. We reasoned that this decrease is

inherent to the experimental conditions used, probably due to

nutrient depletion, accumulation of toxic substances or intrinsic

properties of the biofilm. In contrast, for the wild type non-

lysogenic strain R36A the highest biofilm mass values are

registered at 26 h, decreasing afterwards in a behavior similar to

that of strain R36AP. This observation is consistent with a slower

biofilm growth of strain R36A, resulting in delayed development.

The lysogenic strain showed improved biofilm growth at all time

points and also a higher maximal biofilm mass than its non-

lysogenic parent. In agreement with these findings, images of

CLSM show denser and thicker biofilms for R36AP (Fig. 2A and

2B). Since the lysogen R36AP is indistinguishable from its parental

strain R36A in planktonic growth [32], the differences observed

must be attributed to the influence of the lysogenic phage on

biofilm formation.

Spontaneous prophage induction enhances biofilm
development due to host lysis

It was previously shown that the main pneumococcal autolysin

LytA is important in normal biofilm development since its

inactivation resulted in diminished biofilm formation, possibly by

a mechanism dependent on its regulated lytic activity [23]. Thus,

autolytic events may be helpful in the establishment of robust S.

pneumoniae biofilms. It is well known that spontaneous phage

induction results in the lysis of a fraction of the bacterial

population [29] and we speculated that such induction could also

occur within pneumococcal biofilms. Accordingly, the enhanced

biofilm formation of the lysogenic strain R36AP could be

explained by limited phage triggered lysis. To test this hypothesis,

we compared biofilm development of the lysogenic strain R36AP

to that of the derived mutants for phage lysin Svl (strain

R36APDsvl), bacterial autolysin LytA (R36APDlytA) or both lysins

(R36APDlytADsvl). As shown in Fig. 1A and 1B biofilm growth is

significantly impaired in the absence of the phage lysin with a shift

in the biofilm biomass peak from 24 h to 26 h, analogous to the

growth pattern observed for the non-lysogenic strain (R36A). A

similar behavior was observed for the lysogen in the absence of the

bacterial autolysin. In fact, the presence of at least one lysin is

essential, as the double mutant was largely deficient in biofilm

formation. Accordingly, the non-lysonenic R36ADlytA strain is

also severely impaired in biofilm formation, supporting an

important role of bacterial lysis in biofilm formation. This inability

to form biofilms is not due to a growth defect since all mutants

presented identical planktonic growth to the parent lysogen [32].

These results are consistent with the hypothesis that the positive

impact of prophages in pneumococcal biofilm development is due

to spontaneous induction of the lytic cycle resulting in cell lysis.

In order to confirm if phage induction was indeed occurring in

the biofilm, we measured the phage particles released during

biofilm development of strain R36AP by determining the number

of PFUs throughout biofilm growth (Fig. 1C). We observed the

presence of phages in the biofilm at all time points, indicating that

spontaneous phage induction is occurring continuously and

paralleling the increase in viable cells. A substantial increase in

the number of PFUs coincides with the peak of biofilm

development (Fig. 1A and 1B), indicating increased phage

induction at the later stages of biofilm formation. This higher

phage induction is not due to a massive triggering of the phage

Lysogenic Phages Foster Pneumococcal Biofilms
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lytic cycle related to this stage of biofilm growth since no increase

of PFUs concomitant with biofilm dispersal was observed.

Altogether, these results strongly support a role of spontaneous

phage induction during biofilm development in the different

phenotype shown by lysogenic strains.

Released eDNA through phage-mediated lysis is a key
factor for biofilm enhancement

Extracellular DNA is an essential matrix component produced

by many bacterial species during biofilm development

[13,15,16,33,34]. Therefore, we hypothesized that in S. pneumoniae

phage-mediated lysis of a fraction of the bacterial population

within the biofilm could provide an extra source of eDNA for

incorporation in the biofilm matrix.

We performed a DNase I susceptibility assay by incubating this

enzyme for 24 h with R36A and R36AP in conditions allowing

biofilm formation. A gradient of DNase I concentrations, ranging

from 0.5 to 50 mg/ml was used. Biofilm biomass quantification

indicates that DNase I reduces biofilm formation in a dose

dependent way (Fig. 3A). As expected, the biomass reduction is

directly related to a decrease of viable cells in the biofilm (data not

shown). The effect of DNase I is similar in R36A and R36AP

biofilms, however, R36AP biofilms always show a higher biomass

than R36A biofilms at all tested DNase I concentrations, suggesting

that R36AP biofilms are richer in eDNA. In fact, the biomass of the

R36AP biofilm incubated with 0.5 mg/ml of DNase I, is similar to

that of the R36A biofilm incubated in the absence of DNase I,

indicating that the presence of this enzyme reduced the extra eDNA

present in the R36AP matrix, resulting in a biofilm similar to that of

R36A. Taken together, the data enable an argument to be made for

the beneficial effect of lysogenic phages in biofilm development due

to an increased presence of eDNA in the matrix.

To further explore this potential role of eDNA on biofilm

development, we decided to determine the effect of the addition of

external DNA to the medium since the time of seeding, on biofilm

mass measured at 24 h of growth. DNA was extracted from the

R36A strain (homologous DNA) and used at a final concentration

of 10, 100 and 1000 ng/ml. To rule out any specific effect of

pneumococcal DNA, the same experiments were repeated using

DNA isolated from salmon sperm (heterologous DNA). As shown

in Fig. 3B, incubation with DNA since biofilm seeding enhances

biofilm development in a dose dependent manner, with a

significant effect detected with as little as 10 ng/ml. This biomass

increase parallels the number of viable cells in the biofilm (data not

shown). Moreover, this effect is observed with both homologous

and heterologous DNA, indicating that this was due to an intrinsic

property of the DNA molecule and independent of the exact

nucleotide sequence and donor organism.

Microscopy was used to explore the differences between

untreated R36AP biofilms and those treated with 50 mg/ml of

DNase I and 1000 ng/ml of DNA. In agreement with the results

obtained by biomass quantification, treatment with DNase I

resulted in sparser and thinner biofilms when compared to control

(Fig. 2A and 2D). On the other hand, supplementation of the

medium with DNA resulted in a more densely packed and thicker

biofilm (Fig. 2A and 2C). These results further support that the

limited lysis promoted by lysogenic phages during biofilm

development leads to higher eDNA release resulting in stronger

biofilm growth.

Due to the different kinetics of biofilm development of the

lysogenic and non-lysogenic strains, we wanted to clarify if the role

of DNA was only critical in the initial steps of biofilm

establishment (initial cell attachment) or if its presence was

necessary throughout the subsequent early phases of biofilm

Figure 1. Effect of lysogeny and phage induction in Strepto-
coccus pneumoniae biofilm development. A) Biofilm development
monitored as biomass from 6 h to 30 h. R36A non-lysogenic strain;
R36AP lysogenic derivative of R36A; R36APDsvl, R36APDlytA, R36ADlytA
and R36APDlytADsvl are mutants in which the phage lysin (Svl), the
bacterial autolysin (LytA) or both were deleted. Results are an average
of 9 independent replicates. B) Biofilm development monitored as CFUs
from 6 h to 30 h. The strains are the same indicated in panel A. Results
are an average of 6 independent replicates. C) The presence of phage in
the R36AP biofilm was determined by the production of plaques on
R36A. PFUs were determined throughout biofilm development from
6 h to 30 h. Results are an average of 2 to 7 independent replicates for
each time point. In all panels error bars represent 95% confidence
intervals for the sample mean.
doi:10.1371/journal.pone.0015678.g001
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development. To this end, the wells where the biofilms were grown

were pre-coated with DNA followed by incubation of the bacteria

in DNA-free medium. After 24 h, biofilm mass was similar to the

uncoated control (Fig. 3B), indicating that the observed DNA

effect is not related with the initial adherence process.

Furthermore, we also examined whether DNA acts as a

structural component of the biofilm or if the availability of extra

nutrients, due to the presence of DNA in the medium, could

explain the enhanced biofilm development. With that in mind, we

grew biofilms in the presence of sonicated DNA and compared

them with biofilms formed in the presence of intact DNA, using

both homologous and heterologous DNA. In the presence of

fragmented DNA, biofilm development assessed at 24 h was

similar to that of biofilms grown in the absence of DNA and

substantially less to that observed with intact DNA (Fig. 3B). This

data revealed that large DNA fragments were essential for the

enhancement of biofilm growth and suggested that DNA had an

important structural role in biofilm architecture.

Figure 2. Confocal laser scanning microscopy images of R3A6P and R36A biofilms. Staining was done with Syto 9/PI (Live/Dead BacLight
Bacterial Viability kit) and images were acquired at 6306amplification. Only live cells internalize Syto 9 (fluorescing green) whereas dead cells allow
the uptake of PI (fluorescing red). The large images are optical sections of top views and the small images to the right and above are optical sections
of side views. The depth of the biofilm is indicated by the height of the z-stack. The inset scale bar represents 5 mm. A) Biofilm formed by the
lysogenic strain R36AP. B) Biofilm of the non-lysogenic strain R36A. C) The biofilm was grown in the presence of salmon sperm DNA at 1000 ng/ml.
D) The biofilm was grown in medium supplemented with DNase I at 50 mg/ml. In all panels the results are representative images of 3 independent
experiments and biofilm growth was evaluated at 24 h.
doi:10.1371/journal.pone.0015678.g002
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To confirm if a higher eDNA release due to phage spontaneous

induction is related to a strong biofilm development we

determined the actual eDNA released into the biofilm of each

strain, after 24 h of growth, by quantitative real-time PCR. Strains

with a higher capacity to form biofilm (R36AP, R36A, R36APDsvl

and R36APDlytA) contain significantly more eDNA in comparison

to the almost undetectable levels present in R36APDlytADsvl and

R36ADlytA, two strains with poor biofilm forming capacity

(Fig. 4A). The marked difference observed between lytic and

non-lytic strains suggest that lytic events resulting in eDNA release

have a strong positive impact in biofilm development.

DNA release upon phage induction is dependent on lysis. So,

we reasoned that the addition of external DNA to biofilms of the

mutant strains R36APDsvl, R36APDlytA and R36APDlytADsvl

would allow the development of more robust biofilms. Indeed,

when the mutant strains were given exogenous DNA, biofilm

development was strongly increased in R36APDsvl and R36AP-

DlytA (Fig. 4B). The addition of a large excess of DNA overcomes

the impairments created by the ablation of either the phage or

bacterial lysins, with the formation of more biofilm in the presence

of DNA by these mutants than that observed when R36AP, where

both lysins are functional, was incubated in the absence of

exogenous DNA (Fig. 4B). As pointed out previously, the mutant

lacking both lysin activities (R36APDlytADsvl) was incompetent to

form stable biofilms and, even in the presence of excess DNA,

failed to recover to the R36AP level. Thus the addition of DNA

does not fully overcome the abolishment of the two major lysins

present in R36AP. This is in contrast to R36ADlytA that responds

well to the addition of external DNA. Although both mutants

present similar amounts of eDNA (Fig. 4A), the R36ADlytA strain

forms more biofilm biomass than strain R36APDlytADsvl (Fig. 1A)

and this effect is even more pronounced in the number of viable

bacteria in the biofilm (Fig. 1B). It has been previously shown that

even when phage and bacterial lysins are deleted, phage induction

decreases cell viability as phages express holins that collapse the

cell membrane potential resulting in host cell death [32]. Thus,

this difference in cell viability between R36ADlytA and R36AP-

DlytADsvl may be sufficient to compromise the enhancement of

biofilm development in the presence of added DNA observed in

the later strain.

To test if the presence of a capsular polysaccharide could

influence our results, we characterized the behavior of strain

SVMC28 and its mutants in both phage and bacterial lysins.

SVMC28 is an encapsulated strain and the natural host of the SV1

phage. The results obtained were superimposable to those of strain

R36AP and its mutants, with the same relative biomass produced

by the parental strain and its mutants in the absence of DNA and

the same effect seen upon DNA addition (Fig. 4C). This indicates

that our observations were reproducible in different genetic

backgrounds and, more importantly, that the capsule did not

qualitatively alter our conclusions Overall, our results indicate that

the release of eDNA through controlled lytic events is a key factor

for biofilm formation in S. pneumoniae and that lysogenic phages are

important adjuvants for its incorporation in the biofilm matrix

independently of the presence of a capsular polysaccharide.

Discussion

Prophages are extremely common among S. pneumoniae isolates

causing infections in humans [24]. The lysogenic lifestyle results in

the establishment of the phage genome inside the bacterial host

where it can remain in a dormant state replicating together with

the bacterial chromosome. An important feature is the possible

transition from the repressed lysogenic state to lytic development,

that ultimately leads to host cell death and release of the newly

produced phage particles. Prophage induction can occur sponta-

neously in a fraction of the lysogenic bacterial population or

massively upon external stimuli [26,27].

Here we investigated the impact of lysogeny in S. pneumoniae

biofilm formation exploring its role in the early development of

these structures. Our data provided evidence that prophage carriage

had a positive impact on pneumococcal biofilm formation through

spontaneous induction of the lytic cycle. Phage induction results in

the death of their bacterial hosts, however we showed that this

phage-mediated lysis enhances biofilm formation, suggesting that in

this context the bacterial population as a whole could benefit from

limited prophage induction. Studies on gene expression in biofilms

of various species have identified phage genes as overexpressed

Figure 3. Effect of DNAse I and DNA on biofilm mass. A) The
lysogenic strain R36AP and its non-lysogenic parent R36A were exposed
from seeding to DNAse I at final concentrations of 0.5, 5 and 50 mg/ml.
Biofilm mass was quantified after 24 h of incubation. B) R36AP and
R36A were exposed from seeding to DNA from R36A or salmon sperm
at final concentrations of 10, 100 and 1000 ng/ml. In separate
experiments, the effect on biofilm development of coating the wells
with 1000 ng/ml of R36A DNA prior to seeding and the addition of
sonicated R36A DNA at 1000 ng/ml since the time of seeding was also
determined. Biofilm mass was assessed at 24 h of incubation. In all
panels, the results are an average of 9 independent replicates and error
bars represent 95% confidence intervals for the sample mean.
doi:10.1371/journal.pone.0015678.g003
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relative to planktonic growth while other studies showed the

existence of lysis inside biofilms and proposed that it could increase

biofilm fitness [35–40]. Our results corroborate this previous

proposal in the context of S. pneumoniae biofilms, clearly identifying

the phage activated lytic machinery as a key player in this effect.

Interestingly, phage mediated bacterial lysis within the biofilm has

also been described in other bacterial species. However, in contrast

to our study, in those cases, phage induction results in the death of a

large fraction of the bacterial population and occurs in the later

stages of biofilm development [36,38–40].

The impact of lysogenic phages on pneumococcal populations is

still an open question since comparative genomic analysis did not

reveal any phage-encoded virulence factors, contrary to other

related streptococcal pathogens such as Streptococcus pyogenes

[41,42]. The observed biofilm potentiating role of lysogenic

phages and the proposed importance of these structures in

colonization [11] could explain in part the high incidence of

lysogeny in S. pneumoniae natural populations [24,25]. Further-

more, a high frequency of lysogeny is characteristic of many

bacterial pathogens [43] as well as of bacterial populations in the

environment [44], raising the possibility that the influence of

lysogeny on the ability of pneumococci to form biofilms could be

paralleled in other bacterial species.

The mechanism by which spontaneous prophage-mediated cell

lysis leads to increased biofilm development was also addressed in

this study. We gathered evidence that DNA released through this

process to the extracellular environment contributes to biofilm

formation in S. pneumoniae. An approximately six-fold increase in

eDNA was detected in strains carrying prophages and functional

bacterial or phage lysins. These lysogenic strains were also

characterized by forming biofilms with a higher biomass and cell

viability. This role of eDNA is consistent with previous findings in

this species, although in those studies the source of eDNA was not

identified [6,23]. We observed that eDNA is not involved in the

initial attachment stage, since pre-treatment of the plastic substrate

with DNA did not increase biofilm formation. In agreement, a

high concentration of DNAse I added from the onset of biofilm

incubation still allowed bacterial surface attachment and biofilm

formation, although in these conditions bacteria failed to form the

thick and dense structures observed in the absence of DNase I. To

our knowledge, this is the first study of the role of eDNA in initial

adhesion of pneumococcal cells to a surface. Although in some

bacterial species eDNA plays an important role in this initial step

[16,45], similar results to ours were already observed with another

Gram-positive bacterium [15]. Being such a complex lifestyle, it is

plausible that in different microorganisms the importance of the

various mechanisms for biofilm establishment is also different. The

factors or substances that promote initial attachment remain to be

identified in S. pneumoniae. However, eDNA played an important

role already in the early stages of biofilm development, since

spontaneous phage induced lysis is detected in the early hours of

biofilm establishment and the R36AP lysogen showed a more

robust biofilm development at all time points. Accordingly, a

mutant lacking the phage lysin produced less biofilm and in a

delayed fashion, a behaviour that was similar to the mutants

lacking the major bacterial autolysin LytA. Both observations are

consistent with a possibly slower accumulation of eDNA in the

matrix and with an important role of eDNA at various stages of

biofilm formation.

Our data indicates that eDNA is an important structural

component of S. pneumoniae biofilms, ensuring stability of the

overall architecture of these structures. Although DNAse I

treatment resulted in eDNA degradation with the consequent

reduction in biofilm formation, the critical result that definitely

establishes this structural role of DNA was the observation that

addition of fragmented DNA did not affect biofilm development,

whereas intact DNA led to increases in both mass and bacterial

viability in biofilms, indicating that the long strands of DNA may

allow more intercellular cohesion thereby increasing biofilm

stability. These results are supported by studies in other species

that have proposed DNA as an essential component of the

extracellular polymeric substance that constitutes the biofilm

matrix [13,15,16,23,46]. Thus, cell lysis mediated by lysogenic

phages influences the matrix composition, thereby contributing to

the pneumococcal biofilm structural stability. Since spontaneous

phage induction occurs in different areas of the biofilm, it is

expected to contribute significantly to the abundance and

widespread localization of eDNA.

In contrast to limited cell lysis due to spontaneous phage

induction, massive phage induction in the presence of an external

inducing agent could disrupt biofilms drastically, an hypothesis

supported by the use of lytic phages as powerful anti-biofilm agents

active against different microorganisms [47,48]. In fact, prelimi-

nary results from our group indicate that Mitomycin C phage

induction is able to disrupt to a large extent biofilms of lysogenic

strains. If the proportion of induced cells is large, more cells lyse

than are contributing to the biofilm resulting in an overall loss of

biofilm mass. This is in agreement with the natural biofilm demise

mediated by substantial phage induction proposed for some

Pseudomonas aeruginosa strains that facilitate differentiation and

dispersal of biofilm associated bacteria [36,39,40]. The beneficial

or detrimental effect of prophage induction on biofilm formation

seems to be quantitatively regulated by the proportion of lysogenic

bacteria undergoing lytic induction.

In conclusion, we showed that limited activation of prophages

into the lytic cycle, thereby promoting host lysis and eDNA

release, contributes to enhanced pneumococcal biofilm produc-

tion. This more efficient biofilm development afforded by

lysogenic phages may be an important aspect in the biology of

the bacteria since lysogeny is highly prevalent in pneumococci.

Our data provided new insights into the factors that influence the

formation and maintenance of biofilms whose occurrence and

importance in vivo is increasingly recognized.

Materials and Methods

Bacterial strains, culture conditions and DNA
manipulations

Bacterial strains SVMC28 and R36A were obtained from the

Rockefeller University collection (A. Tomasz). R36A is a non-

Figure 4. eDNA quantification and DNA impact on biofilm mass. A) Extracellular DNA was isolated from the biofilm matrices of R36A,
R36ADlytA, R36AP, R36APDsvl, R36APDlytA and R36APDlytADsvl and quantitative real-time PCR of two chromosomal genes, spi and gdh, was done.
The relative biomass was quantified at OD595 nm and the eDNA measurements were normalized to total biofilm mass. B) The effect of salmon sperm
DNA (1000 ng/ml) added from seeding on biofilm biomass at 24 h was tested. R36APDsvl, R36APDlytA, R36ADlytA and R36APDlytADsvl are mutants
in which the phage lysin (Svl), the bacterial autolysin (LytA) or both were deleted. C) The same experiments described in panel B were done with the
encapsulated wild type host of phage SV1, strain SVMC28, and its mutants. SVMC28Dsvl, SVMC28DlytA and SVMC28DlytADsvl are mutants in which
the phage lysin (Svl), the bacterial autolysin (LytA) or both were deleted. In all panels, the results are an average of 9 independent replicates and error
bars represent 95% confidence intervals for the sample mean.
doi:10.1371/journal.pone.0015678.g004
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lysogenic, non-encapsulated strain [24]. SVMC28 is an encapsulated

(serotype 23F) clinical isolate, lysogenic for phage SV1 encoding the

Svl phage lysin [32]. R36ADlytA was kindly provided by S. Filipe.

SVMC28 derived mutants SVMC28Dsvl, SVMC28DlytA and

SVMC28DsvlDlytA belong to the Faculdade de Medicina de Lisboa

collection. The SV1-lysogenized strains R36AP, R36APDlytA,

R36APDsvl and R36APDlytADsvl are also from the Faculdade de

Medicina de Lisboa collection. All strains were described previously

[32]. All S. pneumoniae strains were grown in a casein-based semi-

synthetic medium (C+Y) at 37uC without aeration or in tryptic soy

agar (TSA) (Oxoid, Hampshire, England) supplemented with 5%

(v/v) sterile sheep blood incubated at 37uC in 5% CO2. For overnight

cultures, pneumococcal mutant strains were grown in the presence of

2 mg/ml erythromycin or 4 mg/ml chloramphenicol (Sigma, Stein-

heim, Germany) or both, as appropriate. After selective growth, the

culture was diluted 1:100 in fresh medium and grown until the

appropriate optical density. Chromosomal DNA from S. pneumoniae

strain R36A was isolated following previously described procedures

[49]. Sperm salmon DNA was purchased from Invitrogen Co.

(Carlsbad, California, USA).

Biofilm biomass quantification
Biofilm formation was determined by the ability of cells to grow

adherent to 96-well flat-bottom polystyrene microtiter plates

(NuncTM, Roskilde, Denmark) in static conditions. Cells were

grown in C+Y medium, with selective antibiotic when necessary,

to an optical density measured at 600 nm (OD600nm) between 0.5

and 0.6 and then diluted 1:4 in fresh medium to a final volume of

200 ml per well. Microtiter plates were incubated at 37uC and

biofilm mass was determined by staining with crystal violet [23]

and measuring the OD595nm using a plate reader (Tecan Infinite

M200 with i-controlTM software V1.40). The incubation times at

which the biomass was quantified were selected based on

preliminary experiments in order to monitor the dynamics of

biofilm growth and dispersal. Shorter time intervals were selected

when biofilm mass showed steeper variations. The incubation

times at which biomass was quantified were 6 h, 12 h, 18 h, 20 h,

24 h, 26 h, 28 h and 30 h of incubation. A control with only C+Y

medium was also done for all time points and the values were

subtracted to those measured for all strains.

Quantitative determination of biofilm formation was also

evaluated in the presence of desoxiribonuclease I (DNase I) and

DNA, incorporated in the medium. DNase I (Sigma, Steinheim,

Germany) was used at a final concentration of 0.5, 5 or 50 mg/ml

and biofilm mass was measure after 24 h of incubation. DNA from

R36A strain or salmon sperm was added at 10, 100 or 1000 ng/ml

to the medium and determination of biofilm formation was carried

out 24 h post incubation. Values obtained from medium supple-

mented with DNAse I and DNA were subtracted in all strains. To

test if DNA was important in biofilm adherence, the plate wells were

incubated with 1000 ng/ml of R36A DNA overnight at 4uC to

condition the plastic surface. The solution was then discarded and

the biofilm was seeded as described before. Biofilm mass was

determined at 24 h post incubation. To determine if the impact of

DNA on biofilm formation was due to a structural role, DNA from

R36A was broken by sonication for 5 min at 0.63 A and 50–60 Hz

in a Transsonic T570 (Elma, Germany), and added to the medium

at 1000 ng/ml. DNA fragmentation was confirmed by agarose gel

electrophoresis. Biofilm formation was compared to biofilms grown

in the presence of 1000 ng/ml of intact DNA.

Biofilm colony forming units (CFU) assays
Biofilms were grown in 96-well plates at 37uC as described for

the biofilm biomass quantification assay. CFUs were determined

at the selected time points between 6 h and 30 h of incubation.

Liquid medium with bacteria was gently removed from the wells,

which were washed twice with phosphate buffered saline (PBS)

16, pH 7.2 (Invitrogen, Grand Island, New York) to eliminate

unbound bacteria without disturbing the adherent biofilm. 200 ml

of PBS were then added to each well and biofilms were scraped

thoroughly, including well edges. The well contents were

recovered and the total CFU number was determined by serial

dilution and plating on appropriate media.

To test the effect of DNase I and DNA on biofilm development,

DNase I was added to the growth medium to a final concentration

of 0.5, 5 or 50 mg/ml. After 24 h of incubation at 37uC, CFUs

were determined as described above. When using DNA to

evaluate its effect on biofilm formation, DNA from salmon sperm

was added to the growth medium at a final concentration of

1000 ng/ml and CFUs were determined as described above.

Phage plaque assays
Plaque assays were performed as described elsewhere [32].In

detail, basal plates were made by pouring C+Y medium with

170 U catalase per ml and 1% agar into Petri dishes. A lawn

culture of R36A strain grown to an OD600nm of 0.2 was mixed

with soft agar containing C+Y supplemented with 170 U catalase

per ml and 0.35% agar. The entire mixture was spread onto basal

plates. After hardening, phage preparations were applied in 10 mL

aliquots directly on the soft agar with the R36A indicator strain.

Incubation was performed at 30uC for 18 h. To obtain the phage

preparation, at the chosen time points after biofilm seeding each

well was scraped thoroughly including well edges. The harvested

biofilms were filtered through a 0.45 mm-pore-size membrane

followed by filtering with a 100 000 MWCO polyethersulfone

membrane (Vivaspin concentrator, Sartorius Stedim biotech,

Goettingen, Germany), that retains and concentrates the SV1

phage [32]. The phage concentrate was stored at 4uC for a

maximum of 24 h until usage. The filtrate containing proteins

,100 KDa, that could cause bacterial lysis such as LytA and

bacteriocins, was also used to eliminate the possibility that lysis of

the indicator strain was caused by bacterial products and not

caused by phage infection. Images of the plates were acquired with

the high-performance stereo-microscope Leica MZ7.5 (Leica

Microsystems, Germany) and the number of plaque forming units

(PFUs) was counted manually by visual inspection of the image.

Confocal laser scanning microscopy (CLSM)
Biofilms were stained by using a Live/Dead BacLight bacterial

viability kit (Invitrogen, Carlbad, USA) and examined by CLSM.

Syto9/PI labeled biofilms allowed for monitoring the viability of

bacterial populations as a function of the membrane integrity of

the cell. Cells with a compromised membrane (dead cells) will stain

red whereas cells with an intact membrane (live cells) will stain

green. Whenever DNA and DNase I effects were tested, the

medium was supplemented before biofilm seeding (t = 0). In all

experiments, biofilms were analyzed after 24 h of incubation.

Images were acquired on a Zeiss LSM510 META confocal

microscope (Carl Zeiss, Jena, Germany) using a PlanApochromat

636/1.4 objective for cell viability assays and a C-AproChromat

406/1.2. Syto 9 fluorescence was detected using the 488 nm laser

line of an Ar laser (45 mW nominal output) and a BP 505–550

filter. PI fluorescence was detected using a DPSS 561 nm laser

(15 mW nominal output) and a LP 575 filter. For imaging, the

laser power was attenuated to 1–2% of its maximum value. The

pinhole aperture was set to 1 Airy unit.

Purification and quantification of eDNA. Biofilms were

grown in 96-well plates at 37uC as reported above. eDNA was

Lysogenic Phages Foster Pneumococcal Biofilms

PLoS ONE | www.plosone.org 8 December 2010 | Volume 5 | Issue 12 | e15678



purified from 24 h biofilms exactly as previously described [50].

eDNA was quantified by real-time PCR using the primes gdh-up

(59-ATGGACAAACCAGCNAGYTT) and gdh-dn (59-GCTTG-

AGGTCCCATRCTNCC) and spi-up (59-TTATTCCTCCTG-

ATTCTGTC) and spi-dn (GTGATTGGCCAGAAGCGGAA),

amplifying the gdh and spi genes used for multilocus sequence

typing (MLST), respectively. These are housekeeping genes

located far apart in the R36A chromosome. PCRs were

performed on non-diluted samples with the SYBR Green Jump

Start Taq Ready Mix (Sigma, Steinheim, Germany), according to

the manufacturers recommendations. Purified R36A genomic

DNA at known concentrations was also subjected to quantitative

real-time PCR with each primer pair to generate a standard curve

used to calculate the concentration of eDNA in the unknown

samples. PCR was performed in a 7500 Fast Real-Time PCR

System (Applied Biosystems, Life Technologies, Carlsbad,

California, USA). To account for potential differences in

biomass, the average OD595nm of each biofilm was determined

and used to calculate the relative OD595nm of each biofilm with

respect to the OD595nm of the wild type R36A biofilm. The

nanogram of eDNA per relative biomass of each biofilm was then

calculated by dividing its total eDNA (ng) by its relative OD595nm.
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We thank José Rino and Marco Antunes for their support with the

microscopy work.

Author Contributions

Conceived and designed the experiments: MC MJF FRP JM-C MR.

Performed the experiments: MC MJF. Analyzed the data: MC MJF FRP

MR. Wrote the paper: MC MJF FRP JM-C MR.

References

1. Kolter R, Greenberg EP (2006) Microbial sciences: the superficial life of
microbes. Nature 441: 300–302.

2. Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common
cause of persistent infections. Science 284: 1318–1322.

3. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial

agents. Trends Microbiol 9: 34–39.

4. Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell

Microbiol 11: 1034–1043.

5. Sanderson AR, Leid JG, Hunsaker D (2006) Bacterial biofilms on the sinus

mucosa of human subjects with chronic rhinosinusitis. Laryngoscope 116:
1121–1126.

6. Hall-Stoodley L, Hu FZ, Gieseke A, Nistico L, Nguyen D, et al. (2006) Direct

detection of bacterial biofilms on the middle-ear mucosa of children with chronic
otitis media. Jama 296: 202–211.

7. Reid SD, Hong W, Dew KE, Winn DR, Pang B, et al. (2009) Streptococcus

pneumoniae forms surface-attached communities in the middle ear of experimen-

tally infected chinchillas. J Infect Dis 199: 786–794.

8. Lizcano A, Chin T, Sauer K, Tuomanen EI, Orihuela CJ (2010) Early biofilm

formation on microtiter plates is not correlated with the invasive disease
potential of Streptococcus pneumoniae. Microb Pathog 48: 124–130.

9. Tapiainen T, Kujala T, Kaijalainen T, Ikaheimo I, Saukkoriipi A, et al. (2010)

Biofilm formation by Streptococcus pneumoniae isolates from paediatric patients.
Apmis 118: 255–260.

10. Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, et al. (2006)
Switch from planktonic to sessile life: a major event in pneumococcal

pathogenesis. Mol Microbiol 61: 1196–1210.

11. Munoz-Elias EJ, Marcano J, Camilli A (2008) Isolation of Streptococcus pneumoniae

biofilm mutants and their characterization during nasopharyngeal colonization.

Infect Immun 76: 5049–5061.

12. Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA

chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa

biofilms. PLoS Pathog 4: e1000213.

13. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular
DNA required for bacterial biofilm formation. Science 295: 1487.

14. Vilain S, Pretorius JM, Theron J, Brozel VS (2009) DNA as an adhesin: Bacillus

cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:

2861–2868.

15. Guiton PS, Hung CS, Kline KA, Roth R, Kau AL, et al. (2009) Contribution of
autolysin and sortase A during Enterococcus faecalis DNA-dependent biofilm

development. Infect Immun 77: 3626–3638.

16. Qin Z, Ou Y, Yang L, Zhu Y, Tolker-Nielsen T, et al. (2007) Role of autolysin-

mediated DNA release in biofilm formation of Staphylococcus epidermidis.
Microbiology 153: 2083–2092.

17. Thomas VC, Hiromasa Y, Harms N, Thurlow L, Tomich J, et al. (2009) A

fratricidal mechanism is responsible for eDNA release and contributes to biofilm
development of Enterococcus faecalis. Mol Microbiol 72: 1022–1036.

18. Thomas VC, Thurlow LR, Boyle D, Hancock LE (2008) Regulation of autolysis-
dependent extracellular DNA release by Enterococcus faecalis extracellular

proteases influences biofilm development. J Bacteriol 190: 5690–5698.

19. Tomasz A, Moreillon P, Pozzi G (1988) Insertional inactivation of the major

autolysin gene of Streptococcus pneumoniae. J Bacteriol 170: 5931–5934.

20. Steinmoen H, Knutsen E, Havarstein LS (2002) Induction of natural

competence in Streptococcus pneumoniae triggers lysis and DNA release from a

subfraction of the cell population. Proc Natl Acad Sci U S A 99: 7681–7686.

21. Moscoso M, Claverys JP (2004) Release of DNA into the medium by competent

Streptococcus pneumoniae: kinetics, mechanism and stability of the liberated DNA.
Mol Microbiol 54: 783–794.

22. Hall-Stoodley L, Nistico L, Sambanthamoorthy K, Dice B, Nguyen D, et al.
(2008) Characterization of biofilm matrix, degradation by DNase treatment and

evidence of capsule downregulation in Streptococcus pneumoniae clinical isolates.
BMC Microbiol 8: 173.

23. Moscoso M, Garcia E, Lopez R (2006) Biofilm formation by Streptococcus

pneumoniae: role of choline, extracellular DNA, and capsular polysaccharide in
microbial accretion. J Bacteriol 188: 7785–7795.

24. Ramirez M, Severina E, Tomasz A (1999) A high incidence of prophage

carriage among natural isolates of Streptococcus pneumoniae. J Bacteriol 181:
3618–3625.

25. Severina E, Ramirez M, Tomasz A (1999) Prophage carriage as a molecular

epidemiological marker in Streptococcus pneumoniae. J Clin Microbiol 37:

3308–3315.

26. Little JW (2005) Lysogeny, prophage induction, and lysogenic conversion. In:
Waldor MK, Friedman DI, Adhya SL, eds. Phages, their role in bacterial

pathogenesis and biotechnology. Washington, DC: ASM Press. pp 37–54.

27. Lwoff A (1953) Lysogeny. Bacteriol Rev 17: 269–337.

28. Figueroa-Bossi N, Bossi L (1999) Inducible prophages contribute to Salmonella

virulence in mice. Mol Microbiol 33: 167–176.

29. Bossi L, Fuentes JA, Mora G, Figueroa-Bossi N (2003) Prophage contribution to

bacterial population dynamics. J Bacteriol 185: 6467–6471.

30. Livny J, Friedman DI (2004) Characterizing spontaneous induction of Stx
encoding phages using a selectable reporter system. Mol Microbiol 51:

1691–1704.

31. Lopez R, Garcia E (2004) Recent trends on the molecular biology of

pneumococcal capsules, lytic enzymes, and bacteriophage. FEMS Microbiol
Rev 28: 553–580.

32. Frias MJ, Melo-Cristino J, Ramirez M (2009) The autolysin LytA contributes to

efficient bacteriophage progeny release in Streptococcus pneumoniae. J Bacteriol 191:
5428–5440.

33. Allesen-Holm M, Barken KB, Yang L, Klausen M, Webb JS, et al. (2006) A

characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms.
Mol Microbiol 59: 1114–1128.

34. Spoering AL, Gilmore MS (2006) Quorum sensing and DNA release in bacterial

biofilms. Curr Opin Microbiol 9: 133–137.

35. Mai-Prochnow A, Evans F, Dalisay-Saludes D, Stelzer S, Egan S, et al. (2004)

Biofilm development and cell death in the marine bacterium Pseudoalteromonas

tunicata. Appl Environ Microbiol 70: 3232–3238.

36. Webb JS, Thompson LS, James S, Charlton T, Tolker-Nielsen T, et al. (2003)

Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:
4585–4592.

37. Mai-Prochnow A, Webb JS, Ferrari BC, Kjelleberg S (2006) Ecological

advantages of autolysis during the development and dispersal of Pseudoalteromonas

tunicata biofilms. Appl Environ Microbiol 72: 5414–5420.
38. Webb JS, Lau M, Kjelleberg S (2004) Bacteriophage and phenotypic variation in

Pseudomonas aeruginosa biofilm development. J Bacteriol 186: 8066–8073.

39. Kirov SM, Webb JS, O’May C Y, Reid DW, Woo JK, et al. (2007) Biofilm

differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from
patients with cystic fibrosis. Microbiology 153: 3264–3274.

40. Rice SA, Tan CH, Mikkelsen PJ, Kung V, Woo J, et al. (2009) The biofilm life

cycle and virulence of Pseudomonas aeruginosa are dependent on a filamentous
prophage. Isme J 3: 271–282.

41. Desiere F, McShan WM, van Sinderen D, Ferretti JJ, Brussow H (2001)

Comparative genomics reveals close genetic relationships between phages from

dairy bacteria and pathogenic Streptococci: evolutionary implications for
prophage-host interactions. Virology 288: 325–341.

42. Banks DJ, Beres SB, Musser JM (2002) The fundamental contribution of phages

to GAS evolution, genome diversification and strain emergence. Trends
Microbiol 10: 515–521.

43. Brussow H, Canchaya C, Hardt WD (2004) Phages and the evolution of

bacterial pathogens: from genomic rearrangements to lysogenic conversion.
Microbiol Mol Biol Rev 68: 560–602.

Lysogenic Phages Foster Pneumococcal Biofilms

PLoS ONE | www.plosone.org 9 December 2010 | Volume 5 | Issue 12 | e15678



44. Williamson SJ, Cary SC, Williamson KE, Helton RR, Bench SR, et al. (2008)

Lysogenic virus-host interactions predominate at deep-sea diffuse-flow hydro-

thermal vents. Isme J 2: 1112–1121.

45. Harmsen M, Lappann M, Knochel S, Molin S (2010) Role of extracellular DNA

during biofilm formation by Listeria monocytogenes. Appl Environ Microbiol 76:

2271–2279.

46. Moscoso M, Garcia E, Lopez R (2009) Pneumococcal biofilms. Int Microbiol 12:

77–85.

47. Donlan RM (2009) Preventing biofilms of clinically relevant organisms using

bacteriophage. Trends Microbiol 17: 66–72.
48. Lu TK, Collins JJ (2007) Dispersing biofilms with engineered enzymatic

bacteriophage. Proc Natl Acad Sci U S A 104: 11197–11202.

49. Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, et al. (1999)
Current protocols in molecular biology. New York, NY: Wiley-Interscience.

50. Mann EE, Rice KC, Boles BR, Endres JL, Ranjit D, et al. (2009) Modulation of
eDNA release and degradation affects Staphylococcus aureus biofilm maturation.

PLoS One 4: e5822.

Lysogenic Phages Foster Pneumococcal Biofilms

PLoS ONE | www.plosone.org 10 December 2010 | Volume 5 | Issue 12 | e15678


